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Tumor-derived extracellular vesicles (TEVs) are increasingly recognized as 
key mediators of intercellular communication between cancer cells and 
their environment, a process crucial for tumor progression. TEVs can act 
locally on neighboring cells or travel long distances to impact remote 
tissues, thereby promoting tumor growth, cell invasion, pre-metastatic niche 
formation, and ultimately, metastasis. Despite significant insights into the 
molecular mechanisms by which TEVs shape the tumor microenvironment 
(TME) and induce pro-metastatic effects in recipient cells, many questions 
remain unanswered. Recent studies suggest that caveolae, invaginations of 
the plasma membrane with critical roles in cellular mechanics, may play an 
important role in TEV-mediated metastatic trait acquisition by cancer cells. The 
presence of caveolin-1 (Cav1) in EVs supports its involvement in EV dynamics, 
including biogenesis, secretion and uptake by recipient cells. Further research 
into the role of Cav1 in EV-mediated cancer progression could pave the way for 
improved diagnostic tools and novel therapeutic strategies in cancer treatment.
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 1 Introduction

Cancer remains the second leading cause of mortality worldwide, accounting for nearly 
nine million deaths per year (WHO). The cancerous process starts with the acquisition of 
hallmark features, primarily genetic mutations in cells, which may be initiated by carcinogen 
exposure or inherited. These mutations alter the normal functions of the genes responsible 
for regulating cell growth, division, and other essential cellular processes, disrupting the 
balance between cell proliferation and cell death. Uncontrolled cell division and rapid 
proliferation of mutated cells mark the initial stage of cancer, resulting in the formation of 
a primary tumor. As cancer progresses, some cells break away from the primary tumor in a 
process known as metastasis, enabling them to colonize neighboring tissues and organs. 
These cancer cells migrate through blood or lymphatic vessels, eventually establishing 
secondary tumors in distant parts of the body (Castaneda et al., 2022). The unique ability 
of cancer cells to metastasize represents one of the greatest challenges in cancer treatment 
and significantly impacts patient prognosis. Understanding the different stages of cancer
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progression is essential for developing early detection methods, 
effective treatments, and improving recovery outcomes for patients.

Tumor extracellular vesicles (TEVs) have emerged as key players 
in multiple stages of cancer progression. Extracellular vesicles 
(EVs) are small, membrane-bound particles released by various 
cell types, offering valuable insight into the intricate mechanisms 
driving cancer progression. TEVs act as intercellular messengers, 
delivering selective cargo capable of influencing tumor growth, 
metastasis, immune escape, and treatment resistance (Kalluri and 
McAndrews, 2023).

In this review, we delve into the role of tumor-derived EVs in 
cancer progression. We describe how these nanoscopic messengers 
contribute to tumor growth and dissemination and highlight their 
potential as biomarkers for early diagnosis and as therapeutic 
targets. Furthermore, we shed light on the involvement of the 
caveolar protein caveolin-1 in EV biology, including its role in EV 
biogenesis, uptake, and impact on recipient cells from a cancer-
specific perspective. 

2 Extracellular vesicles

In 1967, Peter Wolf and, in 1968, H. Clarke Anderson published 
the first electron micrographs of EVs, revealing the presence of 
small particles outside the cell. They referred to these particles as 
platelet dust and matrix vesicles, respectively (Anderson, 1969; Wolf, 
1967). Following this discovery, extensive research was conducted 
to characterize the functionality of these vesicles. For the next 
3 decades however, EVs were largely considered a cellular disposal 
system, primarily responsible for discarding unwanted material 
(Johnstone et al., 1991). This simplistic view changed drastically in 
1996 with the first functional description of EVs produced from 
immune cells. EVs were found to carry MHC class II molecules, 
endowing them with the capacity to present antigens to immune 
cells and activate immune responses (Raposo et al., 1996). This 
seminal study highlighted the functional significance of EVs in 
various biological processes, including their role in pathological 
conditions. This study sparked a renewed interest in EV research, 
leading to a wealth of information about the diverse subtypes of EVs, 
their composition, cargo, and their physiological roles in both health 
and disease. 

