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In recent years, spatial transcriptomics (ST) has emerged as a groundbreaking
technology with the potential to transform and accelerate our understanding of
cellular crosstalk. While single-cell approaches have uncovered an unexpected
level of cellular heterogeneity in both healthy and diseased tissues, they
remain limited in their ability to capture cellular interactions in the native
microenvironment. ST techniques bridge this gap by preserving anatomical
information, enabling a direct investigation of spatially defined cellular
interactions. This feature is particularly relevant in tissues such as skeletal muscle,
where syncytial myofibers coexist with a heterogeneous set of interstitial cell
populations. Spatial localization is a key factor during muscle regeneration,
particularly as stem cell progression is driven by complex interactions between
resident and recruited cell populations. Understanding these spatial dynamics is
therefore critical to better characterize the fundamental mechanisms of muscle
repair and identify aberrant signaling pathways of chronic injury or impaired
regeneration. In this review, we will explore the various types of ST techniques,
provide a brief summary of the available analytical tools, and highlight recent
advancements in the skeletal muscle field enabled by the application of ST.

skeletal muscle, spatial transcriptomics, muscle regeneration, muscle disorders,
bioinformatics

1 Introduction

Muscle regeneration relies on the coordinated interplay of diverse cell populations,
which act together to maintain tissue homeostasis. Upon acute injury, tissue degeneration
and necrosis are rapidly followed by the activation and expansion of muscle stem
cells (MuSCs, also known as satellite cells). In parallel, different waves of recruited
inflammatory cells, along with resident muscle cells, help dictate the timing and
progression of the regenerative program. Eventually, a subset of activated MuSCs returns to
quiescence, replenishing the stem cell pool and preserving long-term regenerative capacity
(Dumontetal,, 2015). This coordinated cellular activity ultimately leads to tissue remodeling
and the restoration of muscle function (Mukund and Subramaniam, 2020).

Although regeneration in healthy muscle is highly efficient, this process
can be dysregulated in pathological conditions such as muscular dystrophies
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and neurodegenerative disorders. For example, in Duchenne
muscular dystrophy (DMD), a severe pediatric degenerative
disorder, the widespread and asynchronous nature of injuries
leads to chronic inflammation, contributing to regeneration
impairment and ultimately in fibrosis and fat
infiltration (Dadgar et al., 2014).

In such complex pathological settings, where it is crucial to

resulting

disentangle the cellular interactions driving disease progression,
spatial transcriptomics (ST) offers a powerful advantage. Bulk
and single-nucleus RNA sequencing (snRNA-seq) have been
successfully employed to identify altered pathways and changes
in cell populations in multiple contexts such as muscle injury
(De Miche et al, 2020; DellOrso et al., 2019; Oprescu et al.,
2020), denervation (Nicoletti et al., 2023; Lin et al, 2023),
and in several muscle disorders (Chemello et al., 2020; Sudrez-
Calvet et al., 2023; Moncea et al., 2024). However, these approaches
lack spatial information, limiting our understanding of cell-to-
cell interactions and regional differences in cell signaling. ST
overcomes this limitation by linking gene expression profiles to
precise histological regions, making it an ideal tool for exploring
the cellular and molecular landscape of muscle regeneration and
degeneration.

In recent years, the number of publications using ST to study
muscle physiology and pathophysiology has steadily increased
(Moses et al,, 2022). So far, ST approaches have been used
to study muscle injury (Dadgar et al, 2014; Kan et al, 2024;
Patsalos et al., 2024; McKellar et al., 2023; Stec et al., 2023;
McKellar et al., 2021; Brorson et al., 2025; Larouche et al., 2023),
denervation (D’Ercole et al., 2022), and neuromuscular disorders,
such as Amyotrophic Lateral Sclerosis (ALS) (Ruggieri et al,
2025) and Duchenne Muscular Dystrophy (DMD) (Patsalos et al.,
2024; Stec et al., 2023; Jeon et al., 2025; Heezen et al., 2023;
Coulis et al, 2023; Young et al., 2022). Most of these studies
have used multiomics approaches, integrating ST with reference
snRNA-seq data to enhance spatial resolution. These pioneering
efforts have validated ST as a valuable tool for studying cellular
heterogeneity, cell-cell interactions, and the diffusion of signaling
molecules between different areas. In this review, we will discuss the
main ST techniques and key bioinformatic tools, highlight recent
advances in muscle biology enabled by ST, and address current
limitations as well as future perspectives.

2 Spatial transcriptomics technologies
and bioinformatic tools

2.1 Current methodologies

ST techniques can be broadly classified into two main categories:
imaging-based methods and sequencing-based methods, the latter
encompassing spatial array-based approaches and laser capture
microdissection (LCM) (Figure 1).

In situ imaging-based techniques rely either on fluorescent in
situ hybridization (ISH) or on in situ sequencing (ISS). Although the
number of detectable transcripts may vary significantly depending
on the different methods both techniques ultimately require a
predefined set of targets, making them more suitable for hypothesis-
driven rather than exploratory studies.
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ISH-based techniques enable the visualization of RNA
molecules directly within cells or tissues using fluorescently labelled
probes complementary to target transcripts. Some of the most
commonly used ISH techniques are: smFISH (Femino et al,
1998), RNA-scope (Wang et al., 2012), osmFISH (Codeluppi et al.,
2018), seq-FISH (Lubeck et al., 2014), and MERFISH (Xia et al.,
2019). SmFISH and RNA-scope are widely adopted for biological
validation, as they rely on a small number of fluorescently labeled
RNA probes (Femino et al., 1998). To address the initial limitations
of smFISH various strategies and technical implementations have
been developed expanding its applicability and sensitivity. In
particular, RNAscope employs unique “double-Z” probes, in which
two independent probe pairs (each shaped like a “2”) must hybridize
adjacently on the target RNA to initiate signal amplification. This
dual-hybridization requirement enhances specificity and, combined
with a series of amplification and hybridization steps, enables the
detection of low-abundance RNA molecules (Wang et al., 2012).
In osmFISH—an approach based on cyclic smFISH—unbarcoded,
unamplified probes, labeled with a fluorescence tag, are hybridized
to the tissue, imaged and subsequently removed by formamide
melting. As each hybridization round is independent the number
of detectable targets increases linearly with the number of cycles.
However, a major limitation of the method is the progressive loss
of RNA molecules with each round, resulting in an estimated
~40% loss over 10 cycles (Codeluppi et al., 2018). To further
increase multiplexing and minimize spectral overlap, seqFISH
uses multiple rounds of hybridization in which the same probes
are sequentially labeled with fluorophores of five different colors.
This approach enables the generation of thousands of unique
probe combinations (Lubeck et al, 2014). Building upon this
concept, seqFISH+ expands the color palette to 60 “pseudocolor”
channels through sequential hybridization, allowing the detection
of up to 10,000 genes (Eng et al., 2019). To reduce the risk of
errors due to the multiple rounds of amplification, MERFISH
utilizes a combinatorial barcoding strategy to label transcripts
before detection (Xia et al., 2019). Additionally, several of these
methodologies have been adapted into automated commercial
platforms, including MERSCOPE (MERFISH-based, Vizgen),
Molecular Cartography (Resolve Biosciences), and CosMx
(NanoString Technologies), which combines a MERSCOPE-
like strategy with an optical signature approach comparable to
Xenium (see below). The CosMx platform uses five gene-specific
primary probes that hybridize to the target mRNA, followed by a
fluorescently labeled secondary probe that binds to the primary
probes. This process is iterated 16 times to generate a unique gene-
specific signature, enabling the detection of up to 19,000 distinct
transcripts (He et al., 2022).

ISS-methods are based instead on single-strand DNA probes
complementary to a c¢DNA sequence, generated by reverse
transcription of mRNA. Probes are hybridized on both sides of
target sequence to form a rolling-circle product (RCP) which then
undergoes sequencing (Ke et al., 2013). ISS- based technologies
include: FISSEQ (Lee et al., 2014), HybISS (Gyllborg et al., 2020),
ExSeq (Alon et al., 2021), and STARmap (Wang et al., 2018).

In FISSEQ the RNA is first reverse-transcribed to cDNA and
then amplified and labeled with a fluorescent marker, followed
by multiple rounds of sequencing in situ (Lee et al., 2014). To
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FIGURE 1
Diagram illustrating imaging and sequencing methods. (A) Fluorescent probes hybridize to specific sequences within the tissue and are imaged by
microscopy. Repeated cycles of the procedure generate a gene-specific fluorescent signature. (B) Rolling circle amplification followed by sequencing
by ligation. Repeated cycles of the procedure generate a gene-specific fluorescent signature. (C) Tissue placed on a barcoded array undergoes
imaging, mMRNA extraction, library construction, and sequencing. (D) Tissue microdissection followed by sequencing.

reduce the signal-to-noise ratio and improve the specificity HybISS-
methodology takes advantage of lock-probes design by replacing
random primers with specific sequences (Gyllborg et al., 2020).
Instead, ExSeq relies on expansion microscopy to physically expand
biological samples, to increase the precision of in situ RNA-
seq while maintaining the overall structural integrity of tissues
(Alon et al,, 2021). STARmap method employs barcode-lock probes
for direct targeting of over a thousand genes. The probes bind the
cDNA to initiate a Rolling Circle Amplification (RCA); the RCA
products are embedded in the hydrogel, allowing stable retention
during multiple imaging cycles, amplification is then triggered
only when both primers correctly hybridize to the target mRNA,
ensuring high specificity. A major advantage of the STARmap is
its applicability to thick sections (up to 150 pm), making it a
powerful tool for exploring the three-dimensional organization of
complex tissues (Wang et al., 2018).

