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Across the space: applications of 
spatial transcriptomic 
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diseased muscle
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Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en 
Myologie, Paris, France

In recent years, spatial transcriptomics (ST) has emerged as a groundbreaking 
technology with the potential to transform and accelerate our understanding of 
cellular crosstalk. While single-cell approaches have uncovered an unexpected 
level of cellular heterogeneity in both healthy and diseased tissues, they 
remain limited in their ability to capture cellular interactions in the native 
microenvironment. ST techniques bridge this gap by preserving anatomical 
information, enabling a direct investigation of spatially defined cellular 
interactions. This feature is particularly relevant in tissues such as skeletal muscle, 
where syncytial myofibers coexist with a heterogeneous set of interstitial cell 
populations. Spatial localization is a key factor during muscle regeneration, 
particularly as stem cell progression is driven by complex interactions between 
resident and recruited cell populations. Understanding these spatial dynamics is 
therefore critical to better characterize the fundamental mechanisms of muscle 
repair and identify aberrant signaling pathways of chronic injury or impaired 
regeneration. In this review, we will explore the various types of ST techniques, 
provide a brief summary of the available analytical tools, and highlight recent 
advancements in the skeletal muscle field enabled by the application of ST.
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 1 Introduction

Muscle regeneration relies on the coordinated interplay of diverse cell populations, 
which act together to maintain tissue homeostasis. Upon acute injury, tissue degeneration 
and necrosis are rapidly followed by the activation and expansion of muscle stem 
cells (MuSCs, also known as satellite cells). In parallel, different waves of recruited 
inflammatory cells, along with resident muscle cells, help dictate the timing and 
progression of the regenerative program. Eventually, a subset of activated MuSCs returns to 
quiescence, replenishing the stem cell pool and preserving long-term regenerative capacity 
(Dumont et al., 2015). This coordinated cellular activity ultimately leads to tissue remodeling 
and the restoration of muscle function (Mukund and Subramaniam, 2020).

Although regeneration in healthy muscle is highly efficient, this process 
can be dysregulated in pathological conditions such as muscular dystrophies
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and neurodegenerative disorders. For example, in Duchenne 
muscular dystrophy (DMD), a severe pediatric degenerative 
disorder, the widespread and asynchronous nature of injuries 
leads to chronic inflammation, contributing to regeneration 
impairment and ultimately resulting in fibrosis and fat 
infiltration (Dadgar et al., 2014).

In such complex pathological settings, where it is crucial to 
disentangle the cellular interactions driving disease progression, 
spatial transcriptomics (ST) offers a powerful advantage. Bulk 
and single-nucleus RNA sequencing (snRNA-seq) have been 
successfully employed to identify altered pathways and changes 
in cell populations in multiple contexts such as muscle injury 
(De Miche et al., 2020; Dell’Orso et al., 2019; Oprescu et al., 
2020), denervation (Nicoletti et al., 2023; Lin et al., 2023), 
and in several muscle disorders (Chemello et al., 2020; Suárez-
Calvet et al., 2023; Moncea et al., 2024). However, these approaches 
lack spatial information, limiting our understanding of cell-to-
cell interactions and regional differences in cell signaling. ST 
overcomes this limitation by linking gene expression profiles to 
precise histological regions, making it an ideal tool for exploring 
the cellular and molecular landscape of muscle regeneration and 
degeneration.

In recent years, the number of publications using ST to study 
muscle physiology and pathophysiology has steadily increased 
(Moses et al., 2022). So far, ST approaches have been used 
to study muscle injury (Dadgar et al., 2014; Kan et al., 2024; 
Patsalos et al., 2024; McKellar et al., 2023; Stec et al., 2023; 
McKellar et al., 2021; Brorson et al., 2025; Larouche et al., 2023), 
denervation (D’Ercole et al., 2022), and neuromuscular disorders, 
such as Amyotrophic Lateral Sclerosis (ALS) (Ruggieri et al., 
2025) and Duchenne Muscular Dystrophy (DMD) (Patsalos et al., 
2024; Stec et al., 2023; Jeon et al., 2025; Heezen et al., 2023; 
Coulis et al., 2023; Young et al., 2022). Most of these studies 
have used multiomics approaches, integrating ST with reference 
snRNA-seq data to enhance spatial resolution. These pioneering 
efforts have validated ST as a valuable tool for studying cellular 
heterogeneity, cell–cell interactions, and the diffusion of signaling 
molecules between different areas. In this review, we will discuss the 
main ST techniques and key bioinformatic tools, highlight recent 
advances in muscle biology enabled by ST, and address current 
limitations as well as future perspectives. 

2 Spatial transcriptomics technologies 
and bioinformatic tools

2.1 Current methodologies

ST techniques can be broadly classified into two main categories: 
imaging-based methods and sequencing-based methods, the latter 
encompassing spatial array-based approaches and laser capture 
microdissection (LCM) (Figure 1).

In situ imaging-based techniques rely either on fluorescent in 
situ hybridization (ISH) or on in situ sequencing (ISS). Although the 
number of detectable transcripts may vary significantly depending 
on the different methods both techniques ultimately require a 
predefined set of targets, making them more suitable for hypothesis-
driven rather than exploratory studies.

ISH-based techniques enable the visualization of RNA 
molecules directly within cells or tissues using fluorescently labelled 
probes complementary to target transcripts. Some of the most 
commonly used ISH techniques are: smFISH (Femino et al., 
1998), RNA-scope (Wang et al., 2012), osmFISH (Codeluppi et al., 
2018), seq-FISH (Lubeck et al., 2014), and MERFISH (Xia et al., 
2019). SmFISH and RNA-scope are widely adopted for biological 
validation, as they rely on a small number of fluorescently labeled 
RNA probes (Femino et al., 1998). To address the initial limitations 
of smFISH various strategies and technical implementations have 
been developed expanding its applicability and sensitivity. In 
particular, RNAscope employs unique “double-Z” probes, in which 
two independent probe pairs (each shaped like a “Z”) must hybridize 
adjacently on the target RNA to initiate signal amplification. This 
dual-hybridization requirement enhances specificity and, combined 
with a series of amplification and hybridization steps, enables the 
detection of low-abundance RNA molecules (Wang et al., 2012). 
In osmFISH—an approach based on cyclic smFISH—unbarcoded, 
unamplified probes, labeled with a fluorescence tag, are hybridized 
to the tissue, imaged and subsequently removed by formamide 
melting. As each hybridization round is independent the number 
of detectable targets increases linearly with the number of cycles. 
However, a major limitation of the method is the progressive loss 
of RNA molecules with each round, resulting in an estimated 
∼40% loss over 10 cycles (Codeluppi et al., 2018). To further 
increase multiplexing and minimize spectral overlap, seqFISH 
uses multiple rounds of hybridization in which the same probes 
are sequentially labeled with fluorophores of five different colors. 
This approach enables the generation of thousands of unique 
probe combinations (Lubeck et al., 2014). Building upon this 
concept, seqFISH+ expands the color palette to 60 “pseudocolor” 
channels through sequential hybridization, allowing the detection 
of up to 10,000 genes (Eng et al., 2019). To reduce the risk of 
errors due to the multiple rounds of amplification, MERFISH 
utilizes a combinatorial barcoding strategy to label transcripts 
before detection (Xia et al., 2019). Additionally, several of these 
methodologies have been adapted into automated commercial 
platforms, including MERSCOPE (MERFISH-based, Vizgen), 
Molecular Cartography (Resolve Biosciences), and CosMx 
(NanoString Technologies), which combines a MERSCOPE-
like strategy with an optical signature approach comparable to 
Xenium (see below). The CosMx platform uses five gene-specific 
primary probes that hybridize to the target mRNA, followed by a 
fluorescently labeled secondary probe that binds to the primary 
probes. This process is iterated 16 times to generate a unique gene-
specific signature, enabling the detection of up to 19,000 distinct 
transcripts (He et al., 2022).

ISS-methods are based instead on single-strand DNA probes 
complementary to a cDNA sequence, generated by reverse 
transcription of mRNA. Probes are hybridized on both sides of 
target sequence to form a rolling-circle product (RCP) which then 
undergoes sequencing (Ke et al., 2013). ISS- based technologies 
include: FISSEQ (Lee et al., 2014), HybISS (Gyllborg et al., 2020), 
ExSeq (Alon et al., 2021), and STARmap (Wang et al., 2018).

In FISSEQ the RNA is first reverse-transcribed to cDNA and 
then amplified and labeled with a fluorescent marker, followed 
by multiple rounds of sequencing in situ (Lee et al., 2014). To 
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FIGURE 1
Diagram illustrating imaging and sequencing methods. (A) Fluorescent probes hybridize to specific sequences within the tissue and are imaged by 
microscopy. Repeated cycles of the procedure generate a gene-specific fluorescent signature. (B) Rolling circle amplification followed by sequencing 
by ligation. Repeated cycles of the procedure generate a gene-specific fluorescent signature. (C) Tissue placed on a barcoded array undergoes 
imaging, mRNA extraction, library construction, and sequencing. (D) Tissue microdissection followed by sequencing.

reduce the signal-to-noise ratio and improve the specificity HybISS-
methodology takes advantage of lock-probes design by replacing 
random primers with specific sequences (Gyllborg et al., 2020). 
Instead, ExSeq relies on expansion microscopy to physically expand 
biological samples, to increase the precision of in situ RNA-
seq while maintaining the overall structural integrity of tissues 
(Alon et al., 2021). STARmap method employs barcode-lock probes 
for direct targeting of over a thousand genes. The probes bind the 
cDNA to initiate a Rolling Circle Amplification (RCA); the RCA 
products are embedded in the hydrogel, allowing stable retention 
during multiple imaging cycles, amplification is then triggered 
only when both primers correctly hybridize to the target mRNA, 
ensuring high specificity. A major advantage of the STARmap is 
its applicability to thick sections (up to 150 µm), making it a 
powerful tool for exploring the three-dimensional organization of 
complex tissues (Wang et al., 2018).