2.1 EV subtypes

EVs are highly heterogeneous, and their classification remains 
a sensitive and evolving subject requiring careful consideration. 
Historically, EVs were categorized based on their size, with small 
EVs measuring less than 200 nm and large EVs exceeding 200 nm. 
Another widely used classification relies on their biogenesis pathway. 
Exosomes are EVs that originate intracellularly from a specialized 
subset of endosomes, known as multivesicular bodies (MVBs), 
which contain intraluminal vesicles (ILVs). The fusion of MVBs with 
the plasma membrane (PM) allows the release of exosomes into the 
extracellular milieu. In contrast, ectosomes are formed by outward 
budding directly from the PM. Additionally, specific subpopulations 
of EVs are produced during the onset of distinct cellular processes, 
including apoptotic bodies, migrasomes, protrusion-derived EVs, 

and midbody remnants (van Niel et al., 2018). The Minimal 
Information for Studies of Extracellular Vesicles (MISEV) 2023 
guidelines recommend using the generic term “EV” along with 
operational descriptors (e.g., 100 k g pellet) rather than relying on 
terms like “exosomes” and “ectosomes”. These traditional terms 
suggest a specific origin of biogenesis, which can be inconsistently 
defined and potentially misleading unless the subcellular origin is 
definitively demonstrated (Théry et al., 2018). 

2.2 EV biogenesis

The biogenesis of EVs can be broadly categorized according 
to the dependence or not on the endosomal sorting complexes 
required for transport (ESCRT) protein machinery. The ESCRT-
dependent pathway begins with the recognition and recruitment of 
ubiquitinated cargo proteins by the ESCRT-0 complex, composed 
of two subunits, HRS and STAM, which contain ubiquitin-
binding domains. These proteins facilitate cargo clustering at 
the early endosomal membrane (Migliano et al., 2022; Raiborg 
and Stenmark, 2009). Next, ESCRT-I is recruited by ESCRT-0 
(Hurley and Hanson, 2010), further clustering the ubiquitinated 
cargo and acting as a bridge between ESCRT-0 and ESCRT-II 
(Carlton and Martin-Serrano, 2007; Katzmann et al., 2001). ESCRT-
II, which also contains ubiquitin-binding domains, stabilizes the 
ESCRT-III complex, responsible for membrane constriction and 
scission (Alam et al., 2004). The ESCRT-III complex drives 
membrane scission and ILV formation while recruiting accessory 
proteins that catalyze the disassembly of the complex (Hurley and 
Hanson, 2010; Wollert et al., 2009).

MVBs can also form independently of ESCRT proteins. 
Ceramide, a bioactive lipid, can drive the formation of lipid 
microdomains with spherical membrane curvature, leading to 
inward budding and ILV formation (Trajkovic et al., 2008). Another 
pathway in MVB biogenesis involves tetraspanins, such as CD63, 
CD81, and CD9, which are protein scaffolds embedded in EV 
membranes and involved in ILV cargo sorting and biogenesis 
(Guix et al., 2017; van Niel et al., 2011).

The biogenesis of ectosomes share similarities with exosome 
formation, including the involvement of the ESCRT machinery 
and tetraspanins for smaller ectosomes that precipitate at the same 
speed as exosomes. However, ectosomes vary in size (100 nm to 
over 1 μm), and their biogenesis mechanisms are more diverse. 
The formation of large ectosomes remains poorly understood 
but is thought to involve actin cytoskeleton rearrangements, 
membrane blebbing, and subsequent fission of the bleb
(Di Vizio et al., 2009).

The composition of EVs often mirrors the physiological and 
pathological state of their parental cells. EV cargo can reflect external 
stimuli, such as nutrient availability, oxygen levels, and physical cues, 
as well as internal changes, including altered metabolism, autophagy, 
senescence, and oxidative stress (Dixson et al., 2023). EVs transport 
a wide array of biologically active molecules, including metabolites, 
proteins, lipids, genetic material (e.g., RNA and DNA). Protein 
cargo is typically loaded into EVs by the ESCRT machinery, 
while RNA-binding proteins assist in RNA loading. The lipid 
composition of EVs varies depending on their subcellular origin
(Lee et al., 2024). 
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2.3 EV secretion and uptake

In the case of MVBs, the successful secretion of exosomes 
involves additional machineries beyond the ESCRT complexes. The 
fusion of endosomes with the PM and the subsequent release of 
exosomes occurs through a multistep GTPase-switching process. 
This involves the sequential endosomal recruitment of small 
GTPases, including Rab7, followed by Arl8b and Rab27, before 
fusion with the PM (Verweij et al., 2022). SNARE proteins also play 
a critical role in mediating MVB-PM fusion. Specifically, syntaxin-
4, SNAP-23, and VAMP-7 are essential for this process, as their 
deletion impairs MVB fusion and EV secretion (Liu et al., 2023).