In 2025, Maguire and colleagues introduced LIST-Lock-
n-Roll (LIST-LnR) (Maguire et al, 2025). This in situ RNA
detection method builds upon LISH technology (Ligation in situ
Hybridization) - a technique developed to analyze RNA from
formalin-fixed paraffin-embedded (FFPE) samples (Maguire et al.,
2025). LIST-LnR relies on a specifically designed circularized probe
system. Four unique readout probes, along with universal 5’ and
3’ bridge sequences, are appended to the respective ends of LISH
probes. The construct is hybridized to the RNA target and amplified
to create a rolling circle product (RCP). Each RCP is then identified
based on the fluorescence emitted by the 5'fluorophores that are
conjugated to the complementary readout probe sequences. Notably,
this technique is compatible with both fresh frozen and formalin-
fixed, paraffin-embedded specimens.
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Among the commercially available platforms Xenium (10X
Genomics) combines features from both ISS and ISH. Target
sequences are initially subjected to a first round of hybridization with
highly specific padlock probes, followed by a RCA amplification.
Fluorescently labeled secondary probes then hybridize to the
padlock probes, and an image is acquired. After imaging, the
fluorescent probes are removed and replaced with new ones.
The process is repeated on average eight times to generate
a unique fluorescent signature that enables accurate gene
identification (Janesick et al., 2023).

Xenium, MERSCOPE, and CosMx are the main image-based
techniques used for profiling a variable number of genes at a
sub-cellular resolution. While they share this core similarity, they
differ in several key technical aspects, including gene panel design,
sample types, and protein profiling capabilities. MERSCOPE allows
2022) of up
to 1,000 genes and thus can be applied to different species. In

for a fully customized gene panel (Moses et al,

contrast, both Xenium and CosMx offer large mouse and human
premade panels that can reach up to 5,000 genes and nearly
19,000 genes respectively. Both platforms also provide the possibility
customize smaller probes panels both as adds-on or standalone (300
probes-CosMX and 480 - Xenium). Regarding protein profiling,
MERSCOPE enables simultaneous RNA and protein detection
on the same slide. CosMx performs this sequentially and offers
custom panels specific to Human Immuno-Oncology or Mouse
Neuroscience, with the option to add up to eight custom-conjugated
antibodies to the existing protein panel (Lim et al., 2025). Xenium
as well proposes a dedicated protein panel, which at present
enables multiplexing of up to 27 proteins. Since these platforms
continue to undergo rapid development, it is highly likely that

frontiersin.org


https://doi.org/10.3389/fcell.2025.1656918
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Virtanen et al.

their multiplexing capabilities will improve substantially in the
near future.

Spatial array-based approaches rely on arrays of DNA-barcoded
primers that carry spatial positional information. RNA molecules
hybridize to these primers and are retrotranscribed, incorporating
the spatial barcode into the resulting cDNA. As the precise location
of each barcode on the slide is predetermined each transcript can be
spatially mapped to its original position. Barcoded primers can be
spotted on microarrays, attached on beads or nanoballs or directly
to the tissue. In these systems, spatial resolution depends on the size
of each spot and their relative distance within the array.

In their seminal 2016 publication Stahl et al. (2016) coined the
term ST-now broadly used to refer to the entire class of related
technologies—to describe their method for detecting transcripts
within their original tissue context (Stahl et al, 2016). Their
approach relied on a microarray of barcoded primers spotted
directly on a slide with each spot measuring 100 um in diameter.
Based on this technology a commercial version was released in 2019
(Visium V1-10x Genomics) featuring approximately 5,000 spots
(55 pum-diameter) per capture area, each containing around five
million barcoded oligonucleotides. Tissue sections must be carefully
placed over the barcoded capture area and, after permeabilization,
mRNA molecules hybridize to spatially barcoded primers, allowing
reverse transcription into cDNA. Once the tissue is enzymatically
removed, the synthesized cDNAs hybridize with probes on the slide
for further processing. Prior to this step, either immunofluorescence
or hematoxylin and eosin (H&E) staining is performed to enable
accurate alignment of histological features with the corresponding
sequencing data. Visium V1 platform relies on a 3'poly(A) capture-
based chemistry. Accurate placement of tissue samples on the
capture area remains a significant technical challenge for this
initial version. To address this issue, later versions of the Visium
workflow incorporated the CytAssist instrument to ensure accurate
transfer of tissue sections onto the slide, together with the probe-
based chemistry introduced in Visium V2. Building on Visium V1
technology McKellar and colleagues developed STRS (spatial total
RNA-sequencing) which by introducing a step to add a poly(A) tail
to the 3’ end of all RNAs enables the additional detection of non-
coding RNAs and viral RNAs (McKellar et al., 2023). Recently, 10x
Genomics released a high-resolution version of the Visium platform
(Visium HD), available in two formats: one using probe-based
chemistry and another using 3'poly(A) capturere, both employing
a high-density array that achieves ~2 um resolution.

In the Slide-seq approach, a tissue section is placed onto a
surface covered with DNA-barcoded beads with known spatial
positions (Maguire et al., 2025). The mRNA released from the tissue
is captured by the beads and used to generate 3’-end, barcoded
RNA-seq libraries; the purified cDNA is then subjected to next-
generation sequencing (NGS). Slide-seq provides a spatial resolution
of 10 um and is commercially available under the name Curio
Seeker (Curio Bioscience) (Rodriques et al., 2019). In 2021, Curio
Bioscience released an improved version called Slide-seqV2 that
achieves a ~10-fold increase in RNA capture efficiency compared to
the original version (Stickels et al., 2021).

Similarly to Slide-seq, HDST achieves subcellular resolution
(~2 pm) by randomly distributing uniquely barcoded beads into a
densely packed hexagonal array of 2 pm wells. The precise location
of each bead is then decoded through sequential hybridization
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and imaging of fluorescently labeled oligonucleotides. This process
assigns each bead a unique spatial color address, which, enables
accurate spatial mapping of captured mRNAs (Vickovic et al., 2019).

DBiT-seq introduces spatial barcodes into tissue sections via
orthogonally applied microfluidic channels. This process results
in the in situ labeling of mRNA molecules, which are reverse
transcribed into barcoded cDNAs. Additionally, this method
supports multi-omic profiling, enabling concurrent analysis of
transcriptomic and proteomic data by incorporating antibody-
derived DNA tags (ADTs) (Liu et al., 2020).

Seq-Scope enables high-efficiency mRNA capture through a
PCR-based in situ method. The RNA capturing array is generated
by solid-phase amplification of random barcode molecules using
an Illumina sequencing platform. This process yields a center-
to-center resolution of approximately 0.5-0.8 um. Such ultra-high
spatial resolution enables transcriptomic profiling at tissue, cellular,
and subcellular levels (Cho et al., 2021).

In sci-Space, spatial barcoding is achieved by transferring
spatially arrayed hashed oligonucleotides onto a tissue section to
label nuclei locations (Srivatsan et al,, 2020). A regular grid of
hashed oligos is spotted onto agarose-coated slides, which are then
physically juxtaposed to the tissue to enable transfer. During this
process, the tissue is imaged and subsequently dissociated to isolate
single nuclei, which are then subjected to sci-RNA-seq (single-cell
RNA sequencing with combinatorial indexing). Upon sequencing,
the approximate location of each nucleus can be inferred based on
its associated hashed oligos. Unlike classical array-based approaches,
where the spatially barcoded spot is sequenced, sci-Space sequences
the extracted, labeled nucleus. In this sense, sci-Space could be
considered a spatially informed snRNA-seq method. While this
approach does not provide precise transcript localization, it offers
single-cell resolution across large areas, making it well suited for
mapping broad tissue regions (Srivatsan et al., 2020).

Stereo-seq relies on a DNA nanoball (DNB) patterned array;
this approach, enables a resolution of 0.22 pm-with approximately
400 spots for tissue RNA capture per 100 um?. DNB templates
containing random barcodes are deposited on the patterned array,
incubated with primers, and sequenced to obtain the coordinate
identity of every experiment. Next, UMIs and polyT oligos for RNA
capture are added to the DNB. Tissue sections are then placed on
the chip, and after fixation and reverse transcription, the barcoded
cDNA is sequenced. Stereo-seq provides higher spatial resolution
combined with larger capture areas (up to 13.2 x 13.2 cm), making
it suitable for profiling tissues of various sizes, including whole
mouse embryos (Chen et al., 2022).