In 2025, Maguire and colleagues introduced LIST-Lock-
n-Roll (LIST-LnR) (Maguire et al., 2025). This in situ RNA 
detection method builds upon LISH technology (Ligation in situ
Hybridization) - a technique developed to analyze RNA from 
formalin-fixed paraffin-embedded (FFPE) samples (Maguire et al., 
2025). LIST-LnR relies on a specifically designed circularized probe 
system. Four unique readout probes, along with universal 5′ and 
3′ bridge sequences, are appended to the respective ends of LISH 
probes. The construct is hybridized to the RNA target and amplified 
to create a rolling circle product (RCP). Each RCP is then identified 
based on the fluorescence emitted by the 5′fluorophores that are 
conjugated to the complementary readout probe sequences. Notably, 
this technique is compatible with both fresh frozen and formalin-
fixed, paraffin-embedded specimens.

Among the commercially available platforms Xenium (10X 
Genomics) combines features from both ISS and ISH. Target 
sequences are initially subjected to a first round of hybridization with 
highly specific padlock probes, followed by a RCA amplification. 
Fluorescently labeled secondary probes then hybridize to the 
padlock probes, and an image is acquired. After imaging, the 
fluorescent probes are removed and replaced with new ones. 
The process is repeated on average eight times to generate 
a unique fluorescent signature that enables accurate gene 
identification (Janesick et al., 2023).

Xenium, MERSCOPE, and CosMx are the main image-based 
techniques used for profiling a variable number of genes at a 
sub-cellular resolution. While they share this core similarity, they 
differ in several key technical aspects, including gene panel design, 
sample types, and protein profiling capabilities. MERSCOPE allows 
for a fully customized gene panel (Moses et al., 2022) of up 
to 1,000 genes and thus can be applied to different species. In 
contrast, both Xenium and CosMx offer large mouse and human 
premade panels that can reach up to 5,000 genes and nearly 
19,000 genes respectively. Both platforms also provide the possibility 
customize smaller probes panels both as adds-on or standalone (300 
probes–CosMX and 480 - Xenium). Regarding protein profiling, 
MERSCOPE enables simultaneous RNA and protein detection 
on the same slide. CosMx performs this sequentially and offers 
custom panels specific to Human Immuno-Oncology or Mouse 
Neuroscience, with the option to add up to eight custom-conjugated 
antibodies to the existing protein panel (Lim et al., 2025). Xenium 
as well proposes a dedicated protein panel, which at present 
enables multiplexing of up to 27 proteins. Since these platforms 
continue to undergo rapid development, it is highly likely that 
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their multiplexing capabilities will improve substantially in the
near future.

Spatial array-based approaches rely on arrays of DNA-barcoded 
primers that carry spatial positional information. RNA molecules 
hybridize to these primers and are retrotranscribed, incorporating 
the spatial barcode into the resulting cDNA. As the precise location 
of each barcode on the slide is predetermined each transcript can be 
spatially mapped to its original position. Barcoded primers can be 
spotted on microarrays, attached on beads or nanoballs or directly 
to the tissue. In these systems, spatial resolution depends on the size 
of each spot and their relative distance within the array.

In their seminal 2016 publication Ståhl et al. (2016) coined the 
term ST–now broadly used to refer to the entire class of related 
technologies–to describe their method for detecting transcripts 
within their original tissue context (Ståhl et al., 2016). Their 
approach relied on a microarray of barcoded primers spotted 
directly on a slide with each spot measuring 100 µm in diameter. 
Based on this technology a commercial version was released in 2019 
(Visium V1–10x Genomics) featuring approximately 5,000 spots 
(55 µm-diameter) per capture area, each containing around five 
million barcoded oligonucleotides. Tissue sections must be carefully 
placed over the barcoded capture area and, after permeabilization, 
mRNA molecules hybridize to spatially barcoded primers, allowing 
reverse transcription into cDNA. Once the tissue is enzymatically 
removed, the synthesized cDNAs hybridize with probes on the slide 
for further processing. Prior to this step, either immunofluorescence 
or hematoxylin and eosin (H&E) staining is performed to enable 
accurate alignment of histological features with the corresponding 
sequencing data. Visium V1 platform relies on a 3′poly(A) capture-
based chemistry. Accurate placement of tissue samples on the 
capture area remains a significant technical challenge for this 
initial version. To address this issue, later versions of the Visium 
workflow incorporated the CytAssist instrument to ensure accurate 
transfer of tissue sections onto the slide, together with the probe-
based chemistry introduced in Visium V2. Building on Visium V1 
technology McKellar and colleagues developed STRS (spatial total 
RNA-sequencing) which by introducing a step to add a poly(A) tail 
to the 3′ end of all RNAs enables the additional detection of non-
coding RNAs and viral RNAs (McKellar et al., 2023). Recently, 10x 
Genomics released a high-resolution version of the Visium platform 
(Visium HD), available in two formats: one using probe-based 
chemistry and another using 3′poly(A) capturere, both employing 
a high-density array that achieves ∼2 µm resolution.

In the Slide-seq approach, a tissue section is placed onto a 
surface covered with DNA-barcoded beads with known spatial 
positions (Maguire et al., 2025). The mRNA released from the tissue 
is captured by the beads and used to generate 3′-end, barcoded 
RNA-seq libraries; the purified cDNA is then subjected to next-
generation sequencing (NGS). Slide-seq provides a spatial resolution 
of 10 μm and is commercially available under the name Curio 
Seeker (Curio Bioscience) (Rodriques et al., 2019). In 2021, Curio 
Bioscience released an improved version called Slide-seqV2 that 
achieves a ∼10-fold increase in RNA capture efficiency compared to 
the original version (Stickels et al., 2021).

Similarly to Slide-seq, HDST achieves subcellular resolution 
(∼2 µm) by randomly distributing uniquely barcoded beads into a 
densely packed hexagonal array of 2 µm wells. The precise location 
of each bead is then decoded through sequential hybridization 

and imaging of fluorescently labeled oligonucleotides. This process 
assigns each bead a unique spatial color address, which, enables 
accurate spatial mapping of captured mRNAs (Vickovic et al., 2019).

DBiT-seq introduces spatial barcodes into tissue sections via 
orthogonally applied microfluidic channels. This process results 
in the in situ labeling of mRNA molecules, which are reverse 
transcribed into barcoded cDNAs. Additionally, this method 
supports multi-omic profiling, enabling concurrent analysis of 
transcriptomic and proteomic data by incorporating antibody-
derived DNA tags (ADTs) (Liu et al., 2020).

Seq-Scope enables high-efficiency mRNA capture through a 
PCR-based in situ method. The RNA capturing array is generated 
by solid-phase amplification of random barcode molecules using 
an Illumina sequencing platform. This process yields a center-
to-center resolution of approximately 0.5–0.8 μm. Such ultra-high 
spatial resolution enables transcriptomic profiling at tissue, cellular, 
and subcellular levels (Cho et al., 2021).

In sci-Space, spatial barcoding is achieved by transferring 
spatially arrayed hashed oligonucleotides onto a tissue section to 
label nuclei locations (Srivatsan et al., 2020). A regular grid of 
hashed oligos is spotted onto agarose-coated slides, which are then 
physically juxtaposed to the tissue to enable transfer. During this 
process, the tissue is imaged and subsequently dissociated to isolate 
single nuclei, which are then subjected to sci-RNA-seq (single-cell 
RNA sequencing with combinatorial indexing). Upon sequencing, 
the approximate location of each nucleus can be inferred based on 
its associated hashed oligos. Unlike classical array-based approaches, 
where the spatially barcoded spot is sequenced, sci-Space sequences 
the extracted, labeled nucleus. In this sense, sci-Space could be 
considered a spatially informed snRNA-seq method. While this 
approach does not provide precise transcript localization, it offers 
single-cell resolution across large areas, making it well suited for 
mapping broad tissue regions (Srivatsan et al., 2020).

Stereo-seq relies on a DNA nanoball (DNB) patterned array; 
this approach, enables a resolution of 0.22 μm–with approximately 
400 spots for tissue RNA capture per 100 μm2. DNB templates 
containing random barcodes are deposited on the patterned array, 
incubated with primers, and sequenced to obtain the coordinate 
identity of every experiment. Next, UMIs and polyT oligos for RNA 
capture are added to the DNB. Tissue sections are then placed on 
the chip, and after fixation and reverse transcription, the barcoded 
cDNA is sequenced. Stereo-seq provides higher spatial resolution 
combined with larger capture areas (up to 13.2 × 13.2 cm), making 
it suitable for profiling tissues of various sizes, including whole 
mouse embryos (Chen et al., 2022).