The biological outcomes of EV-mediated communication 
between cells largely depend on the efficient uptake of EVs by 
recipient cells. This complex process involves multiple pathways and 
sequential steps, starting with EV docking at the PM (Russell et al., 
2019). Tetraspanins, which are abundant in EVs, interact with 
various receptors on recipient cells, facilitating EV binding, uptake, 
and targeted delivery to specific cells or tissues (Morelli et al., 
2004; Rana et al., 2012). Additionally, integrins present on EVs 
and recipient cells contribute EV-PM binding. Inhibition of 
integrin binding can disrupt EV adhesion and subsequent uptake 
(Altei et al., 2020; Hoshino et al., 2015).

After docking at the PM, EVs can deliver their cargo through 
two primary mechanisms. First, EVs may directly fuse with the 
recipient cell membrane, merging their lipid bilayers and releasing 
their contents into the cytoplasm. This fusion process relies on 
interactions between membrane outer leaflets and the participation 
of fusogenic proteins, including SNAREs and Rab proteins, located 
on both EVs and recipient cell membranes. Second, EVs can 
be internalized via various endocytic pathways, leading to their 
encapsulation in endosomes. Once inside endosomes, EVs may 
fuse with the endosomal membrane to release their cargo into 
the cytoplasm (Mulcahy et al., 2014). Several endocytic pathways 
can be used when direct fusion does not occur. These include 
phagocytosis, macropinocytosis, clathrin-mediated endocytosis, 
and Cav1/caveolae-mediated endocytosis (Delenclos et al., 2017). 
Each pathway contributes to the cellular uptake of EVs, highlighting 
the complexity and adaptability of EV-mediated intercellular 
communication. The role of these endocytic pathways in the 
selective activity of internalized EVs remains poorly understood. 

2.4 EVs in cancer

In cancer, both direct and indirect communication between 
healthy and tumor cells play pivotal roles in determining cancer 
progression. Indirect communication mediated by EVs has been 
implicated in multiple aspects of oncogenesis, tumor progression 
and metastasis.

Oncogenic mutations in healthy cells, a hallmark of cancer 
initiation, can alter the secretion patterns and cargo composition 
of released TEVs. These EVs often carry oncogenic molecules such 
as proteins and miRNAs that promote proliferation in recipient 
cells or suppress anti-tumor responses (Bebelman et al., 2018). In 
both autocrine and paracrine manners, TEVs can activate signaling 
pathways that sustain proliferation, enable evasion from apoptosis, 
and enhance metastatic phenotypes (Semeradtova et al., 2025; 

Wang et al., 2020). Upon uptake by recipient cells, TEVs can 
drive invasive behaviors, including increased migration, invasion 
and invadopodia formation (Figure 1, panel A) (Liguori and Kralj-
Iglič, 2023).

TEVs also play a crucial role in immune evasion. Tumor cells 
release TEVs carrying immunosuppressive molecules such as PD-
L1, FasL, Trail, and immunoregulatory miRNAs. These components 
suppress the activity of immune cell, including T cells, dendritic 
cells, MDSCs, macrophages, and natural killer cells, impairing the 
body’s ability to mount an effective anti-tumor response (Figure 1, 
panel B) (Cai et al., 2019; Lopatina et al., 2022; Wei et al., 2023).

Additionally, TEVs modulate the tumor microenvironment 
(TME) by transporting extracellular matrix (ECM) components 
and ECM modifying enzymes. These cargoes reshape the TME, 
promote angiogenesis, activate survival signaling pathways, and 
stimulate migration and invasion of cancer cells (Nawaz et al., 2018; 
Patel et al., 2024). Beyond local remodeling, TEVs can also prepare 
distant organs for metastasis by establishing pre-metastatic niches, 
making them more susceptible to colonization by migrating cancer 
cells. This selective organotropism may explain why certain cancer 
types preferentially metastasize to specific organs (Figure 1, panel C) 
(Ghoroghi et al., 2021; Nguyen et al., 2022).