GeoMx Digital Spatial Profiling (NanoString Technologies) is
able to quantify the abundance of protein or RNA by counting
unique indexing oligonucleotides assigned to each target in a specific
region of interest (ROI). Gene-specific probes (or primary antibody)
are covalently attached to the indexing oligonucleotides and first
hybridized to the targets within the tissue (Merritt et al., 2020). These
probes are linked to unique barcodes through UV-cleavable linkers.
The tissue slide is then stained with fluorescently labeled imaging
probes to visualize specific cell types. Imaging data are then used
to guide ROI selection. UV light is applied to these selected ROIs to
release the barcodes, which are then collected for library preparation
and sequencing.
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To analyze gene expression in specific tissue regions, LCM-
based ST relies on the precise laser microdissection of regions of
interest (ROI) followed by high-throughput sequencing. Several
approaches have been developed over the years including LCM-
seq (Nichterwitz et al., 2016), TIVA (Lovatt et al., 2014), Tomo-
seq (Junker et al, 2014), Geo-seq (Chen et al., 2017), NICHE-
seq (Medaglia et al., 2017), and ProximID (Boisset et al., 2018).
LCM-seq (Nichterwitz et 2016),
microdissection with RNA sequencing, enabling the analysis of

al., combines laser-capture
single cells or small tissue regions with high precision. TIVA
(Lovatt et al., 2014) (Transcriptome In Vivo Analysis) employs a
photoactivatable probe to isolate mRNA directly from living cells,
maintaining their native environment. Tomo-seq (Junker et al,
2014) provides spatial maps of gene expression by sequencing
consecutive tissue sections along a selected axis. Similarly, Geo-
seq (Chenetal.,2017) combines LCM and scRNA-seq to reconstruct
transcriptomic landscapes while retaining spatial information.
To focus on immune cells, NICHE-seq (Medaglia et al, 2017)
integrates photoactivation with single-cell sequencing to profile
specific populations within defined tissue microenvironments.
Finally, ProximID (Boisset et al., 2018) identifies the transcriptomes
of physically interacting cells, offering valuable insights into cell-cell
communication at the molecular level. All these methods require
frozen tissue sections except for TIVA, which is able to capture
mRNA from live cells using a biotin-tag. Microdissection-based
approaches enable precise analysis of microanatomical structures
and gene expression by directly selecting specific regions (typically
60-700 um in diameter); however, they are often limited by the
quantity and quality of RNA, as molecules may be compromised
during dissection and processing (Du et al., 2023).

The selection of the most appropriate methodology depends on
multiple factors and requires a careful evaluation of the advantages
and limitations of each technology. In particular, three key factors
should be taken into account: the number of required detectable
targets, detection efficiency and spatial resolution (for a summary
of the major commercially available platforms see Table 1). The first
step is to clearly define the scientific question—specifically, whether
the study requires comprehensive whole-transcriptome coverage or
focuses on a targeted subset of transcripts. This decision determines
whether a sequencing-based or imaging-based approach is more
suitable. 1maging-based methods typically offer higher spatial
resolution and sensitivity, making them ideal for studies involving
well-defined transcript panels. However, their use is largely limited
to human and mouse samples due to probe availability. In contrast,
sequencing-based methods generally provide whole-transcriptome
coverage but at the cost of lower resolution and sensitivity
(Valihrach et al., 2024). The vast majority of ST studies conducted
on muscle tissue have so far relied on array-based technologies
(Kan et al., 2024; Patsalos et al., 2024; McKellar et al., 2023; Stec et al.,
2023; McKellar et al., 2021; D’Ercole et al., 2022; Ruggieri et al.,
2025; Jeon et al., 2025; Heezen et al., 2023; Coulis et al., 2023;
Young et al.,, 2022; Walter et al., 2024). This trend can be attributed
to the relatively recent adoption of spatial approaches in this
specific tissue context, with most exploratory studies dating back
to late 2020. These early investigations have primarily focused on
broad transcriptional mapping, for which array-based platforms
provided a practical and accessible entry point. As previously
discussed, the choice of ST technology is tightly linked to the
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specific scientific question being addressed. For this reason, while
array-based methods currently dominate the field, imaging-based
approaches should not be overlooked for future studies - especially
as research increasingly shifts toward more targeted and high-
resolution analyses. Moreover, given the constantly increasing
number of detectable probes, it is foreseeable that probe-based
platforms will eventually replace spot-array systems—indeed, full-
genome scale panels are already available on platforms such as
CosMX. However, in the context of skeletal muscle research,
the relative novelty of these technologies and the lack of large-
scale, comparable datasets make it difficult to directly evaluate the
sensitivity and performance of high-resolution array systems (e.g.,
Visium HD) against probe-based approaches using large or full-
genome panels. Future benchmarking studies across different tissues
and conditions will therefore be essential to determine the most
suitable strategies for specific research applications.

2.2 Bioinformatics analysis and tools

ST data analysis is a multi-step process aimed at extracting
biologically relevant information by leveraging both spatial
coordinates and gene expression data. The analysis begins with
data preprocessing, which generates a gene expression matrix along
with the corresponding spatial coordinates. This step depends
highly on the underlying technology. Each preprocessing pipeline
is tailored to the specific technical requirements in terms of
input for the employed method, yet they all ultimately generate
a gene count matrix. This matrix represents gene expression levels
within individual spatial units, which correspond to single RNA
molecules in imaging-based techniques (or to cells if combined
with segmentation) and spots in sequencing-based approaches.
Tools such as Starfish (Axelrod et al., 2021) provide scalable
pipelines for processing image-based transcriptomics, allowing
localization and quantification of RNA transcripts within image data
(Axelrod et al., 2021; Perkel, 2019). Preprocessing for sequencing-
based ST includes aligning sequencing reads, processing tissue
images, and matching spatial barcodes to produce spatial gene
expression matrices. Subsequent analyses applied to the matrix are
largely shared across different ST platforms (Valihrach et al., 2024).
Commercial platforms typically provide dedicated proprietary
software and pipelines for data visualization and analysis. For
instance, Visium workflow relies on Space Ranger for read
alignment and quantification and Loupe Browser for interactive
data visualization. Stereo-seq employs tools like ImageStudio for
quality assessment and SAW to generate matrices compatible with
downstream analysis. Once the preprocessing is complete, data
undergoes normalization, dimensional reduction, and clustering.
To streamline this process, several computational frameworks
such as Seurat (Hao et al., 2021; Stuart et al., 2019), Squidpy
(Palla et al., 2022), STUtility (Bergenstrahle et al., 2020) have been
developed. These frameworks also provide comprehensive analysis
and visualization tools. Regarding dimensionality reduction,
the most commonly adopted methods, such as PCA (Principal
Component Analysis) (Jolliffe and Cadima, 2016), t-SNE (t-
distributed Stochastic Neighbor Embedding) (Van Der Maaten
and Hinton, 2008), and UMAP (Uniform Manifold Approximation
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TABLE1 Commercially available spatial transcriptomic platforms.

10.3389/fcell.2025.1656918

Methods Platforms Provider Suitable Instrument  Spatial Gene
Species required resolution coverage
Visium 10X Genomics VI1: FF V1: Any species VI:NA 55 um Whole
V2: FE, FFPE, V2: Mouse and V2: Visium transcriptome
FxF Human CytAssist
Visium 10X Genomics Probes: FE, FFPE, Probes: Mouse Visium CytAssist 2 um Whole
HD FxF and Human transcriptome
3 FF 3’: Any species
Spatial
array-based GeoMx DSP NanoString FE, FFPE Mouse and GeoMx DSP 10 um Whole
Technologies Human transcriptome
Curio Seeker Curio FF Any species NA 10 pm Whole
Biosciences transcriptome
Stero- BGI Genomics FE FFPE Any species STOmics chip 0.22 ym Whole
seq/STOmics reader transcriptome
Molecular Resolve FE FFPE Any species Molecular 0.3 um 100 genes
Cartography Bioscience Cartography
Visium Xenium 10X Genomics FE, FFPE Mouse and Xenium Analyzer | Subcellular Up to 5,000 genes
Human (Customizable
additional genes)
Imaging- based ) X
MERSCOPE Vizgen FE, FFPE Any species MERSCOPE Subcellular Up to 1,000 genes
Ultra™
CosMx SMI NanoString FE, FFPE Mouse and CosMx Spatial Subcellular Up to 19,000
Technologies Human Molecular genes
Imager (Customizable
additional genes)

FE, fresh frozen; FFPE, formalin-fixed paraffin-embedded; FxF, fixed frozen; NA, not available.

and Projection) (McInnes et al., 2018), are directly borrowed from
scRNA-seq analysis workflows.

One of the key advantages of ST is the possibility to identify
spatially distinct gene expression regions which often overlap
with histological and functional tissue domains. While standard
clustering strategies [k-means (Ikotun et al., 2023), Louvain
(Blondel et al., 2008)] remain widely used, several new methods have
recently been developed to improve clustering accuracy and a better
identification of gene-coherent spatial domains. These include tools
such as BayesSpace (Zhao et al., 2021) and SC-MEB (Yang et al.,
2022), both based on Bayesian statistics, and StLearn (Pham et al.,
2023), which offers a suite of algorithms to construct pseudo-
time-space trajectories, expand ST coverage, and analyze cell-
cell interactions. Additionally, several tools rely on deep learning
strategies including DeepST (Xu et al., 2022), SpaGCN (Hu et al.,
2021), STAGATE (Dong and Zhang, 2022) and SiGRA (Tang et al.,
2023a) which can process multichannel images as input.