GeoMx Digital Spatial Profiling (NanoString Technologies) is 
able to quantify the abundance of protein or RNA by counting 
unique indexing oligonucleotides assigned to each target in a specific 
region of interest (ROI). Gene-specific probes (or primary antibody) 
are covalently attached to the indexing oligonucleotides and first 
hybridized to the targets within the tissue (Merritt et al., 2020). These 
probes are linked to unique barcodes through UV-cleavable linkers. 
The tissue slide is then stained with fluorescently labeled imaging 
probes to visualize specific cell types. Imaging data are then used 
to guide ROI selection. UV light is applied to these selected ROIs to 
release the barcodes, which are then collected for library preparation 
and sequencing.
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To analyze gene expression in specific tissue regions, LCM-
based ST relies on the precise laser microdissection of regions of 
interest (ROI) followed by high-throughput sequencing. Several 
approaches have been developed over the years including LCM-
seq (Nichterwitz et al., 2016), TIVA (Lovatt et al., 2014), Tomo-
seq (Junker et al., 2014), Geo-seq (Chen et al., 2017), NICHE-
seq (Medaglia et al., 2017), and ProximID (Boisset et al., 2018). 
LCM-seq (Nichterwitz et al., 2016), combines laser-capture 
microdissection with RNA sequencing, enabling the analysis of 
single cells or small tissue regions with high precision. TIVA 
(Lovatt et al., 2014) (Transcriptome In Vivo Analysis) employs a 
photoactivatable probe to isolate mRNA directly from living cells, 
maintaining their native environment. Tomo-seq (Junker et al., 
2014) provides spatial maps of gene expression by sequencing 
consecutive tissue sections along a selected axis. Similarly, Geo-
seq (Chen et al., 2017) combines LCM and scRNA-seq to reconstruct 
transcriptomic landscapes while retaining spatial information. 
To focus on immune cells, NICHE-seq (Medaglia et al., 2017) 
integrates photoactivation with single-cell sequencing to profile 
specific populations within defined tissue microenvironments. 
Finally, ProximID (Boisset et al., 2018) identifies the transcriptomes 
of physically interacting cells, offering valuable insights into cell–cell 
communication at the molecular level. All these methods require 
frozen tissue sections except for TIVA, which is able to capture 
mRNA from live cells using a biotin-tag. Microdissection-based 
approaches enable precise analysis of microanatomical structures 
and gene expression by directly selecting specific regions (typically 
60–700 μm in diameter); however, they are often limited by the 
quantity and quality of RNA, as molecules may be compromised 
during dissection and processing (Du et al., 2023).

The selection of the most appropriate methodology depends on 
multiple factors and requires a careful evaluation of the advantages 
and limitations of each technology. In particular, three key factors 
should be taken into account: the number of required detectable 
targets, detection efficiency and spatial resolution (for a summary 
of the major commercially available platforms see Table 1). The first 
step is to clearly define the scientific question—specifically, whether 
the study requires comprehensive whole-transcriptome coverage or 
focuses on a targeted subset of transcripts. This decision determines 
whether a sequencing-based or imaging-based approach is more 
suitable. 1maging-based methods typically offer higher spatial 
resolution and sensitivity, making them ideal for studies involving 
well-defined transcript panels. However, their use is largely limited 
to human and mouse samples due to probe availability. In contrast, 
sequencing-based methods generally provide whole-transcriptome 
coverage but at the cost of lower resolution and sensitivity 
(Valihrach et al., 2024). The vast majority of ST studies conducted 
on muscle tissue have so far relied on array-based technologies 
(Kan et al., 2024; Patsalos et al., 2024; McKellar et al., 2023; Stec et al., 
2023; McKellar et al., 2021; D’Ercole et al., 2022; Ruggieri et al., 
2025; Jeon et al., 2025; Heezen et al., 2023; Coulis et al., 2023; 
Young et al., 2022; Walter et al., 2024). This trend can be attributed 
to the relatively recent adoption of spatial approaches in this 
specific tissue context, with most exploratory studies dating back 
to late 2020. These early investigations have primarily focused on 
broad transcriptional mapping, for which array-based platforms 
provided a practical and accessible entry point. As previously 
discussed, the choice of ST technology is tightly linked to the 

specific scientific question being addressed. For this reason, while 
array-based methods currently dominate the field, imaging-based 
approaches should not be overlooked for future studies - especially 
as research increasingly shifts toward more targeted and high-
resolution analyses. Moreover, given the constantly increasing 
number of detectable probes, it is foreseeable that probe-based 
platforms will eventually replace spot-array systems—indeed, full-
genome scale panels are already available on platforms such as 
CosMX. However, in the context of skeletal muscle research, 
the relative novelty of these technologies and the lack of large-
scale, comparable datasets make it difficult to directly evaluate the 
sensitivity and performance of high-resolution array systems (e.g., 
Visium HD) against probe-based approaches using large or full-
genome panels. Future benchmarking studies across different tissues 
and conditions will therefore be essential to determine the most 
suitable strategies for specific research applications.

2.2 Bioinformatics analysis and tools

ST data analysis is a multi-step process aimed at extracting 
biologically relevant information by leveraging both spatial 
coordinates and gene expression data. The analysis begins with 
data preprocessing, which generates a gene expression matrix along 
with the corresponding spatial coordinates. This step depends 
highly on the underlying technology. Each preprocessing pipeline 
is tailored to the specific technical requirements in terms of 
input for the employed method, yet they all ultimately generate 
a gene count matrix. This matrix represents gene expression levels 
within individual spatial units, which correspond to single RNA 
molecules in imaging-based techniques (or to cells if combined 
with segmentation) and spots in sequencing-based approaches. 
Tools such as Starfish (Axelrod et al., 2021) provide scalable 
pipelines for processing image-based transcriptomics, allowing 
localization and quantification of RNA transcripts within image data 
(Axelrod et al., 2021; Perkel, 2019). Preprocessing for sequencing-
based ST includes aligning sequencing reads, processing tissue 
images, and matching spatial barcodes to produce spatial gene 
expression matrices. Subsequent analyses applied to the matrix are 
largely shared across different ST platforms (Valihrach et al., 2024). 
Commercial platforms typically provide dedicated proprietary 
software and pipelines for data visualization and analysis. For 
instance, Visium workflow relies on Space Ranger for read 
alignment and quantification and Loupe Browser for interactive 
data visualization. Stereo-seq employs tools like ImageStudio for 
quality assessment and SAW to generate matrices compatible with 
downstream analysis. Once the preprocessing is complete, data 
undergoes normalization, dimensional reduction, and clustering. 
To streamline this process, several computational frameworks 
such as Seurat (Hao et al., 2021; Stuart et al., 2019), Squidpy 
(Palla et al., 2022), STUtility (Bergenstråhle et al., 2020) have been 
developed. These frameworks also provide comprehensive analysis 
and visualization tools. Regarding dimensionality reduction, 
the most commonly adopted methods, such as PCA (Principal 
Component Analysis) (Jolliffe and Cadima, 2016), t-SNE (t-
distributed Stochastic Neighbor Embedding) (Van Der Maaten 
and Hinton, 2008), and UMAP (Uniform Manifold Approximation 
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TABLE 1  Commercially available spatial transcriptomic platforms.

Methods Platforms Provider Sample 
type

Suitable
Species

Instrument 
required

Spatial 
resolution

Gene 
coverage

Spatial 
array-based

Visium 10X Genomics V1: FF
V2: FF, FFPE, 
FxF

V1: Any species
V2: Mouse and 
Human

V1: NA
V2: Visium 
CytAssist

55 μm Whole 
transcriptome

Visium
HD

10X Genomics Probes: FF, FFPE, 
FxF
3’: FF

Probes: Mouse 
and Human
3’: Any species

Visium CytAssist 2 μm Whole 
transcriptome

GeoMx DSP NanoString 
Technologies

FF, FFPE Mouse and 
Human

GeoMx DSP 10 μm Whole 
transcriptome

Curio Seeker Curio 
Biosciences

FF Any species NA 10 μm Whole 
transcriptome

Stero-
seq/STOmics

BGI Genomics FF, FFPE Any species STOmics chip 
reader

0.22 µm Whole 
transcriptome

Imaging- based

Molecular 
Cartography

Resolve 
Bioscience

FF, FFPE Any species Molecular 
Cartography

0.3 µm 100 genes

Visium Xenium 10X Genomics FF, FFPE Mouse and 
Human

Xenium Analyzer Subcellular Up to 5,000 genes 
(Customizable 
additional genes)

MERSCOPE Vizgen FF, FFPE Any species MERSCOPE 
Ultra™

Subcellular Up to 1,000 genes

CosMx SMI NanoString 
Technologies

FF, FFPE Mouse and 
Human

CosMx Spatial 
Molecular 
Imager

Subcellular Up to 19,000 
genes 
(Customizable 
additional genes)

FF, fresh frozen; FFPE, formalin-fixed paraffin-embedded; FxF, fixed frozen; NA, not available.

and Projection) (McInnes et al., 2018), are directly borrowed from 
scRNA-seq analysis workflows.

One of the key advantages of ST is the possibility to identify 
spatially distinct gene expression regions which often overlap 
with histological and functional tissue domains. While standard 
clustering strategies [k-means (Ikotun et al., 2023), Louvain 
(Blondel et al., 2008)] remain widely used, several new methods have 
recently been developed to improve clustering accuracy and a better 
identification of gene-coherent spatial domains. These include tools 
such as BayesSpace (Zhao et al., 2021) and SC-MEB (Yang et al., 
2022), both based on Bayesian statistics, and StLearn (Pham et al., 
2023), which offers a suite of algorithms to construct pseudo-
time-space trajectories, expand ST coverage, and analyze cell-
cell interactions. Additionally, several tools rely on deep learning 
strategies including DeepST (Xu et al., 2022), SpaGCN (Hu et al., 
2021), STAGATE (Dong and Zhang, 2022) and SiGRA (Tang et al., 
2023a) which can process multichannel images as input.