TEVs also hold great promise as non-invasive diagnostic and 
prognostic tools. They carry protein, DNA and RNA biomarkers that 
reflect the state of their parental tumor cells. TEVs can be detected 
in bodily fluids, making them accessible through liquid biopsy 
techniques, such as mass spectrometry, enabling non-invasive 
detection and characterization. Their specific biomarkers provide 
valuable insights into the presence, progression, and treatment 
response of various cancers, thereby facilitating early detection, 
monitoring, and the possibility of tailored therapeutic strategies 
(Figure 1, panel D) (Hinestrosa et al., 2022).

Interestingly, the sheer quantity of EVs released by cancer cells 
can itself serve as an indicator of oncogenic activity. Cancer cells 
are known to release EVs in significantly higher quantities than 
healthy cells, increasing their concentration in bodily fluids like 
plasma (Figure 1, panel D) (Kharmate et al., 2016; Logozzi et al., 
2009; Riches et al., 2014). This increased secretion reflects the 
abnormal cellular environment of tumors, driven by factors such as 
mechanical stress from dense TME packing, metabolic starvation, 
autophagy, acidic pH, and hypoxic conditions (Logozzi et al., 2009; 
Patwardhan et al., 2021; Wang X. et al., 2023; Wang Z. et al., 2019).

In the broader context of TEV’s role in cancer progression, 
caveolin-1 (Cav1) the primary component of caveolae, has emerged 
as a key focus of interest. Cav1 is involved in EV biogenesis, 
cargo selection, and the pro-tumorigenic effects mediated by TEVs. 
However, the precise mechanisms by which Cav1 contributes to 
cancer progression through TEVs remain to be fully elucidated. 

3 Caveolae

3.1 Structure and composition

Caveolae are small, typically 50–100 nm in diameter, cup-
shaped invaginations visible on the cytoplasmic face of the plasma 
membrane through electron microscopy. Present in most cell 
types, they play essential roles in cellular processes such as 

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1656953
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Kailasam Mani et al. 10.3389/fcell.2025.1656953

FIGURE 1
EVs in cancer. Schematic representation of the challenges and opportunities of EV in cancer. (A) Cancer patients exhibit increased levels of EVs in 
biofluids such as blood, plasma and cerebrospinal fluid, with a distinct cargo from healthy EVs. (B) EVs are able to modulate the tumor 
microenvironment locally by modifying their ECM and distally by travelling to other organs and establishing pre-metastatic niches. (C) EVs can exert an 
immunosuppressive effect on immune cells by blocking their functions or inducing apoptosis. (D) Tumor EVs are able to confer metastatic traits to 
non-cancerous cells, including increased migration, invasion and invadopodia formation.

signal transduction, lipid regulation, and mechanical response. 
Caveolae are highly enriched in cholesterol, sphingolipids, and 
glycosphingolipids, which contribute to their structural integrity 
and functional properties (Del Pozo et al., 2021; Lamaze et al., 2017; 
Parton, 2018). Structurally, caveolae are characterized by a protein 
coat primarily composed of caveolins (caveolin-1, caveolin-2, 
caveolin-3) and cavins (cavin-1, cavin-2, cavin-3, cavin-4). Among 
these, caveolin-1 (Cav1) and cavin-1 are indispensable for caveolae 
biogenesis. Cav1 serves as a scaffold that binds cholesterol and 
lipids while cavin proteins form a coat complex on the cytoplasmic 
surface, stabilizing the structure and contributing to membrane 
curvature (Kozlov and Taraska, 2023; Parton et al., 2021). Additional 
accessory proteins, including members of the EHD and pacsin 
families, contribute to caveolae stability and dynamics (Ludwig et al., 

2013; Ludwig et al., 2016; Morén et al., 2012; Seemann et al., 2017; 
Senju et al., 2011; Stoeber et al., 2012; Yeow et al., 2017).