At present, several ST techniques can achieve cellular and
subcellular-level resolution, and a wide range of bioinformatic tools
have been developed to annotate cell types and investigate their
interactions. For in situ imaging approaches, an essential step is
image segmentation, which enables the generation of single-cell level
information. Tools such DeepCell (Van Valen et al., 2016), CellPose
(Stringer et al., 2021) or Stardist (Weigert and Schmidt, 2022) are
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commonly used to identify nuclei or cells in high resolution tissue
images (Kleino etal., 2022). However, in tissues with a more complex
organization, such as skeletal muscle, additional segmentation
strategies are required to accurately capture structural and
functional units. Due to its multinucleated nature, skeletal muscle
requires an additional segmentation step to identify individual fibers
to fully analyze tissue architecture and regeneration. Historically,
manual segmentation has been used to delineate and measure
single fibers and their characteristics; however, this approach is
time-consuming and lacks scalability. In recent years, various
bioinformatic tools have become available enabling automated
segmentation of muscle fibers. In particular general-purpose
segmentation tools such as Cellpose, which relies on a deep learning-
based segmentation algorithm, has been successfully applied
to murine skeletal muscle, accurately segmenting thousands of
myofibers in fixed tissue (Waisman et al., 2021). Other machine
learning-based tools, such as Ilastik (Berg et al., 2019), can also
be used in principle to reliably identify muscle fibers. Moreover,
several dedicated standalone tools [Myotally (Both et al., 2025) or
MyoV (Gu et al., 2024)] or Fiji plugins are now available Muscle]
(Mayeuf-Louchart et al., 2018), Open-CSAM (Desgeorges et al.,
2019), MyoSAT (Stevens et al, 2020), Myosoft (Encarnacion-
Rivera et al, 2020) and MyoView (Rahmati and Rashno, 2021).
While these tools are primarily designed to measure and analyze
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fiber type and morphological characteristics, their segmented
labels can be imported into computational frameworks such
as SpatialData (Marconato et al., 2025), to be combined with
high-resolution ST data and generate single-cell-level datasets.

For techniques with lower resolution, such as Visium, a
deconvolution step is often required. Typically using a scRNA-seq
reference to estimate the relative cell type composition of each spot.
Tools such as SPOTIight (Elosua-Bayes et al., 2021), SpatiaDWLS
(Dong and Yuan, 2021), Cell2location (Kleshchevnikov et al.,
2022) CellTrek (Wei et al., 2022), RCTD (Cable et al., 2022),
DSTG (Song and Su, 2021), GraphST (Long et al., 2023), Tangram
(Biancalanietal.,2021),and STRIDE (Sun et al., 2022) utilize diverse
computational strategies to reconstruct the spatial distribution of
cell types with high resolution. Another strength of ST is its ability
to detect active signaling and infer intercellular communication
reliably. Since signaling efficiency depends on the distance between
cells, linking gene expression to spatial coordinates allows for more
precise modeling of these interactions. This represents a marked
difference from scRNAseq-based-inference, where the complete lack
of spatial context can lead to false-positive predictions. Several tools
such as Cellchat v2 (Jin et al., 2024), CNG (Yuan and Bar-Joseph,
2020), SpaOTsc (Cang and Nie, 2020), MISTy (Tanevski et al., 2022),
and spaClI (Tang et al., 2023b) are currently available to model
ligand-receptor interactions within tissue microenvironments.

be
cell

inference  methods also
the of
development and differentiation over spatial gradients. StLearn
(Pham et al, 2023) offers a Pseudo-Spatial-Time (PST) model,
while SPATA (Kueckelhaus et al., 2024) uses monocle3-based

analysis to infer transcriptional changes along spatial trajectories,

Lastly, trajectory

reconstruct

can

used to dynamic  processes

enabling the study of temporal and developmental tissue
organization.

Together, these tools and computational strategies provide a
robust framework for interpreting ST data and gaining insights into
tissue biology (Figure 2).

2.3 Omics integration

The integration of multi-omics, such as genomics, epigenomics,
transcriptomics, proteomics, or metabolomics, can reveal how
biological processes are coordinated at multiple molecular levels.

Spatial multi-omic profiling of tissue samples can be achieved
either by applying spatial mono-omic assays separately on serial
sections, or by employing integrated strategies that capture multiple
omic layers within the same tissue section. In the sequential
approach, fresh-frozen (FF) or formalin-fixed paraffin-embedded
(FFPE) tissue sections are analyzed using different spatial methods,
often combined with morphological staining and annotations,
followed by computational integration of the datasets. A key
challenge with this approach is the accurate alignment of serial
sections, as tissue stretching or deformation during sectioning can
hinder precise image registration (Vandereyken et al., 2023).

Several studies have demonstrated the value of these combined
strategies. For example, in 2021, ST was combined with spatial
proteomics to analyze high-grade muscle-invasive bladder cancer
(MIBC) samples (Gouin et al., 2021). In that study, ST data served
as the primary analytical focus, while spatial proteomic data was
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used to validate the transcriptomic findings. Similarly, integration
of spatial metabolomics and ST has also been performed, where the
metabolomic data formed the core of the analysis and was supported
by ST validation. This study employed a novel method called Spatial
Single-Nuclear Metabolomics (SEAM) (Yuan et al., 2021) to map
metabolite distributions in human fibrotic liver tissue.

In parallel, additional multi-omic strategies are being developed
to enable simultaneous spatial profiling of multiple molecular
modalities within the same tissue section. For instance, spatial
ATAC&RNA-seq and spatial CUT&Tag-RNA-seq (Zhang et al.,
2023) allow gene expression and chromatin features to be
studied together in the same tissue slices. These approaches
combine DBiT-seq (Liu et al., 2020) based methods with spatial-
ATACseq (Deng et al., 2022a) or spatial-CUT&Tag (Deng et al.,
2022b) to map open DNA or histone marks along with mRNA.
Advanced fluorescence in situ hybridization (FISH)-based methods,
including MERFISH (Xia et al., 2019) and seqFISH+ (Eng et al.,
2019) use predefined optical barcodes and complex probe designs to
visualize thousands of RNA transcripts and genomic loci in single
cells, with optional limited protein detection via fluorescent or
DNA-conjugated antibodies. Array-based technologies (Stahl et al.,
2016) such as Visium can be paired with hematoxylin and eosin
(H&E) staining or limited antibody-based protein profiling.

Extended platforms like SM-Omics (Vickovic et
2022) further allow co-detection of multiple proteins via
(ADT)-conjugated antibodies.
NanoString’s GeoMx (Merritt et al., 2020) enables quantification

al.,

antibody-derived tag Finally,
of RNAs and proteins within selected regions of interest (ROIs).
This is achieved by UV-photocleavable linkers that release uniquely
barcoded oligonucleotides from antibodies or probes upon
UV illumination. The released barcodes are then collected and

sequenced, allowing spatial mapping on the original tissue.

3 Applications of ST in skeletal muscle
research

In the field of skeletal muscle, ST has found multiple applications
in healthy, regenerating, and diseased muscle (for a summary of cited
studies see Table 2). This chapter highlights the key findings enabled
by ST across these biological settings.

3.1 Healthy and regenerating muscle

The initial applications of ST in skeletal muscle date back
to 2021 when McKellar and colleagues, Using the Visium
platform, explored cell-cell interactions during acute muscle
regeneration (McKellar et al., 2021). To enrich the relatively rare
intermediate myogenic cell populations in healthy muscle, the
authors collected TA muscles from 5-month-old C57BL/6] mice
subjected to myotoxin-induced injury at 2, 5, and 7 days post-injury
(dpi). The ST data were integrated with 23 newly generated and 88
publicly available single-cell and single-nucleus RNA-seq datasets to
perform deconvolution of cell subtypes. Through snRNA-seq-based
deconvolution, the authors identified and distinguished quiescent
muscle stem cells (MuSCs), activated MuSCs, committed myoblasts,
fusing myocytes, and mature myonuclei. Additional cell types,
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Identification
of spatial domalns

Identification of Spatial Domains

SC-MEB (Yang et al. 2022)
StLearn (Pham et al. 2023)
DeepST (Xu et al. 2022)
SpaGCN (Hu et al. 2021)
STAGATE (Dong and Zhang 2022)
SiGRA (Tang et al., 2023 )
Segmentation

Cellpose (Stringer er al 2021)
llastik (Berg et al. 2019)
DeepCell (Van Valen et al. 2016)
Stardist (Weigert et al 2022)

Trajectory Inference Methods

SPATA (Kueckelhaus et al., 2020)
StLearn (Pham et al. 2023)
FIGURE 2

Schematic illustration showing how ST data can be used to identify spatial domains, cell types, cellular trajectories, and intercellular communication
within tissue sections. Each process is linked to the bioinformatic tools listed in the table at the bottom.

Identification
of cell types

Intercellular
communication

Identification of Cell Types

SPOTIight (Elosua-Bayes et al. 2021)
SpatialDWLS  (Dong and Yuan, 2021)
Cell2Location  (Kleshchevnikov et al. 2022)
CellTrek (Wei et al. 2022)

RCTD (Cable et al. 2022)

DSTG (Song and Su 2021)
GraphST (Long et al. 2023)

STRIDE (Sun et al. 2022)

Tangram (Biancalani et al., 2021)

Intercellular Communication

CellChat v2 (Jin et al. 2024)

CNG (Yuan and Bar-Joseph 2020 )
SpaOTsc (Cang and Nie 2020)

MISTy (Tanevski et al. 2022)
spaCL (Tang et al. 2023b)

including neural cells, tenocytes, smooth muscle cells, and several
subpopulations of fibro-adipogenic progenitors (FAPs), endothelial
cells, and immune cells, were also detected.

At 2 dpi, the injury site showed increased expression of
Mpyodl, indicative of MuSC activation, and a lack of mature
myosin gene Myhl. By five and 7 dpi, the expression of cell
cycle inhibitors such as CdknlIc, the myogenic commitment marker
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Myog, and fusogenic genes including Mymk and Mymx became
enriched. Simultaneously, pro-remodeling FAPs increased, while
patrolling monocytes declined, indicating the progression of the
regenerative response.

According to a cell-cell interaction analysis, FAPs exhibited the
highest predicted levels of interaction with myogenic cells through
secreted signaling. These interactions decreased as myogenic cells
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TABLE 2 Applications of spatial transcriptomic technology in healthy and diseased muscle.