At present, several ST techniques can achieve cellular and 
subcellular-level resolution, and a wide range of bioinformatic tools 
have been developed to annotate cell types and investigate their 
interactions. For in situ imaging approaches, an essential step is 
image segmentation, which enables the generation of single-cell level 
information. Tools such DeepCell (Van Valen et al., 2016), CellPose 
(Stringer et al., 2021) or Stardist (Weigert and Schmidt, 2022) are 

commonly used to identify nuclei or cells in high resolution tissue 
images (Kleino et al., 2022). However, in tissues with a more complex 
organization, such as skeletal muscle, additional segmentation 
strategies are required to accurately capture structural and 
functional units. Due to its multinucleated nature, skeletal muscle 
requires an additional segmentation step to identify individual fibers 
to fully analyze tissue architecture and regeneration. Historically, 
manual segmentation has been used to delineate and measure 
single fibers and their characteristics; however, this approach is 
time-consuming and lacks scalability. In recent years, various 
bioinformatic tools have become available enabling automated 
segmentation of muscle fibers. In particular general-purpose 
segmentation tools such as Cellpose, which relies on a deep learning-
based segmentation algorithm, has been successfully applied 
to murine skeletal muscle, accurately segmenting thousands of 
myofibers in fixed tissue (Waisman et al., 2021). Other machine 
learning-based tools, such as Ilastik (Berg et al., 2019), can also 
be used in principle to reliably identify muscle fibers. Moreover, 
several dedicated standalone tools [Myotally (Both et al., 2025) or 
MyoV (Gu et al., 2024)] or Fiji plugins are now available MuscleJ 
(Mayeuf-Louchart et al., 2018), Open-CSAM (Desgeorges et al., 
2019), MyoSAT (Stevens et al., 2020), Myosoft (Encarnacion-
Rivera et al., 2020) and MyoView (Rahmati and Rashno, 2021). 
While these tools are primarily designed to measure and analyze 
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fiber type and morphological characteristics, their segmented 
labels can be imported into computational frameworks such 
as SpatialData (Marconato et al., 2025), to be combined with 
high-resolution ST data and generate single-cell–level datasets.

For techniques with lower resolution, such as Visium, a 
deconvolution step is often required. Typically using a scRNA-seq 
reference to estimate the relative cell type composition of each spot. 
Tools such as SPOTlight (Elosua-Bayes et al., 2021), SpatialDWLS 
(Dong and Yuan, 2021), Cell2location (Kleshchevnikov et al., 
2022) CellTrek (Wei et al., 2022), RCTD (Cable et al., 2022), 
DSTG (Song and Su, 2021), GraphST (Long et al., 2023), Tangram 
(Biancalani et al., 2021), and STRIDE (Sun et al., 2022) utilize diverse 
computational strategies to reconstruct the spatial distribution of 
cell types with high resolution. Another strength of ST is its ability 
to detect active signaling and infer intercellular communication 
reliably. Since signaling efficiency depends on the distance between 
cells, linking gene expression to spatial coordinates allows for more 
precise modeling of these interactions. This represents a marked 
difference from scRNAseq-based-inference, where the complete lack 
of spatial context can lead to false-positive predictions. Several tools 
such as Cellchat v2 (Jin et al., 2024), CNG (Yuan and Bar-Joseph, 
2020), SpaOTsc (Cang and Nie, 2020), MISTy (Tanevski et al., 2022), 
and spaCI (Tang et al., 2023b) are currently available to model 
ligand-receptor interactions within tissue microenvironments.

Lastly, trajectory inference methods can also be 
used to reconstruct the dynamic processes of cell 
development and differentiation over spatial gradients. StLearn 
(Pham et al., 2023) offers a Pseudo-Spatial-Time (PST) model, 
while SPATA (Kueckelhaus et al., 2024) uses monocle3-based 
analysis to infer transcriptional changes along spatial trajectories, 
enabling the study of temporal and developmental tissue 
organization.

Together, these tools and computational strategies provide a 
robust framework for interpreting ST data and gaining insights into 
tissue biology (Figure 2).

2.3 Omics integration

The integration of multi-omics, such as genomics, epigenomics, 
transcriptomics, proteomics, or metabolomics, can reveal how 
biological processes are coordinated at multiple molecular levels.

Spatial multi-omic profiling of tissue samples can be achieved 
either by applying spatial mono-omic assays separately on serial 
sections, or by employing integrated strategies that capture multiple 
omic layers within the same tissue section. In the sequential 
approach, fresh-frozen (FF) or formalin-fixed paraffin-embedded 
(FFPE) tissue sections are analyzed using different spatial methods, 
often combined with morphological staining and annotations, 
followed by computational integration of the datasets. A key 
challenge with this approach is the accurate alignment of serial 
sections, as tissue stretching or deformation during sectioning can 
hinder precise image registration (Vandereyken et al., 2023).

Several studies have demonstrated the value of these combined 
strategies. For example, in 2021, ST was combined with spatial 
proteomics to analyze high-grade muscle-invasive bladder cancer 
(MIBC) samples (Gouin et al., 2021). In that study, ST data served 
as the primary analytical focus, while spatial proteomic data was 

used to validate the transcriptomic findings. Similarly, integration 
of spatial metabolomics and ST has also been performed, where the 
metabolomic data formed the core of the analysis and was supported 
by ST validation. This study employed a novel method called Spatial 
Single-Nuclear Metabolomics (SEAM) (Yuan et al., 2021) to map 
metabolite distributions in human fibrotic liver tissue.

In parallel, additional multi-omic strategies are being developed 
to enable simultaneous spatial profiling of multiple molecular 
modalities within the same tissue section. For instance, spatial 
ATAC&RNA-seq and spatial CUT&Tag-RNA-seq (Zhang et al., 
2023) allow gene expression and chromatin features to be 
studied together in the same tissue slices. These approaches 
combine DBiT-seq (Liu et al., 2020) based methods with spatial-
ATACseq (Deng et al., 2022a) or spatial-CUT&Tag (Deng et al., 
2022b) to map open DNA or histone marks along with mRNA. 
Advanced fluorescence in situ hybridization (FISH)-based methods, 
including MERFISH (Xia et al., 2019) and seqFISH+ (Eng et al., 
2019) use predefined optical barcodes and complex probe designs to 
visualize thousands of RNA transcripts and genomic loci in single 
cells, with optional limited protein detection via fluorescent or 
DNA-conjugated antibodies. Array-based technologies (Ståhl et al., 
2016) such as Visium can be paired with hematoxylin and eosin 
(H&E) staining or limited antibody-based protein profiling.

Extended platforms like SM-Omics (Vickovic et al., 
2022) further allow co-detection of multiple proteins via
antibody-derived tag (ADT)-conjugated antibodies. Finally, 
NanoString’s GeoMx (Merritt et al., 2020) enables quantification 
of RNAs and proteins within selected regions of interest (ROIs). 
This is achieved by UV-photocleavable linkers that release uniquely 
barcoded oligonucleotides from antibodies or probes upon 
UV illumination. The released barcodes are then collected and 
sequenced, allowing spatial mapping on the original tissue. 

3 Applications of ST in skeletal muscle 
research

In the field of skeletal muscle, ST has found multiple applications 
in healthy, regenerating, and diseased muscle (for a summary of cited 
studies see Table 2). This chapter highlights the key findings enabled 
by ST across these biological settings.

3.1 Healthy and regenerating muscle

The initial applications of ST in skeletal muscle date back 
to 2021 when McKellar and colleagues, Using the Visium 
platform, explored cell–cell interactions during acute muscle 
regeneration (McKellar et al., 2021). To enrich the relatively rare 
intermediate myogenic cell populations in healthy muscle, the 
authors collected TA muscles from 5-month-old C57BL/6J mice 
subjected to myotoxin-induced injury at 2, 5, and 7 days post-injury 
(dpi). The ST data were integrated with 23 newly generated and 88 
publicly available single-cell and single-nucleus RNA-seq datasets to 
perform deconvolution of cell subtypes. Through snRNA-seq–based 
deconvolution, the authors identified and distinguished quiescent 
muscle stem cells (MuSCs), activated MuSCs, committed myoblasts, 
fusing myocytes, and mature myonuclei. Additional cell types, 
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FIGURE 2
Schematic illustration showing how ST data can be used to identify spatial domains, cell types, cellular trajectories, and intercellular communication 
within tissue sections. Each process is linked to the bioinformatic tools listed in the table at the bottom.

including neural cells, tenocytes, smooth muscle cells, and several 
subpopulations of fibro-adipogenic progenitors (FAPs), endothelial 
cells, and immune cells, were also detected.

At 2 dpi, the injury site showed increased expression of 
Myod1, indicative of MuSC activation, and a lack of mature 
myosin gene Myh1. By five and 7 dpi, the expression of cell 
cycle inhibitors such as Cdkn1c, the myogenic commitment marker 

Myog, and fusogenic genes including Mymk and Mymx became 
enriched. Simultaneously, pro-remodeling FAPs increased, while 
patrolling monocytes declined, indicating the progression of the 
regenerative response.

According to a cell–cell interaction analysis, FAPs exhibited the 
highest predicted levels of interaction with myogenic cells through 
secreted signaling. These interactions decreased as myogenic cells 
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TABLE 2  Applications of spatial transcriptomic technology in healthy and diseased muscle.