Caveolin-1, a highly conserved protein of approximately 22 kDa, 
exists in two isoforms: caveolin-1α and caveolin-1β (Fujimoto et al., 
2000). Both isoforms are derived from the CAV1 gene through 
alternative translation initiation and differ by a short N-terminal 
segment present in caveolin-1α. Cav1 consists of three main regions: 
the N-terminal domain, the central hydrophobic domain, and the 
C-terminal domain (Root et al., 2019; Spisni et al., 2005). The 
N-terminal domain includes two key regions: the oligomerization 
domain (residues 61–101) and the scaffolding domain (residues 
82–101). The oligomerization domain is required for Cav1 self-
oligomerization into homo-oligomers and hetero-oligomerization 
with caveolin-2, essential for caveolae structural integrity. The 
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caveolin scaffolding domain (CSD) has been proposed to interact 
with various signaling molecules, including G-proteins, Src family 
kinases, and endothelial nitric oxide synthase (eNOS) (Couet et al., 
1997). The central hydrophobic domain (residues 102–134) is rich 
in cholesterol-interacting residues and stabilize caveolae within lipid 
nanodomains of the plasma membrane enriched in cholesterol and 
sphingolipids. Recent cryo-electron microscopy (cryo-EM) studies 
reveal that Cav1 assembles into an 8S complex composed of 11 Cav1 
protomers arranged in a tightly packed disc with a flat, membrane-
embedded surface (Han et al., 2023; Kenworthy, 2023; Ohi and 
Kenworthy, 2022; Porta et al., 2022). The oligomerization domain, 
located at the outer rim of the disc, contributes to extensive subunit 
interactions, while the signature motif forms tight contacts with 
two neighboring protomers, and the scaffolding domain encircles 
the periphery of the complex. The C-terminal domain (residues 
135–178) remains cytoplasmic and contains multiple palmitoylation 
sites. Caveolin-1 has been shown to be palmitoylated at three 
cysteine residues located in the C-terminal domain. However, 
mutation of these cysteines to serines did not affect proper 
trafficking of Cav1 to the membrane indicating that palmitoylation 
may have only a limited impact on the caveolin fold. 

3.2 Metastable structures at the plasma 
membrane

Caveolae at the plasma membrane are metastable structures 
that exist in a dynamic equilibrium, allowing them to rapidly 
respond to mechanical, biochemical, and environmental stimuli. 
This metastability is driven by the unique structural organization 
of caveolin and cavin proteins, interactions with plasma membrane 
lipids, and their ability to undergo reversible conformational 
changes in response to cellular environment changes, including 
mechanical cues and specific signaling pathways (Kenworthy, 2023; 
Lamaze et al., 2017; Lundmark et al., 2024; Ocket and Matthaeus, 
2024; Parton, 2018; Parton et al., 2020; Sinha et al., 2011). In 
endothelial cells, caveolae respond dynamically to shear stress 
from blood flow, resulting in Cav1 phosphorylation at Tyr14 
and the activation of signaling pathways that promote nitric 
oxide production, cytoskeletal reorganization, and adaptive cellular 
responses to maintain vascular homeostasis (Cheng et al., 2015; 
Rizzo et al., 2003). In adipocytes, caveolae play essential roles in lipid 
storage and metabolism (Pilch and Liu, 2011).

An essential feature of caveolae is their ability to respond to 
diverse types of stress including mechanical tension, UV radiation, 
and oxidative stress. Under increase of membrane tension by 
osmotic swelling, stretching or shear stress, caveolae rapidly flatten 
out, buffering membrane tension and preventing cell membrane 
rupture (Cheng et al., 2015; Sinha et al., 2011). In doing so, 
caveolae release their coat proteins, in the cytosol, some of which 
have been reported to affect downstream signaling pathways, 
thereby attributing a unique role to caveolae as mechanosensors 
and mechanotransducers (Nassoy and Lamaze, 2012; Parton and 
del Pozo, 2013). For example, mechanical stress causes EHD2 
to detach from the neck of caveolae, undergo SUMOylation, 
and translocate to the nucleus to regulate gene transcription, 
including those encoding caveolae components (Torrino et al., 
2018). Similarly, UV exposure releases Cavin-3 from caveolae, 

which interacts with and inhibit PP1α, leading to increased H2AX 
phosphorylation and apoptosis (McMahon et al., 2019). Caveolins 
can also exist outside of caveolae as scaffolds (Khater et al., 2019a; 
Khater, et al., 2019b; Pol et al., 2020). A recent study reveals that 
caveolae can disassemble into smaller scaffolds under mechanical 
stress, exposing buried domains like the caveolin scaffolding domain 
to engage signaling effectors (Mani et al., 2025). Cav1 scaffolds 
are highly dynamic, rapidly navigating the plasma membrane 
where they interact with and regulate the activity of key signaling 
molecules, including JAK1 kinase, PTEN phosphatase, and eNOS.