Author Muscles Specie/Strain Technique
Brorson et al (2025) VL Ctrl, Human 55-80 yr Visium 10x Genomics
2, 8, 30 dpi (electric)
Jeon et al (2025) Quadriceps, abdominal Healthy, DMD 17 yr Visium 10X Genomics
MERFISH
Martinez et al (2024) TA Polr2b-DCM mice 4-6 mo Tomo-seq, CODEX
Tg (Pax7-EGFP) 15Tajb mice
Ruggieri et al (2025) TA C57BL/6] 2.5mo Visium 10X Genomics
SOD1%** mice 2.5-4.5 mo
Umek et al. (2025) VL Healthy, sarcopenia 85yr, 19 yr Xenium
10X Genomics
Kan et al (2024) TA Ctrl Nse-Bmp4 transgenic mice Visium 10x Genomics
1, 3,7 dpi (NTX)
Mcleod et al (2024) VL Human <50 yr MERFISH
Patsalos et al (2024) TA 4 dpi (CTX) C57BL/6] 2mo Visium 10X Genomics
GA DBA/2J-mdx mice
Walter et al (2024) TA 5 dpi (NTX) BL/6] mice 4-7 mo, 26 mo Curio Seeker (Slide-seq)
Curio Bioscience
Coulis et al (2023) GA, Plantaris DBA/2]-mdx mice <2 mo Visium 10X Genomics
Heezen et al (2023) Quadriceps C57BL/6]-mdx 2.5mo Visium 10X Genomics
DBA/2], DBA/2J-mdx mice
McKellar et al (2023) TA Ctrl C57BL/6] mice 6 mo Visium 10X Genomics
2,5,7 dpi (NTX) STRS
Larouche et al (2023) TA 7, 14 dpi (VLM) C57BL/6] mice Visium 10X Genomics
Stec et al (2023) GA 1, 3, 5 dpi (CTX) C57BL/6], DBA/2] <2mo Visium 10X Genomics
mdx, DBA/2J-mdx mice
D’Ercole et al (2022) TA Ctrl C57BL/6] mice 4-7 mo Visium 10X Genomics
3, 30 dpi (denervation)
Young et al (2022) GA DBA/2]-mdx mice 2 mo Visium 10X Genomics
McKellar et al (2021) TA 2,5,7 dpi (NTX) C57BL/6] mice 5mo Visium 10X Genomics
Dadgar et al. (2014) GA Multiple NTX C57BL/6] mice 4-8 mo LCM
Human DMD 3yr

VL, vastus lateralis; TA, tibialis anterior; EDL, extensor digitorum longus; GA, gastrocnemius; CTX, cardiotoxin; NTX, notexin; Dpi, days post injury; IF, immunofluorescent staining; H and E,
hematoxylin and eosin staining; Mo, month; Yr, year; Ctrl, control; DMD, duchenne muscular dystrophy.

progressed towards more differentiated myogenic stages. Notably,
pro-remodeling FAPs showed high expression of a secreted growth
factor Midkine (Mdk), while myogenic cells, particularly quiescent
MuSCs, expressed its receptor genes Ncl, Sdc4, and Lrpl. Moreover,
Mdk was spatially co-expressed with NcI and Lrpl, suggesting a
coordinated paracrine signaling mechanism. Mdk signaling has
previously been implicated in limb regeneration (Qin et al., 2021)
and the regulation of stem cell proliferation (Xu et al., 2014). In
conclusion, these findings demonstrate how ST, integrated with
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single-cell data, can identify different cell subtypes and resolve
dynamic cell interactions during muscle regeneration.

In 2023, the same group introduced Spatial Total RNA
Sequencing (STRS), a method designed to capture coding, non-
coding, and viral RNAs. With this approach, they identified
spatially defined distributions of non-coding RNAs during muscle
regeneration (McKellar et al., 2023). They collected TA muscles from
6-month-old C57BL/6] mice subjected to myotoxin-induced injury
at2,5,and 7 dpiin addition to an uninjured control. Gene expression
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analysis revealed that the long non-coding RNA Meg3 was expressed
at the injury site at 5 dpi, which is a critical time point for myoblast
differentiation and myocyte fusion (McKellar et al., 2023). This
aligns with prior in vitro findings demonstrating the role of Meg3 in
myoblast differentiation (Dill et al., 2020). Additionally, consistent
with earlier studies (Liu et al., 2012) miR-1a-3p was expressed at
all time points, while miR-206-3p showed high expression only at
five dpi in the injury site. These results demonstrate that STRS can
capture RNAs that are missed by conventional workflows, including
non-coding RNAs, newly transcribed RNAs and viral RNAs.

Additional insights into the mechanisms underlying muscle
regeneration were provided by Young et al. (2022). By reanalyzing
ST data from McKellar on myotoxin-induced muscle injury, the
authors identified a senescence-associated gene signature (defined
by genes such as Trp53, Cdknla, and Cdknlc) enriched within
degenerating muscle regions. They then extended their investigation
to a model of chronic injury, the D2-mdx mouse model, using
the Visium platform to assess the spatial distribution of this
senescence signature. Their analysis revealed that the signature was
enriched in areas undergoing active muscle repair. Importantly,
pharmacological depletion of senescent cells using senolytic agents
impaired muscle growth following injury, suggesting that transient
senescent cell accumulation is a necessary component of effective
regeneration.

Our group, in collaboration with the group of Luca Madaro
at Sapienza University, focused on muscle denervation and
leveraged the Visium platform to investigate its effect at the
whole tissue level. By integrating ST with immunofluorescence,
we demonstrated a clear correspondence between unbiased
ST regions and anatomical-functional domains within skeletal
muscle (D’Ercole et al, 2022). We validated these functional
regions using immunofluorescence and histochemical assays,
confirming the localization of various anatomical structures,
including different fiber types, the epimysium, blood vessels,
nerves, and the neuromuscular junction (NM]J). Furthermore,
we were able to clearly distinguish between different types of
myofibers using specific markers like Myhl, Myh2, and Myh4 and
confirmed the spatial gene distribution with immunofluorescence
staining. Building on this spatial framework, we investigated the
molecular response of these regions to reversible denervation. Using
a spatiotemporal approach, we tracked transcriptomic changes
within each domain of the TA muscle 3 and 30 days following sciatic
nerve compression. Our analysis revealed a marked dysregulation
of the polyamine pathway specifically in the glycolytic region 3
days post-denervation, resulting in the accumulation of putrescine.
Moreover, changes in the expression patterns of AmdI, Amd2,
and Smox—genes involved in the polyamine pathway—correlated
directly with muscle atrophy. Consistently, increased expression of
the pro-atrophic markers Atrogin-1 (Fbxo32) and Murfl (Trim63)
was detected in type IIB fibers of the TA muscle after denervation.
In vitro experiments also showed that putrescine accumulation
can induce Trim63 expression, while genetic inactivation of
the polyamine pathway in Drosophila reduced muscle function.
The findings of this work highlight how the atrophic signaling
pathway and polyamine metabolism are spatially organized and
nerve-dependent in glycolytic fibers (D’Ercole et al., 2022).

Other studies have examined muscle regeneration during aging
or in response to volumetric muscle loss. For instance, Walter
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and colleagues generated a large-scale single-cell aging atlas of
regenerating muscle and identified gene signatures specific to young
aged BL6 mouse muscle-resident cells (Walter et al., 2024). Using
the CurioSeeker platform, they explored the effect of aging on
the accumulation of senescent-like MuSCs and progenitor cells in
TA muscle in 5 dpi regions of young and geriatric samples. Cell
type deconvolution revealed a higher fraction of fusing myocytes
and FAPs in the young injured zone, and a greater abundance of
monocytes/macrophages, T cells, and myonuclei in the geriatric
injured zone. Furthermore, by applying a senescence-associated
gene signature, they showed that MuSCs and progenitors exhibited
an elevated senescence score in the geriatric injured area, whereas
non-MuSCs showed higher scores in the non-injured zone.

Extending the use of ST to a different pathological setting,
Larouche and colleagues utilized ST to investigate the tissue
response to volumetric muscle loss (VML) (Larouche et al., 2023).
VML was performed on the TA of BL6 mice using punch biopsies,
and tissue was collected at 7 dpi. To decipher the mechanisms
underlying regeneration, the tissue was divided into zones of
complete muscle loss (defect zone) and remaining intact muscle
(intact zone). By analyzing the transcript distribution across the
intact and defect regions, they observed that macrophages and
mesenchymal-derived cells (MDCs) preferentially infiltrated the
damaged area, while MuSCs were retained in the intact muscle. The
authors proposed that the absence of MuSCs from the injury site
was caused by a hostile environment characterized by biophysical
factors, such as matrix alterations, and the presence of pro-fibrotic
signals. This hypothesis is supported by the colocalization of pro-
fibrotic signaling molecules, such as TGF-p, with macrophages
and MDCs. Furthermore, pharmacological blockade of this cellular
crosstalk, via TGF-p receptor 2 (TGFBR2) inhibition, was shown to
promote tissue regeneration and attenuate both inflammatory and
fibrotic processes.