Author Muscles Injury Specie/Strain Age Technique

Brorson et al (2025) VL Ctrl,
2, 8, 30 dpi (electric)

Human 55–80 yr Visium 10x Genomics

Jeon et al (2025) Quadriceps, abdominal Healthy, DMD 17 yr Visium 10X Genomics
MERFISH

Martínez et al (2024) TA Polr2b–DCM mice
Tg (Pax7-EGFP) 15Tajb mice

4–6 mo Tomo-seq, CODEX

Ruggieri et al (2025) TA C57BL/6J
SOD1G93A mice

2.5 mo
2.5–4.5 mo

Visium 10X Genomics

Umek et al. (2025) VL Healthy, sarcopenia 85 yr, 19 yr Xenium
10X Genomics

Kan et al (2024) TA Ctrl
1, 3, 7 dpi (NTX)

Nse-Bmp4 transgenic mice Visium 10x Genomics

Mcleod et al (2024) VL Human <50 yr MERFISH

Patsalos et al (2024) TA
GA

4 dpi (CTX) C57BL/6J
DBA/2J-mdx mice

2 mo Visium 10X Genomics

Walter et al (2024) TA 5 dpi (NTX) BL/6J mice 4–7 mo, 26 mo Curio Seeker (Slide-seq) 
Curio Bioscience

Coulis et al (2023) GA, Plantaris DBA/2J-mdx mice <2 mo Visium 10X Genomics

Heezen et al (2023) Quadriceps C57BL/6J-mdx
DBA/2J, DBA/2J-mdx mice

2.5 mo Visium 10X Genomics

McKellar et al (2023) TA Ctrl
2, 5, 7 dpi (NTX)

C57BL/6J mice 6 mo Visium 10X Genomics
STRS

Larouche et al (2023) TA 7, 14 dpi (VLM) C57BL/6J mice Visium 10X Genomics

Stec et al (2023) GA 1, 3, 5 dpi (CTX) C57BL/6J, DBA/2J
mdx, DBA/2J-mdx mice

< 2 mo Visium 10X Genomics

D’Ercole et al (2022) TA Ctrl
3, 30 dpi (denervation)

C57BL/6J mice 4–7 mo Visium 10X Genomics

Young et al (2022) GA DBA/2J-mdx mice 2 mo Visium 10X Genomics

McKellar et al (2021) TA 2, 5, 7 dpi (NTX) C57BL/6J mice 5 mo Visium 10X Genomics

Dadgar et al. (2014) GA Multiple NTX C57BL/6J mice
Human DMD

4–8 mo
3 yr

LCM

VL, vastus lateralis; TA, tibialis anterior; EDL, extensor digitorum longus; GA, gastrocnemius; CTX, cardiotoxin; NTX, notexin; Dpi, days post injury; IF, immunofluorescent staining; H and E, 
hematoxylin and eosin staining; Mo, month; Yr, year; Ctrl, control; DMD, duchenne muscular dystrophy.

progressed towards more differentiated myogenic stages. Notably, 
pro-remodeling FAPs showed high expression of a secreted growth 
factor Midkine (Mdk), while myogenic cells, particularly quiescent 
MuSCs, expressed its receptor genes Ncl, Sdc4, and Lrp1. Moreover, 
Mdk was spatially co-expressed with Ncl and Lrp1, suggesting a 
coordinated paracrine signaling mechanism. Mdk signaling has 
previously been implicated in limb regeneration (Qin et al., 2021) 
and the regulation of stem cell proliferation (Xu et al., 2014). In 
conclusion, these findings demonstrate how ST, integrated with 

single-cell data, can identify different cell subtypes and resolve 
dynamic cell interactions during muscle regeneration.

In 2023, the same group introduced Spatial Total RNA 
Sequencing (STRS), a method designed to capture coding, non-
coding, and viral RNAs. With this approach, they identified 
spatially defined distributions of non-coding RNAs during muscle 
regeneration (McKellar et al., 2023). They collected TA muscles from 
6-month-old C57BL/6J mice subjected to myotoxin-induced injury 
at 2, 5, and 7 dpi in addition to an uninjured control. Gene expression 
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analysis revealed that the long non-coding RNA Meg3 was expressed 
at the injury site at 5 dpi, which is a critical time point for myoblast 
differentiation and myocyte fusion (McKellar et al., 2023). This 
aligns with prior in vitro findings demonstrating the role of Meg3 in 
myoblast differentiation (Dill et al., 2020). Additionally, consistent 
with earlier studies (Liu et al., 2012) miR-1a-3p was expressed at 
all time points, while miR-206-3p showed high expression only at 
five dpi in the injury site. These results demonstrate that STRS can 
capture RNAs that are missed by conventional workflows, including 
non-coding RNAs, newly transcribed RNAs and viral RNAs.

Additional insights into the mechanisms underlying muscle 
regeneration were provided by Young et al. (2022). By reanalyzing 
ST data from McKellar on myotoxin-induced muscle injury, the 
authors identified a senescence-associated gene signature (defined 
by genes such as Trp53, Cdkn1a, and Cdkn1c) enriched within 
degenerating muscle regions. They then extended their investigation 
to a model of chronic injury, the D2-mdx mouse model, using 
the Visium platform to assess the spatial distribution of this 
senescence signature. Their analysis revealed that the signature was 
enriched in areas undergoing active muscle repair. Importantly, 
pharmacological depletion of senescent cells using senolytic agents 
impaired muscle growth following injury, suggesting that transient 
senescent cell accumulation is a necessary component of effective 
regeneration.

Our group, in collaboration with the group of Luca Madaro 
at Sapienza University, focused on muscle denervation and 
leveraged the Visium platform to investigate its effect at the 
whole tissue level. By integrating ST with immunofluorescence, 
we demonstrated a clear correspondence between unbiased 
ST regions and anatomical-functional domains within skeletal 
muscle (D’Ercole et al., 2022). We validated these functional 
regions using immunofluorescence and histochemical assays, 
confirming the localization of various anatomical structures, 
including different fiber types, the epimysium, blood vessels, 
nerves, and the neuromuscular junction (NMJ). Furthermore, 
we were able to clearly distinguish between different types of 
myofibers using specific markers like Myh1, Myh2, and Myh4 and 
confirmed the spatial gene distribution with immunofluorescence 
staining. Building on this spatial framework, we investigated the 
molecular response of these regions to reversible denervation. Using 
a spatiotemporal approach, we tracked transcriptomic changes 
within each domain of the TA muscle 3 and 30 days following sciatic 
nerve compression. Our analysis revealed a marked dysregulation 
of the polyamine pathway specifically in the glycolytic region 3 
days post-denervation, resulting in the accumulation of putrescine. 
Moreover, changes in the expression patterns of Amd1, Amd2, 
and Smox—genes involved in the polyamine pathway—correlated 
directly with muscle atrophy. Consistently, increased expression of 
the pro-atrophic markers Atrogin-1 (Fbxo32) and Murf1 (Trim63) 
was detected in type IIB fibers of the TA muscle after denervation. 
In vitro experiments also showed that putrescine accumulation 
can induce Trim63 expression, while genetic inactivation of 
the polyamine pathway in Drosophila reduced muscle function. 
The findings of this work highlight how the atrophic signaling 
pathway and polyamine metabolism are spatially organized and 
nerve-dependent in glycolytic fibers (D’Ercole et al., 2022).

Other studies have examined muscle regeneration during aging 
or in response to volumetric muscle loss. For instance, Walter 

and colleagues generated a large-scale single-cell aging atlas of 
regenerating muscle and identified gene signatures specific to young 
aged BL6 mouse muscle-resident cells (Walter et al., 2024). Using 
the CurioSeeker platform, they explored the effect of aging on 
the accumulation of senescent-like MuSCs and progenitor cells in 
TA muscle in 5 dpi regions of young and geriatric samples. Cell 
type deconvolution revealed a higher fraction of fusing myocytes 
and FAPs in the young injured zone, and a greater abundance of 
monocytes/macrophages, T cells, and myonuclei in the geriatric 
injured zone. Furthermore, by applying a senescence-associated 
gene signature, they showed that MuSCs and progenitors exhibited 
an elevated senescence score in the geriatric injured area, whereas 
non-MuSCs showed higher scores in the non-injured zone.

Extending the use of ST to a different pathological setting, 
Larouche and colleagues utilized ST to investigate the tissue 
response to volumetric muscle loss (VML) (Larouche et al., 2023). 
VML was performed on the TA of BL6 mice using punch biopsies, 
and tissue was collected at 7 dpi. To decipher the mechanisms 
underlying regeneration, the tissue was divided into zones of 
complete muscle loss (defect zone) and remaining intact muscle 
(intact zone). By analyzing the transcript distribution across the 
intact and defect regions, they observed that macrophages and 
mesenchymal-derived cells (MDCs) preferentially infiltrated the 
damaged area, while MuSCs were retained in the intact muscle. The 
authors proposed that the absence of MuSCs from the injury site 
was caused by a hostile environment characterized by biophysical 
factors, such as matrix alterations, and the presence of pro-fibrotic 
signals. This hypothesis is supported by the colocalization of pro-
fibrotic signaling molecules, such as TGF-β, with macrophages 
and MDCs. Furthermore, pharmacological blockade of this cellular 
crosstalk, via TGF-β receptor 2 (TGFBR2) inhibition, was shown to 
promote tissue regeneration and attenuate both inflammatory and 
fibrotic processes.