ST has also been applied to investigate muscle adaptation
and response to physiological stimuli. McLeod and collaborators
investigated non-coding RNA (ncRNA) expression during human
skeletal muscle hypertrophic remodeling (Mcleod et al., 2024). In
their work McLeod and colleagues analyzed 288 transcriptome-
wide profiles and found 110 ncRNAs linked to muscle growth in
vivo. Subsequently, they used MERSCOPE to map probes targeting
both well-established muscle cell marker genes and ncRNAs. This
approach enabled the identification of novel ncRNAs and chart
their localization in the hypertrophic muscle. For example, the
expression of MYREM (MYBPC2 cis-regulating IncRNA enhancer
of myogenesis) was found beneath the basal lamina, but not in
the nuclei of satellite or endothelial cells, suggesting that MYREM
could be a novel marker of mature myonuclei, particularly in
type II fibers. This is further supported by recent data showing
that MYREM upregulates MYBPC2, which encodes a type II
isoform of myosin-binding protein C in skeletal muscle. In
contrast, MEG3 was co-localized with satellite cells, aligning with
other studies demonstrating its role in myoblast differentiation
(McKellar et al.,, 2023; Dill et al., 2020). Additionally, CARMN
(cardiac mesoderm enhancer-associated non-coding RNA) was
associated with endothelial cells and pericytes, suggesting that
CARMN may modulate pericyte function during skeletal muscle
growth. Collectively, these observations reveal distinct ncRNA
localization patterns in hypertrophic muscle.
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Martinez Mir et al. (2024) studied fiber-type composition by
combining RNA tomography (Tomo-seq) with mass spectrometry
imaging (MSI), enabling simultaneous analysis of the ST,
metabolomic, and lipidomic organization of mouse TA muscle.
Notably, they examined both transverse and longitudinal
orientations of the muscle to capture regional variation. To assess
transcript distribution, Tomo-seq was applied to TA muscles
from 4- to 6- month-old mice, along the proximal-distal axis.
Unsupervised clustering identified three distinct molecularly
defined regions: proximal, central, and distal. Proximal-distal
regions were enriched for genes associated with glycolytic fiber
types (Myh4, Myll), the myotendinous junction (Prg4, Thbs4,
Itgbl, Colla2), and glycolytic metabolism (Pygm). In contrast, the
central region was characterized by markers of oxidative fibers
(Myhl, Myh2, Myl3), neuromuscular junction genes (Prkarla,
Chrne), and oxidative metabolism (Acadl). Gene ontology analysis
reinforced these findings as proximal-distal regions were enriched
in processes such as glycolysis, skeletal muscle contraction, and
glycogen metabolism, whereas central regions showed enrichment
in fatty acid metabolism, the tricarboxylic acid (TCA) cycle, electron
transport chain activity, and mitochondrial ATP production.
Together, these results show a spatial organization of fiber type
composition along the TA muscle, with glycolytic Myh4 myofibers
enriched at the proximal/distal ends, and oxidative Myh1/Myh2
myofibers concentrated in the center. Using MALDI-MSI, the
authors further mapped the spatial distribution of metabolites
and lipids. Interestingly, they observed metabolic differences also
between dorsal and ventral regions. To integrate these datasets,
MSI data were binned to generate a pseudobulk mass spectrometry
profile aligned with Tomo-seq sections. This integrated analysis
highlighted a regional enrichment of glycolytic fibers in ventral and
proximal-distal regions of the TA muscle, whereas oxidative fibers
were predominantly localized dorsally and centrally.

Complementing these insights from mouse muscle, a proof-
of-concept study in humans employed the Xenium platform to
profile the transcriptomes of type I and type II fibers in skeletal
muscle sections from young and old patients (Umek et al., 2025).
The histological sections stained for MyHC isoforms were manually
aligned with the Xenium output images. This approach enabled a
separate analysis of the transcriptomic profiles in type I and type
IT muscle fibers (Umek et al., 2025). In type I fibers, the activated
satellite cell marker LGR5 was more expressed, consistent with
previous reports of higher satellite cell abundance in type I compared
with type II fibers (Leung et al., 2020). Genes involved in lipolysis
(LPL) and ketone body production (HMGCS2) were also enriched,
in line with the oxidative metabolism characteristic of type I fibers.
In contrast, type II fibers showed higher expression of PVALB,
which encodes a Ca?*-binding buffer protein predominantly found
in fast-twitch fibers (Schwaller, 2010). Age-related differences in
extracellular matrix (ECM) and in structural components were
also observed. In older muscle, genes such as COL5A2 and
DES were significantly more expressed. Collagens are critical for
maintaining structural integrity, while desmin links myofibrils at the
Z-discs, supporting fiber stability. These findings align with previous
observations of increased expression of ECM and other structural
components in aged muscle (Keele et al., 2023; Russ and Grandy,
2011). Direct comparisons between young and old patients further
revealed fiber type-specific transcriptomic remodeling. In younger
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patients, both type I and type II fibers upregulate genes linked to
contractile function, calcium handling, and metabolic efficiency,
supporting higher regenerative and functional capacity (ACTG2,
S100A1, HMGCS2). In contrast, older fibers show enrichment
of genes involved in structural maintenance (DES, DST), stress
responses (MDM2), and metabolic alterations (PLIN4, GATM),
reflecting adaptations to age-related stress and degeneration.

Overall, this study highlights fiber type-specific transcriptomic
profiles and the molecular changes associated with aging,
demonstrating the power of spatial profiling to dissect both
fiber-type differences and microenvironmental changes in human
skeletal muscle.

Moving from age-related profiling to regenerative
dynamics, Brorson et al. (2025) investigated skeletal muscle
regeneration in elderly humans using spatial, temporal, and single-
cell transcriptomics. Muscle injury was induced by electrically
stimulated eccentric contractions of the vastus lateralis, with
biopsies collected before and at 2, 8, and 30 dpi. Unsupervised
clustering of the ST data identified 10 separate clusters: Type 1
and 2 muscle fibers (clusters 0-1), which decreased at 8 dpi but
recovered by 30 dpi; clusters 3-5 reflected injury-related processes
(cytoskeleton, proteasome, and erythrocyte functions) and were
reduced at 8 dpi; cluster 9 (vascular/perivascular) remained stable.
Dynamic clusters 6-8 were enriched in extracellular matrix genes
(e.g., COLIA2, POSTN), immune response genes (e.g., CD14, HLA-
DRA), and regenerative myofiber markers (e.g., DES, MYH3),
respectively, all increased at 8 dpi with marked spatial confinement.

By integrating the ST data with previously published human
skeletal muscle scRNA-seq (Farup et al., 2021), the authors were
able to identify the contributions of individual cell types during
regeneration. Early after injury (2 dpi), monocytes/macrophages,
MuSCs, and endothelial cells peaked, indicating a rapid immune
and stem cell activation. In contrast, FAPs, lymphocytes, and
lymphatic endothelial cells reached their peak later, at 8 dpi,
suggesting a sequential and coordinated cellular response.
Colocalization analysis revealed that FAPs were closely associated
with macrophages, MuSCs, and lymphocytes. Supporting this,
ligand-receptor analysis uncovered extensive signaling from
FAPs, particularly via Complement factor (C3)-ITGAX/ITGB2
and C3-ITGAM/ITGB?2 interactions with macrophages. Follow-
up in vitro experiments confirmed that human FAP-derived C3
recruits pro-inflammatory macrophages to injury sites, supporting
phagocytosis and subsequent muscle regeneration.

Together, these studies demonstrate how ST provides new
insights into the skeletal muscle biology. Regeneration-focused
works (McKellar et al., 2023; McKellar et al., 2021; Brorson et al.,
2025; Larouche et al., 2023) consistently reveal the dynamic interplay
between MuSCs, FAPs, and immune cells showing how spatially
confined cellular crosstalk and temporal coordination are essential
for effective repair. Additionally, subsequent reanalysis (Young et al.,
2022) revealed unexpected role for transient senescence in
muscle repair. In parallel, studies on non-coding RNA biology
(McKellar et al., 2023; Mcleod et al., 2024) demonstrate the unique
ability of spatial methods to map the localization of IncRNAs and
microRNAs, uncovering regulators of myogenesis and hypertrophy.
Finally, fiber-type and metabolic profiling (ID’Ercole et al., 2022;
Martinez Mir et al., 2024; Umek et al., 2025) illustrates how ST
can resolve the molecular architecture of oxidative and glycolytic
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regions, link metabolic pathways to fiber types, and uncover
adaptations to aging and injury. Collectively, these works establish
ST as a powerful tool for exploring fundamental mechanisms of
muscle biology, especially during regeneration.

3.2 Muscle disorders

In parallel to studying healthy and regenerating muscle, multiple
efforts have focused on leveraging ST to better understand the
mechanisms underlying various muscular disorders, with particular
emphasis on Duchenne Muscular Dystrophy (DMD). DMD is
among the most severe pediatric degenerative myopathies. It is
caused by mutations that result in the absence of functional
dystrophin, a key protein responsible for stabilizing the muscle fiber
membrane. The resulting membrane fragility leads to continuous
cycles of muscle damage followed by regeneration (Duan et al,
2021). Different fiber types display differential sensitivity to damage,
with type II fibers being preferentially affected compared to type I
fibers (Webster et al., 1988). Muscle damage can occur in different
fibers at different times, with each injury undergoing an independent
repair process (Dadgar et al., 2014). As a result, lesions at different
stages of regeneration coexist within the muscle. Indeed, early work
from Dadgar et al. (2014), using laser capture microdissection,
identified patterns consistent with asynchronous remodeling in
DMD muscle and demonstrated that regions located in between
asynchronous regenerative areas display aberrant fibrotic infiltration
(Dadgar et al,, 2014) This indicates that one of the contributing
factors to DMD pathogenesis is the focal and uncoordinated
response to injury. ST approaches have been also applied to
other muscle-related conditions, for example, to Amyotrophic
Lateral Sclerosis (ALS), a progressive neurodegenerative disease
characterized by the vulnerability of both NMJs and muscles,
particularly fast-twitch fibers (Ruggieri et al, 2025). Similarly,
heterotopic ossification (HO), the abnormal formation of bone
within muscle tissue triggered by trauma or genetic factors, has also
been investigated using ST (Kan et al., 2024).