ST has also been applied to investigate muscle adaptation 
and response to physiological stimuli. McLeod and collaborators 
investigated non-coding RNA (ncRNA) expression during human 
skeletal muscle hypertrophic remodeling (Mcleod et al., 2024). In 
their work McLeod and colleagues analyzed 288 transcriptome-
wide profiles and found 110 ncRNAs linked to muscle growth in 
vivo. Subsequently, they used MERSCOPE to map probes targeting 
both well-established muscle cell marker genes and ncRNAs. This 
approach enabled the identification of novel ncRNAs and chart 
their localization in the hypertrophic muscle. For example, the 
expression of MYREM (MYBPC2 cis-regulating lncRNA enhancer 
of myogenesis) was found beneath the basal lamina, but not in 
the nuclei of satellite or endothelial cells, suggesting that MYREM
could be a novel marker of mature myonuclei, particularly in 
type II fibers. This is further supported by recent data showing 
that MYREM upregulates MYBPC2, which encodes a type II 
isoform of myosin-binding protein C in skeletal muscle. In 
contrast, MEG3 was co-localized with satellite cells, aligning with 
other studies demonstrating its role in myoblast differentiation 
(McKellar et al., 2023; Dill et al., 2020). Additionally, CARMN
(cardiac mesoderm enhancer-associated non-coding RNA) was 
associated with endothelial cells and pericytes, suggesting that 
CARMN may modulate pericyte function during skeletal muscle 
growth. Collectively, these observations reveal distinct ncRNA 
localization patterns in hypertrophic muscle.
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Martínez Mir et al. (2024) studied fiber-type composition by 
combining RNA tomography (Tomo-seq) with mass spectrometry 
imaging (MSI), enabling simultaneous analysis of the ST, 
metabolomic, and lipidomic organization of mouse TA muscle. 
Notably, they examined both transverse and longitudinal 
orientations of the muscle to capture regional variation. To assess 
transcript distribution, Tomo-seq was applied to TA muscles 
from 4- to 6- month-old mice, along the proximal–distal axis. 
Unsupervised clustering identified three distinct molecularly 
defined regions: proximal, central, and distal. Proximal–distal 
regions were enriched for genes associated with glycolytic fiber 
types (Myh4, Myl1), the myotendinous junction (Prg4, Thbs4, 
Itgb1, Col1a2), and glycolytic metabolism (Pygm). In contrast, the 
central region was characterized by markers of oxidative fibers 
(Myh1, Myh2, Myl3), neuromuscular junction genes (Prkar1a, 
Chrne), and oxidative metabolism (Acadl). Gene ontology analysis 
reinforced these findings as proximal–distal regions were enriched 
in processes such as glycolysis, skeletal muscle contraction, and 
glycogen metabolism, whereas central regions showed enrichment 
in fatty acid metabolism, the tricarboxylic acid (TCA) cycle, electron 
transport chain activity, and mitochondrial ATP production. 
Together, these results show a spatial organization of fiber type 
composition along the TA muscle, with glycolytic Myh4 myofibers 
enriched at the proximal/distal ends, and oxidative Myh1/Myh2 
myofibers concentrated in the center. Using MALDI-MSI, the 
authors further mapped the spatial distribution of metabolites 
and lipids. Interestingly, they observed metabolic differences also 
between dorsal and ventral regions. To integrate these datasets, 
MSI data were binned to generate a pseudobulk mass spectrometry 
profile aligned with Tomo-seq sections. This integrated analysis 
highlighted a regional enrichment of glycolytic fibers in ventral and 
proximal–distal regions of the TA muscle, whereas oxidative fibers 
were predominantly localized dorsally and centrally.

Complementing these insights from mouse muscle, a proof-
of-concept study in humans employed the Xenium platform to 
profile the transcriptomes of type I and type II fibers in skeletal 
muscle sections from young and old patients (Umek et al., 2025). 
The histological sections stained for MyHC isoforms were manually 
aligned with the Xenium output images. This approach enabled a 
separate analysis of the transcriptomic profiles in type I and type 
II muscle fibers (Umek et al., 2025). In type I fibers, the activated 
satellite cell marker LGR5 was more expressed, consistent with 
previous reports of higher satellite cell abundance in type I compared 
with type II fibers (Leung et al., 2020). Genes involved in lipolysis 
(LPL) and ketone body production (HMGCS2) were also enriched, 
in line with the oxidative metabolism characteristic of type I fibers. 
In contrast, type II fibers showed higher expression of PVALB, 
which encodes a Ca2+-binding buffer protein predominantly found 
in fast-twitch fibers (Schwaller, 2010). Age-related differences in 
extracellular matrix (ECM) and in structural components were 
also observed. In older muscle, genes such as COL5A2 and 
DES were significantly more expressed. Collagens are critical for 
maintaining structural integrity, while desmin links myofibrils at the 
Z-discs, supporting fiber stability. These findings align with previous 
observations of increased expression of ECM and other structural 
components in aged muscle (Keele et al., 2023; Russ and Grandy, 
2011). Direct comparisons between young and old patients further 
revealed fiber type–specific transcriptomic remodeling. In younger 

patients, both type I and type II fibers upregulate genes linked to 
contractile function, calcium handling, and metabolic efficiency, 
supporting higher regenerative and functional capacity (ACTG2, 
S100A1, HMGCS2). In contrast, older fibers show enrichment 
of genes involved in structural maintenance (DES, DST), stress 
responses (MDM2), and metabolic alterations (PLIN4, GATM), 
reflecting adaptations to age-related stress and degeneration.

Overall, this study highlights fiber type–specific transcriptomic 
profiles and the molecular changes associated with aging, 
demonstrating the power of spatial profiling to dissect both 
fiber-type differences and microenvironmental changes in human 
skeletal muscle.

Moving from age-related profiling to regenerative 
dynamics, Brorson et al. (2025) investigated skeletal muscle 
regeneration in elderly humans using spatial, temporal, and single-
cell transcriptomics. Muscle injury was induced by electrically 
stimulated eccentric contractions of the vastus lateralis, with 
biopsies collected before and at 2, 8, and 30 dpi. Unsupervised 
clustering of the ST data identified 10 separate clusters: Type 1 
and 2 muscle fibers (clusters 0–1), which decreased at 8 dpi but 
recovered by 30 dpi; clusters 3–5 reflected injury-related processes 
(cytoskeleton, proteasome, and erythrocyte functions) and were 
reduced at 8 dpi; cluster 9 (vascular/perivascular) remained stable. 
Dynamic clusters 6–8 were enriched in extracellular matrix genes 
(e.g., COL1A2, POSTN), immune response genes (e.g., CD14, HLA-
DRA), and regenerative myofiber markers (e.g., DES, MYH3), 
respectively, all increased at 8 dpi with marked spatial confinement.

By integrating the ST data with previously published human 
skeletal muscle scRNA-seq (Farup et al., 2021), the authors were 
able to identify the contributions of individual cell types during 
regeneration. Early after injury (2 dpi), monocytes/macrophages, 
MuSCs, and endothelial cells peaked, indicating a rapid immune 
and stem cell activation. In contrast, FAPs, lymphocytes, and 
lymphatic endothelial cells reached their peak later, at 8 dpi, 
suggesting a sequential and coordinated cellular response. 
Colocalization analysis revealed that FAPs were closely associated 
with macrophages, MuSCs, and lymphocytes. Supporting this, 
ligand–receptor analysis uncovered extensive signaling from 
FAPs, particularly via Complement factor (C3)–ITGAX/ITGB2 
and C3–ITGAM/ITGB2 interactions with macrophages. Follow-
up in vitro experiments confirmed that human FAP-derived C3 
recruits pro-inflammatory macrophages to injury sites, supporting 
phagocytosis and subsequent muscle regeneration.

Together, these studies demonstrate how ST provides new 
insights into the skeletal muscle biology. Regeneration-focused 
works (McKellar et al., 2023; McKellar et al., 2021; Brorson et al., 
2025; Larouche et al., 2023) consistently reveal the dynamic interplay 
between MuSCs, FAPs, and immune cells showing how spatially 
confined cellular crosstalk and temporal coordination are essential 
for effective repair. Additionally, subsequent reanalysis (Young et al., 
2022) revealed unexpected role for transient senescence in 
muscle repair. In parallel, studies on non-coding RNA biology 
(McKellar et al., 2023; Mcleod et al., 2024) demonstrate the unique 
ability of spatial methods to map the localization of lncRNAs and 
microRNAs, uncovering regulators of myogenesis and hypertrophy. 
Finally, fiber-type and metabolic profiling (D’Ercole et al., 2022; 
Martínez Mir et al., 2024; Umek et al., 2025) illustrates how ST 
can resolve the molecular architecture of oxidative and glycolytic 
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regions, link metabolic pathways to fiber types, and uncover 
adaptations to aging and injury. Collectively, these works establish 
ST as a powerful tool for exploring fundamental mechanisms of 
muscle biology, especially during regeneration. 

3.2 Muscle disorders

In parallel to studying healthy and regenerating muscle, multiple 
efforts have focused on leveraging ST to better understand the 
mechanisms underlying various muscular disorders, with particular 
emphasis on Duchenne Muscular Dystrophy (DMD). DMD is 
among the most severe pediatric degenerative myopathies. It is 
caused by mutations that result in the absence of functional 
dystrophin, a key protein responsible for stabilizing the muscle fiber 
membrane. The resulting membrane fragility leads to continuous 
cycles of muscle damage followed by regeneration (Duan et al., 
2021). Different fiber types display differential sensitivity to damage, 
with type II fibers being preferentially affected compared to type I 
fibers (Webster et al., 1988). Muscle damage can occur in different 
fibers at different times, with each injury undergoing an independent 
repair process (Dadgar et al., 2014). As a result, lesions at different 
stages of regeneration coexist within the muscle. Indeed, early work 
from Dadgar et al. (2014), using laser capture microdissection, 
identified patterns consistent with asynchronous remodeling in 
DMD muscle and demonstrated that regions located in between 
asynchronous regenerative areas display aberrant fibrotic infiltration 
(Dadgar et al., 2014) This indicates that one of the contributing 
factors to DMD pathogenesis is the focal and uncoordinated 
response to injury. ST approaches have been also applied to 
other muscle-related conditions, for example, to Amyotrophic 
Lateral Sclerosis (ALS), a progressive neurodegenerative disease 
characterized by the vulnerability of both NMJs and muscles, 
particularly fast-twitch fibers (Ruggieri et al., 2025). Similarly, 
heterotopic ossification (HO), the abnormal formation of bone 
within muscle tissue triggered by trauma or genetic factors, has also 
been investigated using ST (Kan et al., 2024).