Heezen et al. (2023) applied Visium ST to investigate DMD
pathology in muscle tissues from two dystrophic mouse models,
mdx and D2-mdx, alongside their respective controls (C57BL10
and DBA/2]) at 10 weeks of age (Heezen et al, 2023). Despite
a limited sample size, their proof-of-concept study effectively
captured the hallmark histological features of dystrophic tissue.
Notably, they identified distinct pathological clusters, including
regenerating fibers, regenerating fibers with localized inflammation,
necrotic fibers infiltrated by macrophages, and regions containing
adipocytes. In the more severely affected D2-mdx model, they also
observed clusteres characterized by inflammation and calcification,
as well as necrotic fibers. To identify genes associated with muscle
regeneration, they compared regions of active regeneration with
intact muscle regions within the same sample. The analysis revealed
increased expression of Myl4, Sparc, and Hspg2 in regenerating
regions from mdx, whereas in D2-mdx mice, Vim, Fnl, and Thbs4
were upregulated in fibrotic areas, while Bgn, Ctsk, and Sppl were
enriched in calcified regions. Next, to test if the histopathological
changes observed in dystrophic muscle were associated with
regional transcriptional reprogramming, the authors performed
RNA velocity analysis on the D2-mdx. Among the top drivers of
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the transition, they identified Galectin-3 (Gal-3), mainly expressed
in macrophages, highlighting the role of immune cells in DMD
progression.

As multiple lines of evidence indicate, macrophage activity is
deregulated in DMD (Dadgar et al., 2014; Villalta et al.,, 2009;
Mann et al, 2011). To investigate how macrophages contribute
to fibrosis development during disease progression, Coulis and
colleagues combined scRNAseq and ST (Coulis et al, 2023).
scRNA-seq was first used to characterize macrophages from
healthy and dystrophic muscle, identifying six distinct clusters
that did not reflect the traditional M1 or M2 macrophage
classifications. In dystrophic muscle, the predominant macrophage
population was Gal-3* macrophages, which expressed several
profibrotic factors, including Sppl, as previously reported
by Heezen (Heezen et al., 2023). The authors then performed ST
on the gastrocnemius/plantaris muscle of 6-week-old D2-mdx
mice and identified areas with high Gal-3 expression overlapping
with degenerative lesions. Differential gene expression analysis
between Gal-3" and Gal-3~ -areas revealed high expression of
fibrosis related genes (Mmpl2, Fnl, Postn, TgfP, Pdgfr). Further
immunofluorescence analysis confirmed PDGFRa" stromal cells
in the degenerative regions alongside with Gal-3" macrophages.
SnRNA-seq reference data and in vitro analysis further suggested
that Gal-3+ macrophages may interact with FAPs in dystrophic
muscle via Spp1 pathway both in mouse and DMD patient samples.
These results identify Sppl as a potential regulator of Gal-3*
macrophage and FAP interaction.

In a complementary approach, Patsalos et al. (2024) generated an
immune-specific single-cell and ST datasets of regenerating muscle
after acute injury and during early dystrophy, providing detailed
spatial annotation of myeloid subpopulations with enhanced
subspot resolution (Patsalos et al., 2024). They performed parallel
CD45" scRNA-seq and ST on the gastrocnemius muscle of 2-month-
old D2-mdx mice. Their analysis identified several distinct subsets
of monocytes, macrophages (MFs), and dendritic cells (DCs) and
identified a set of colocalizing cell types during the regenerative
inflammation phase.

Glucocorticoids (GC) are commonly used to treat DMD
to delay disease progression, although long-term daily use is
limited by serious side effects (e.g., bone demineralization and
muscle atrophy) (Quattrocelli et al., 2017). To explore the response
of the immune cells to therapeutic modulation, the authors next
investigated the effects of intermittent GC treatment in young
D2-mdx mice. In untreated dystrophic muscle, they identified
distinct regenerative inflammation zones (RIZs) with a layered
structure: proinflammatory macrophages surrounding necrotic
fibers, resolution-related macrophages forming a barrier, and
regenerating muscle fibers at the periphery. Prednisolone treatment
disrupted this organization, notably eliminating the regenerating
outer layer and causing an overlap between inflammatory and
resolving macrophage layers. This disorganization could potentially
impact the ability to regenerate extensive lesions. Additionally,
they observed increased spatial expression of GC receptor targets
and atrophy-associated genes alongside reduced expression of
inflammatory, ECM, and regenerative genes. The identification of
distinct damage-clearing RIZs in early dystrophic muscle offers
a valuable means to monitor disease progression and evaluate
therapeutic responses. Moreover, it may guide the development of
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strategies to preserve regenerative niches in DMD and potentially
other chronic inflammatory diseases.

Recently, Jeon et al. (2025) investigated the pathogenic
features of DMD and BMD Becker Muscular Dystrophy, as well
as the palliative effects of glucocorticoid treatment, using an
integrated snRNA-seq and ST approach (Jeon et al., 2025). They
performed snRNA-seq on both DMD and BMD patient samples
and conducted ST profiling on matched muscle biopsies from
DMD patients only. Using the Cell2Location, they identified spatial
co-localization patterns between satellite cells, myeloid cells, and
lymphoid cells within the dystrophic muscle microenvironment.
Furthermore, comparative analysis between DMD and BMD
samples revealed elevated EZH2 expression in proliferating
satellite cells. Pharmacological inhibition of EZH2 promoted
muscle regeneration by enhancing myogenic differentiation. In
vivo, D2-mdx mice were treated with EZH2 inhibitors (GSK126
and tazemetostat), either alone or in combination with the
glucocorticoid deflazacort. Their results demonstrated that EZH2
inhibition not only improved the dystrophic muscle phenotype
but also attenuated the adverse effects typically associated with
deflazacort therapy.

Additional insights into the inflammatory process in DMD
were provided by the work of Stec et al. (2023), which analyzed
muscles from 6-week old WT and D2-mdx mice using ST
(Visium). Their analysis focused on clusters present in the
D2-mdx dataset, including two distinct immune clusters, one
encompassing regenerating myofibers, and a hybrid one expressing
both myofiber and immune-related genes (Stec et al., 2023). The
first immune cluster (Immune 1) was enriched for genes linked to
granulocyte/neutrophil migration, along with myofiber contractile
proteins, suggesting active damage and early regeneration. The
second Immune cluster (Immune 2) showed the presence of
antigen-presenting cell (APC) and extracellular matrix genes,
pointing to a more intermediate regenerative phase. Histological
analysis supported these findings showing that the first immune
cluster areas contained damaged myofibers with invading cells and
proinflammatory macrophages, while the other had fewer myofibers
and abundant macrophages, but lacked anti-inflammatory
macrophages. In contrast, regenerating fiber clusters showed new
myofibers surrounded by fewer immune cells. In undamaged
type IIB myofiber regions of D2-mdx mice, the authors observed
upregulation of immune and fibrotic gene pathways compared to
healthy muscles. Furthermore, neighborhood enrichment analysis
revealed a spatial association between Immune regenerative cluster
and clusters enriched for mesenchymal stromal progenitor cells.
In contrast, the more inflammatory Immune clusters were found
adjacent to fiber clusters expressing inflammation-associated genes.
This spatial expansion of fibrotic and immune signals propagates
beyond the primary lesion, contributing to the amplification of
pathology throughout the muscle.

While multiple studies focused on immune and fibrotic
processes in DMD, ST approaches have been also applied to other
muscle-related conditions. For example, following up our initial
work on denervation we investigated how altered innervation
interferes with muscle homeostasis in ALS, (Amyotrophic Lateral
Sclerosis) a progressive neurodegenerative disease characterized by
the vulnerability of both NMJs and muscles, particularly fast-twitch
fibers (D'Ercole et al., 2022). To investigate the spatial dynamics of

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1656918

muscle degeneration during disease progression, we analyzed TA
muscle from the SOD1%*4 ALS mouse model at early and late
disease stages using the Visium platform (Ruggieri et al., 2025).
Similarly to what we found in our previous work we identified
10 major clusters defined by canonical markers. Among these,
glycolytic type IIB myofibers—known to be especially susceptible to
disrupted innervation in ALS, exhibited pronounced transcriptional
changes. In contrast type ITA-IIX fibers displayed an increased
energy demand but also signs of impaired mitochondrial functions.
Notably, the enhanced atrophy observed in type IIB myofibers was
associated with dysregulation of the polyamine pathway. Restoring
polyamine homeostasis in ALS mice rescued the muscle phenotype,
highlighting the therapeutic potential of targeting this pathway.
Similarly, heterotopic ossification (HO), the abnormal formation
of bone within muscle tissue triggered by trauma or genetic factors
(Deyetal.,2017), has also been investigated using combined scRNA-
seq and ST methods. Kan and colleagues analyzed uninjured and
injured tibial muscles at 1, 3 and 7 dpi from the Nse-Bmp4 mice
(neuron specific enolase, bone morphogenetic protein 4), a genetic
model of HO (Kan et al., 2024). As hyperactive inflammation is
a well-known driver of abnormal tissue repair during HO, the
authors aimed to investigate the interactions between immune
cells and mesenchymal stem cells (MSCs). Clustering the ST data
identified distinct regions in the injured muscle enriched for both
MSC and immune cell markers. Cell-to-cell interaction analysis
showed that the immune microenvironment, especially macrophage
subtypes (M1 and M2), regulates MSCs behavior. M1 macrophages
promote MSCs proliferation, while M2 macrophages support
differentiation. Indeed, quiescent MSCs were mainly localized in
uninjured tissue, while cycling MSCs accumulated within lesions
at 1 and 3 dpi, followed by differentiating MSCs at later stages.
Monocytes/macrophages were found to co-localize with cycling and
differentiating MSCs. Lastly, the authors identified STAT signaling,
CD44, and OSM-OSMR pathways as key molecular regulators of
MSC transition. These findings shed light on how the immune
microenvironment drives MSCs transitions during HO, highlighting
potential therapeutic targets to control aberrant bone formation.
Together, these studies demonstrate how ST has changed our
understanding of muscle pathology. Heezen etal. (2023) demonstrated
the ability of ST to resolve hallmark histopathological features in mdx
and D2-mdx mice, identifying regenerating, necrotic, fibrotic, and
calcified regions, and implicating Galectin-3-expressing macrophages
in disease progression. Coulis extended these findings by combining
scRNA-seq and ST to show that Gal-3+ macrophages interact with
FAPs via Spp1, driving fibrosis (Coulis et al., 2023). The work from
Patsalos (Patsalos et al., 2024) generated immune-focused scRNA-seq
and ST datasets, defining distinct macrophage and dendritic cell
subsets within regenerative inflammation zones and showing how
glucocorticoids disrupt their organization. Jeon and collaborators
(Jeon et al., 2025) integrated snRNA-seq and ST in human DMD
and BMD samples, identifying spatial proximity between satellite
and immune cells, and highlighting EZH2 as a therapeutic target.
Complementing these immune-focused studies, Stec mapped immune
and stromal interactions in D2-mdx muscle, showing how fibrotic
signals expand beyond lesions and propagate pathology (Stec et al.,
2023). In addition to DMD, applications in ALS and heterotopic
ossification highlight the broader utility of ST in uncovering fiber
type-specific vulnerabilities and immune-mesenchymal crosstalk
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during aberrant tissue remodeling. However, the potential applications
of ST can extend beyond regeneration and degeneration processes.
As discussed, type I (oxidative) and type II (glycolytic) fibers differ
in their metabolic properties, which influences their susceptibility to
different pathological features. For example, in metabolic diseases,
type I fibers prone lipid
accumulation (Umek et al., 2021). ST enables studying the correlation

are  more to  intracellular
offiber type identity withlocal pathological changes, including fibrosis,
inflammatory cellinfiltration or lipid accumulation. Applying ST could
therefore help to uncover how specific fiber types contribute to disease
progression. By capturing the spatial organization of cellular niches,
ST not only refines our view of disease mechanisms but also provides a
framework for evaluating therapies and identifying new intervention

points across muscular disorders.

4 Current limitations and future
perspectives

ST technologies face several limitations that impact their
efficiency and applicability, particularly in relation to transcript
capture efficiency, sample quality, and preparation. These technical
constraints can significantly influence both the resolution and
interpretability of ST data. A primary challenge is RNA capture
efficiency. While in situ imaging-based approaches can localize
hundreds to thousands of genes, they do not provide full
transcriptome coverage. Array-based techniques offer the potential
for comprehensive sequencing, but capture efficiency remains a
constraint, limiting transcript detection. This issue affects the
depth and coverage compared to bulk transcriptomics, making
it difficult to identify low-abundance transcripts. Furthermore,
implementing ST is considerably more expensive than traditional
bulk RNA sequencing. The increased costs are attributed to the
need for specialized equipment and reagents, the complexity of
sample preparation, and the extensive data analysis required.
These factors collectively make ST more costly than conventional
transcriptomic methods, thus limiting broad access to this
technology (Vandereyken et al., 2023). Another critical limitation
regarding transcript coverage is that several ST techniques rely on
probes to capture or hybridize RNA transcripts. As a result, the data
may show biases in the representation of certain RNA species, as
their accurate detection relies on probe efficiency (Du et al., 2023).

As with many other techniques, an additional challenge lies in
the collection and preservation of tissue samples, especially with
human biopsies. This issue is particularly evident when collecting
samples from healthy individuals, which are typically less accessible
than those from individuals with pathological conditions. It is
also challenging to collect samples from the same muscle type, or
ideally the same anatomical region. The collection site is critical,
as muscle function, workload and anatomical location influence
fiber metabolism, which in turn affects gene expression, activation
of cellular pathways, and overall responses to disease. Another
major challenge is assembling a sufficiently homogeneous cohort of
patients with similar age, sex, or pathological history. The complexity
of sample preparation further adds to these difficulties. The process
includes multiple steps, from tissue harvesting to cryosectioning,
depending on the specific requirements of the chosen method. For
muscle tissue, in particular, the freezing and storage steps are critical
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to ensure high tissue quality and, consequently, to produce accurate
spatial maps during the analysis phase. FFPE tissues generally yield
lower-quality RNA and DNA compared to FF samples (Yi et al,,
2020). Formalin fixation induces nucleic acid fragmentation, protein
cross-linking, and chemical modifications, compromising their
integrity and suitability for downstream applications such as PCR
and sequencing. In contrast, fresh frozen tissues better preserve
nucleic acids by preventing enzymatic degradation, making them
the preferred choice for molecular analyses where high-quality RNA
and DNA are required (Steiert et al., 2023).

Furthermore, even after a successful experimental run,
additional issues may arise during the analysis as the overall
size of data generated demands substantial computational power
and storage. Moreover, the analytical workflow demands both
a deep understanding of cellular and tissue biology and the
application of sophisticated statistical models. As the field is still
relatively young, standardized protocols and benchmarks are
under active development. Consequently, strong collaboration
between computational and experimental researchers is essential,
an approach that can be challenging to implement in laboratories
lacking dedicated bioinformatics expertise. Despite these challenges,
ongoing advancements in ST are focused on improving sensitivity,
spatial resolution, and cost-effectiveness, broadening its applicability
in research and clinical diagnostics.

ST with
proteomics,

Future techniques should aim to integrate

complementary omics technologies, such as
epigenomics, and metabolomics, to provide a more comprehensive
view of cellular function. For example, as discussed in Section 3.1
Healthy and regenerating muscle, Martinez Mir et al. (2024)
combined two spatial omics approaches: RNA tomography
(Tomo-seq) and matrix-assisted laser desorption/ionization mass
spectrometry imaging (MALDI-MSI). MALDI-MSI enables spatial
detection of metabolites and lipids, while Tomo-seq was used
to identify fiber types and perform differential gene expression
analysis. To integrate the datasets, the MALDI-MSI data was
binned to generate a pseudobulk metabolomics profile along
the proximal-distal axis, parallel to the Tomo-seq sections. This
alignment allowed metabolites from MALDI-MSI to be directly
compared with gene expression profiles from Tomo-seq, enabling
correlation analyses that link transcriptomics with local metabolic
states of myofibers.

A similar multiomics approach could be applied to study muscle
degeneration by integrating ST with proteomics. To date, this
has not been extensively explored in the field of neuromuscular
diseases or muscle regeneration. However, Gouin and colleagues
demonstrated the potential of such approach by combining ST
with spatial proteomics to analyze tissue samples from patients
with high-grade muscle-invasive bladder cancer (Gouin et al,
2021). In their study, ST was the primary analytical focus, while
spatial proteomic data were used to validate transcriptomic findings.
To further confirm cell co-localization at single-cell resolution,
they performed a 35-plex immunohistochemistry panel using the
Co-detection by Indexing (CODEX) platform on tumor tissue
microarrays from the same patient cohort. Importantly, proteomics
provides an additional validation to ST, since transcriptomic data
alone cannot determine which genes are ultimately translated into
proteins and thus functionally active.
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5 Conclusion

The integration of ST into skeletal muscle research marks
an important advancement in our ability to study tissue
architecture alongside gene expression. As the field evolves,
innovations in resolution, sensitivity, protocols, and commercial
platforms are reshaping our understanding of tissue biology
- particularly in skeletal muscle, where spatial context is
essential to characterize regeneration, fiber-type distribution,
inflammatory microenvironments, and their contributions to
disease mechanisms. Recent studies applying ST to DMD—and
more broadly in the entire muscle field—clearly illustrate this
potential. By leveraging ST and single-cell technologies, researchers
have identified gene expression patterns and cell populations
that drive regeneration, mediate inflammatory and fibrotic
signaling from damaged muscle areas, or contribute directly to
disease progression. Ultimately, these findings highlight how
surveying gene expression within specific microenvironments
can reveal novel therapeutic pathways, emphasizing the potential
impact of spatially resolved transcriptomics in translational
research.

Despite these advances, important challenges remain. The lack
of standardized protocols and benchmarks complicates cross-
study comparisons and limits reproducibility, emphasizing the
need to harmonize analytical workflows as ST moves toward
clinical applications. New computational strategies, including Al
(Artificial Intelligence) and multiomic integration, can address the
analytical demands of increasingly large and complex datasets.
Additionally, constructing spatial reference atlases of healthy
tissues will provide critical baselines for mapping disease-
associated changes. As ST platforms continue to improve in
accessibility and cost, the technology promises to transform not
only our understanding of muscle biology, but also to pave the
way for faster, more accurate diagnosis and novel therapeutic
S strategies.
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