Heezen et al. (2023) applied Visium ST to investigate DMD 
pathology in muscle tissues from two dystrophic mouse models, 
mdx and D2-mdx, alongside their respective controls (C57BL10 
and DBA/2J) at 10 weeks of age (Heezen et al., 2023). Despite 
a limited sample size, their proof-of-concept study effectively 
captured the hallmark histological features of dystrophic tissue. 
Notably, they identified distinct pathological clusters, including 
regenerating fibers, regenerating fibers with localized inflammation, 
necrotic fibers infiltrated by macrophages, and regions containing 
adipocytes. In the more severely affected D2-mdx model, they also 
observed clusteres characterized by inflammation and calcification, 
as well as necrotic fibers. To identify genes associated with muscle 
regeneration, they compared regions of active regeneration with 
intact muscle regions within the same sample. The analysis revealed 
increased expression of Myl4, Sparc, and Hspg2 in regenerating 
regions from mdx, whereas in D2-mdx mice, Vim, Fn1, and Thbs4
were upregulated in fibrotic areas, while Bgn, Ctsk, and Spp1 were 
enriched in calcified regions. Next, to test if the histopathological 
changes observed in dystrophic muscle were associated with 
regional transcriptional reprogramming, the authors performed 
RNA velocity analysis on the D2-mdx. Among the top drivers of 

the transition, they identified Galectin-3 (Gal-3), mainly expressed 
in macrophages, highlighting the role of immune cells in DMD 
progression.

As multiple lines of evidence indicate, macrophage activity is 
deregulated in DMD (Dadgar et al., 2014; Villalta et al., 2009; 
Mann et al., 2011). To investigate how macrophages contribute 
to fibrosis development during disease progression, Coulis and 
colleagues combined scRNAseq and ST (Coulis et al., 2023). 
scRNA-seq was first used to characterize macrophages from 
healthy and dystrophic muscle, identifying six distinct clusters 
that did not reflect the traditional M1 or M2 macrophage 
classifications. In dystrophic muscle, the predominant macrophage 
population was Gal-3+ macrophages, which expressed several 
profibrotic factors, including Spp1, as previously reported 
by Heezen (Heezen et al., 2023). The authors then performed ST 
on the gastrocnemius/plantaris muscle of 6-week-old D2-mdx 
mice and identified areas with high Gal-3 expression overlapping 
with degenerative lesions. Differential gene expression analysis 
between Gal-3+ and Gal-3− -areas revealed high expression of 
fibrosis related genes (Mmp12, Fn1, Postn, Tgfβ, Pdgfr). Further 
immunofluorescence analysis confirmed PDGFRα+ stromal cells 
in the degenerative regions alongside with Gal-3+ macrophages. 
SnRNA-seq reference data and in vitro analysis further suggested 
that Gal-3+ macrophages may interact with FAPs in dystrophic 
muscle via Spp1 pathway both in mouse and DMD patient samples. 
These results identify Spp1 as a potential regulator of Gal-3+ 
macrophage and FAP interaction.

In a complementary approach, Patsalos et al. (2024) generated an 
immune-specific single-cell and ST datasets of regenerating muscle 
after acute injury and during early dystrophy, providing detailed 
spatial annotation of myeloid subpopulations with enhanced 
subspot resolution (Patsalos et al., 2024). They performed parallel 
CD45+ scRNA-seq and ST on the gastrocnemius muscle of 2-month-
old D2-mdx mice. Their analysis identified several distinct subsets 
of monocytes, macrophages (MFs), and dendritic cells (DCs) and 
identified a set of colocalizing cell types during the regenerative 
inflammation phase.

Glucocorticoids (GC) are commonly used to treat DMD 
to delay disease progression, although long-term daily use is 
limited by serious side effects (e.g., bone demineralization and 
muscle atrophy) (Quattrocelli et al., 2017). To explore the response 
of the immune cells to therapeutic modulation, the authors next 
investigated the effects of intermittent GC treatment in young 
D2-mdx mice. In untreated dystrophic muscle, they identified 
distinct regenerative inflammation zones (RIZs) with a layered 
structure: proinflammatory macrophages surrounding necrotic 
fibers, resolution-related macrophages forming a barrier, and 
regenerating muscle fibers at the periphery. Prednisolone treatment 
disrupted this organization, notably eliminating the regenerating 
outer layer and causing an overlap between inflammatory and 
resolving macrophage layers. This disorganization could potentially 
impact the ability to regenerate extensive lesions. Additionally, 
they observed increased spatial expression of GC receptor targets 
and atrophy-associated genes alongside reduced expression of 
inflammatory, ECM, and regenerative genes. The identification of 
distinct damage-clearing RIZs in early dystrophic muscle offers 
a valuable means to monitor disease progression and evaluate 
therapeutic responses. Moreover, it may guide the development of 
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strategies to preserve regenerative niches in DMD and potentially 
other chronic inflammatory diseases.

Recently, Jeon et al. (2025) investigated the pathogenic 
features of DMD and BMD Becker Muscular Dystrophy, as well 
as the palliative effects of glucocorticoid treatment, using an 
integrated snRNA-seq and ST approach (Jeon et al., 2025). They 
performed snRNA-seq on both DMD and BMD patient samples 
and conducted ST profiling on matched muscle biopsies from 
DMD patients only. Using the Cell2Location, they identified spatial 
co-localization patterns between satellite cells, myeloid cells, and 
lymphoid cells within the dystrophic muscle microenvironment. 
Furthermore, comparative analysis between DMD and BMD 
samples revealed elevated EZH2 expression in proliferating 
satellite cells. Pharmacological inhibition of EZH2 promoted 
muscle regeneration by enhancing myogenic differentiation. In 
vivo, D2-mdx mice were treated with EZH2 inhibitors (GSK126 
and tazemetostat), either alone or in combination with the 
glucocorticoid deflazacort. Their results demonstrated that EZH2 
inhibition not only improved the dystrophic muscle phenotype 
but also attenuated the adverse effects typically associated with 
deflazacort therapy.

Additional insights into the inflammatory process in DMD 
were provided by the work of Stec et al. (2023), which analyzed 
muscles from 6-week old WT and D2-mdx mice using ST 
(Visium). Their analysis focused on clusters present in the 
D2-mdx dataset, including two distinct immune clusters, one 
encompassing regenerating myofibers, and a hybrid one expressing 
both myofiber and immune-related genes (Stec et al., 2023). The 
first immune cluster (Immune 1) was enriched for genes linked to 
granulocyte/neutrophil migration, along with myofiber contractile 
proteins, suggesting active damage and early regeneration. The 
second Immune cluster (Immune 2) showed the presence of 
antigen-presenting cell (APC) and extracellular matrix genes, 
pointing to a more intermediate regenerative phase. Histological 
analysis supported these findings showing that the first immune 
cluster areas contained damaged myofibers with invading cells and 
proinflammatory macrophages, while the other had fewer myofibers 
and abundant macrophages, but lacked anti-inflammatory 
macrophages. In contrast, regenerating fiber clusters showed new 
myofibers surrounded by fewer immune cells. In undamaged 
type IIB myofiber regions of D2-mdx mice, the authors observed 
upregulation of immune and fibrotic gene pathways compared to 
healthy muscles. Furthermore, neighborhood enrichment analysis 
revealed a spatial association between Immune regenerative cluster 
and clusters enriched for mesenchymal stromal progenitor cells. 
In contrast, the more inflammatory Immune clusters were found 
adjacent to fiber clusters expressing inflammation-associated genes. 
This spatial expansion of fibrotic and immune signals propagates 
beyond the primary lesion, contributing to the amplification of 
pathology throughout the muscle.

While multiple studies focused on immune and fibrotic 
processes in DMD, ST approaches have been also applied to other 
muscle-related conditions. For example, following up our initial 
work on denervation we investigated how altered innervation 
interferes with muscle homeostasis in ALS, (Amyotrophic Lateral 
Sclerosis) a progressive neurodegenerative disease characterized by 
the vulnerability of both NMJs and muscles, particularly fast-twitch 
fibers (D’Ercole et al., 2022). To investigate the spatial dynamics of 

muscle degeneration during disease progression, we analyzed TA 
muscle from the SOD1G93A ALS mouse model at early and late 
disease stages using the Visium platform (Ruggieri et al., 2025). 
Similarly to what we found in our previous work we identified 
10 major clusters defined by canonical markers. Among these, 
glycolytic type IIB myofibers—known to be especially susceptible to 
disrupted innervation in ALS, exhibited pronounced transcriptional 
changes. In contrast type IIA-IIX fibers displayed an increased 
energy demand but also signs of impaired mitochondrial functions. 
Notably, the enhanced atrophy observed in type IIB myofibers was 
associated with dysregulation of the polyamine pathway. Restoring 
polyamine homeostasis in ALS mice rescued the muscle phenotype, 
highlighting the therapeutic potential of targeting this pathway.

Similarly, heterotopic ossification (HO), the abnormal formation 
of bone within muscle tissue triggered by trauma or genetic factors 
(Dey et al., 2017), has also been investigated using combined scRNA-
seq and ST methods. Kan and colleagues analyzed uninjured and 
injured tibial muscles at 1, 3 and 7 dpi from the Nse-Bmp4 mice 
(neuron specific enolase, bone morphogenetic protein 4), a genetic 
model of HO (Kan et al., 2024). As hyperactive inflammation is 
a well-known driver of abnormal tissue repair during HO, the 
authors aimed to investigate the interactions between immune 
cells and mesenchymal stem cells (MSCs). Clustering the ST data 
identified distinct regions in the injured muscle enriched for both 
MSC and immune cell markers. Cell-to-cell interaction analysis 
showed that the immune microenvironment, especially macrophage 
subtypes (M1 and M2), regulates MSCs behavior. M1 macrophages 
promote MSCs proliferation, while M2 macrophages support 
differentiation. Indeed, quiescent MSCs were mainly localized in 
uninjured tissue, while cycling MSCs accumulated within lesions 
at 1 and 3 dpi, followed by differentiating MSCs at later stages. 
Monocytes/macrophages were found to co-localize with cycling and 
differentiating MSCs. Lastly, the authors identified STAT signaling, 
CD44, and OSM-OSMR pathways as key molecular regulators of 
MSC transition. These findings shed light on how the immune 
microenvironment drives MSCs transitions during HO, highlighting 
potential therapeutic targets to control aberrant bone formation.

Together, these studies demonstrate how ST has changed our 
understanding of muscle pathology. Heezen et al. (2023) demonstrated 
the ability of ST to resolve hallmark histopathological features in mdx 
and D2-mdx mice, identifying regenerating, necrotic, fibrotic, and 
calcified regions, and implicating Galectin-3–expressing macrophages 
in disease progression. Coulis extended these findings by combining 
scRNA-seq and ST to show that Gal-3+ macrophages interact with 
FAPs via Spp1, driving fibrosis (Coulis et al., 2023). The work from 
Patsalos (Patsalos et al., 2024) generated immune-focused scRNA-seq 
and ST datasets, defining distinct macrophage and dendritic cell 
subsets within regenerative inflammation zones and showing how 
glucocorticoids disrupt their organization. Jeon and collaborators 
(Jeon et al., 2025) integrated snRNA-seq and ST in human DMD 
and BMD samples, identifying spatial proximity between satellite 
and immune cells, and highlighting EZH2 as a therapeutic target. 
Complementing these immune-focused studies, Stec mapped immune 
and stromal interactions in D2-mdx muscle, showing how fibrotic 
signals expand beyond lesions and propagate pathology (Stec et al., 
2023). In addition to DMD, applications in ALS and heterotopic 
ossification highlight the broader utility of ST in uncovering fiber 
type–specific vulnerabilities and immune–mesenchymal crosstalk 
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during aberrant tissue remodeling. However, the potential applications 
of ST can extend beyond regeneration and degeneration processes. 
As discussed, type I (oxidative) and type II (glycolytic) fibers differ 
in their metabolic properties, which influences their susceptibility to 
different pathological features. For example, in metabolic diseases,
type I fibers are more prone to intracellular lipid 
accumulation (Umek et al., 2021). ST enables studying the correlation 
of fiber type identity with local pathological changes, including fibrosis, 
inflammatory cell infiltration or lipid accumulation. Applying ST could 
therefore help to uncover how specific fiber types contribute to disease 
progression. By capturing the spatial organization of cellular niches, 
ST not only refines our view of disease mechanisms but also provides a 
framework for evaluating therapies and identifying new intervention 
points across muscular disorders. 

4 Current limitations and future 
perspectives

ST technologies face several limitations that impact their 
efficiency and applicability, particularly in relation to transcript 
capture efficiency, sample quality, and preparation. These technical 
constraints can significantly influence both the resolution and 
interpretability of ST data. A primary challenge is RNA capture 
efficiency. While in situ imaging-based approaches can localize 
hundreds to thousands of genes, they do not provide full 
transcriptome coverage. Array-based techniques offer the potential 
for comprehensive sequencing, but capture efficiency remains a 
constraint, limiting transcript detection. This issue affects the 
depth and coverage compared to bulk transcriptomics, making 
it difficult to identify low-abundance transcripts. Furthermore, 
implementing ST is considerably more expensive than traditional 
bulk RNA sequencing. The increased costs are attributed to the 
need for specialized equipment and reagents, the complexity of 
sample preparation, and the extensive data analysis required. 
These factors collectively make ST more costly than conventional 
transcriptomic methods, thus limiting broad access to this 
technology (Vandereyken et al., 2023). Another critical limitation 
regarding transcript coverage is that several ST techniques rely on 
probes to capture or hybridize RNA transcripts. As a result, the data 
may show biases in the representation of certain RNA species, as 
their accurate detection relies on probe efficiency (Du et al., 2023).

As with many other techniques, an additional challenge lies in 
the collection and preservation of tissue samples, especially with 
human biopsies. This issue is particularly evident when collecting 
samples from healthy individuals, which are typically less accessible 
than those from individuals with pathological conditions. It is 
also challenging to collect samples from the same muscle type, or 
ideally the same anatomical region. The collection site is critical, 
as muscle function, workload and anatomical location influence 
fiber metabolism, which in turn affects gene expression, activation 
of cellular pathways, and overall responses to disease. Another 
major challenge is assembling a sufficiently homogeneous cohort of 
patients with similar age, sex, or pathological history. The complexity 
of sample preparation further adds to these difficulties. The process 
includes multiple steps, from tissue harvesting to cryosectioning, 
depending on the specific requirements of the chosen method. For 
muscle tissue, in particular, the freezing and storage steps are critical 

to ensure high tissue quality and, consequently, to produce accurate 
spatial maps during the analysis phase. FFPE tissues generally yield 
lower-quality RNA and DNA compared to FF samples (Yi et al., 
2020). Formalin fixation induces nucleic acid fragmentation, protein 
cross-linking, and chemical modifications, compromising their 
integrity and suitability for downstream applications such as PCR 
and sequencing. In contrast, fresh frozen tissues better preserve 
nucleic acids by preventing enzymatic degradation, making them 
the preferred choice for molecular analyses where high-quality RNA 
and DNA are required (Steiert et al., 2023).

Furthermore, even after a successful experimental run, 
additional issues may arise during the analysis as the overall 
size of data generated demands substantial computational power 
and storage. Moreover, the analytical workflow demands both 
a deep understanding of cellular and tissue biology and the 
application of sophisticated statistical models. As the field is still 
relatively young, standardized protocols and benchmarks are 
under active development. Consequently, strong collaboration 
between computational and experimental researchers is essential, 
an approach that can be challenging to implement in laboratories 
lacking dedicated bioinformatics expertise. Despite these challenges, 
ongoing advancements in ST are focused on improving sensitivity, 
spatial resolution, and cost-effectiveness, broadening its applicability 
in research and clinical diagnostics.

Future techniques should aim to integrate ST with 
complementary omics technologies, such as proteomics, 
epigenomics, and metabolomics, to provide a more comprehensive 
view of cellular function. For example, as discussed in Section 3.1 
Healthy and regenerating muscle, Martínez Mir et al. (2024) 
combined two spatial omics approaches: RNA tomography 
(Tomo-seq) and matrix-assisted laser desorption/ionization mass 
spectrometry imaging (MALDI-MSI). MALDI-MSI enables spatial 
detection of metabolites and lipids, while Tomo-seq was used 
to identify fiber types and perform differential gene expression 
analysis. To integrate the datasets, the MALDI-MSI data was 
binned to generate a pseudobulk metabolomics profile along 
the proximal–distal axis, parallel to the Tomo-seq sections. This 
alignment allowed metabolites from MALDI-MSI to be directly 
compared with gene expression profiles from Tomo-seq, enabling 
correlation analyses that link transcriptomics with local metabolic 
states of myofibers.

A similar multiomics approach could be applied to study muscle 
degeneration by integrating ST with proteomics. To date, this 
has not been extensively explored in the field of neuromuscular 
diseases or muscle regeneration. However, Gouin and colleagues 
demonstrated the potential of such approach by combining ST 
with spatial proteomics to analyze tissue samples from patients 
with high-grade muscle-invasive bladder cancer (Gouin et al., 
2021). In their study, ST was the primary analytical focus, while 
spatial proteomic data were used to validate transcriptomic findings. 
To further confirm cell co-localization at single-cell resolution, 
they performed a 35-plex immunohistochemistry panel using the 
Co-detection by Indexing (CODEX) platform on tumor tissue 
microarrays from the same patient cohort. Importantly, proteomics 
provides an additional validation to ST, since transcriptomic data 
alone cannot determine which genes are ultimately translated into 
proteins and thus functionally active.
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5 Conclusion

The integration of ST into skeletal muscle research marks 
an important advancement in our ability to study tissue 
architecture alongside gene expression. As the field evolves, 
innovations in resolution, sensitivity, protocols, and commercial 
platforms are reshaping our understanding of tissue biology 
- particularly in skeletal muscle, where spatial context is 
essential to characterize regeneration, fiber-type distribution, 
inflammatory microenvironments, and their contributions to 
disease mechanisms. Recent studies applying ST to DMD—and 
more broadly in the entire muscle field—clearly illustrate this 
potential. By leveraging ST and single-cell technologies, researchers 
have identified gene expression patterns and cell populations 
that drive regeneration, mediate inflammatory and fibrotic 
signaling from damaged muscle areas, or contribute directly to 
disease progression. Ultimately, these findings highlight how 
surveying gene expression within specific microenvironments 
can reveal novel therapeutic pathways, emphasizing the potential 
impact of spatially resolved transcriptomics in translational
research.

Despite these advances, important challenges remain. The lack 
of standardized protocols and benchmarks complicates cross-
study comparisons and limits reproducibility, emphasizing the 
need to harmonize analytical workflows as ST moves toward 
clinical applications. New computational strategies, including AI 
(Artificial Intelligence) and multiomic integration, can address the 
analytical demands of increasingly large and complex datasets. 
Additionally, constructing spatial reference atlases of healthy 
tissues will provide critical baselines for mapping disease-
associated changes. As ST platforms continue to improve in 
accessibility and cost, the technology promises to transform not 
only our understanding of muscle biology, but also to pave the 
way for faster, more accurate diagnosis and novel therapeutic
S strategies.
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