The metastable nature of caveolae is critical for their diverse 
cellular roles, including mechanosensing, endocytosis, lipid 
regulation, and signal transduction. Understanding caveolae 
metastability offers valuable insights into their functions in health 
and disease, presenting potential therapeutic opportunities for 
modulating caveolae dynamics in various pathological conditions. 

3.3 Caveolin-1 and cancer: a two-faceted 
conundrum

Caveolin-1 is known to play a complex role in cancer, acting 
as both a tumor suppressor and promoter depending on the stage 
of cancer progression (Burgermeister et al., 2008; Chen et al., 2020; 
Lamaze and Torrino, 2015; Singh and Lamaze, 2020; Williams and 
Lisanti, 2005). In early-stage cancers, Cav1 often functions as a 
tumor suppressor by inhibiting cellular proliferation, promoting cell 
death through apoptosis, and maintaining cellular differentiation 
(Figure 2) (Quest et al., 2013; Torres et al., 2006; Torres et al., 
2007). However, in advanced cancer stages, Cav1 transitions to an 
oncogenic role and is frequently associated with increased cancer 
cell survival, drug resistance, and metastatic potential (Shatz and 
Liscovitch, 2008; van Golen, 2006). Cav1 is often downregulated 
or lost in breast, colon, ovarian, and lung cancers, suggesting 
a tumor-suppressive function (Bouras et al., 2004; Hino et al., 
2003; Qian et al., 2019; Ren et al., 2021). In contrast, Cav1 
is overexpressed in certain aggressive cancers, such as prostate, 
bladder, liver, and pancreatic cancers, where it plays an oncogenic 
role (Goetz et al., 2008; Liu et al., 2014; Liu et al., 2016; 
Raja et al., 2019; Thompson et al., 2010).

The tumor-suppressive role of Cav1 can be mediated through 
several mechanisms, including the inhibition of proliferative 
signaling pathways, suppression of oncogenic signaling, activation 
of pro-apoptotic pathways and senescence, and regulation of 
metastasis and invasion (Figure 2). Cav1 negatively regulates the 
activity of several growth factor receptors, such as the epidermal 
growth factor receptor (EGFR) and platelet-derived growth factor 
receptor (PDGFR), by binding to these receptors and sequestering 
them within caveolae (Abulrob et al., 2004; Couet et al., 1997). 
Recent insights suggest that non-caveolar Cav1 scaffolds can 
also bind these receptors and inhibit their activity (Lim et al., 
2024). Additionally, Cav1 inhibits the Ras-MAPK/ERK pathway 
and PI3K/AKT pathways, both frequently activated in cancer 
cells to promote survival and proliferation (Cohen et al., 2004; 
Engelman et al., 1998; Matthews et al., 2008). Cav1 also impedes 
epithelial to mesenchymal transition (EMT), a process enabling 
epithelial cells to acquire invasive and metastatic properties. 
Cav1 regulates epithelial-to-mesenchymal transition (EMT) by 
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FIGURE 2
Context-dependent dual roles of Caveolin-1 in cancer progression. In early-stage cancer (left panel, blue), Cav1 acts as a tumor suppressor by 
inhibiting cellular proliferation through sequestration and negative regulation of growth factor receptors (EGFR, PDGFR), maintaining cellular 
differentiation by stabilizing adherens and tight junctions, attenuating epithelial-to-mesenchymal transition (EMT), and promoting apoptosis via 
activation of pro-apoptotic BAX and inhibition of anti-apoptotic Bcl-2. Conversely, in advanced-stage cancer (right panel, red), Cav1 functions as a 
tumor promoter by supporting cell survival under metabolic stress, oxidative stress, and hypoxia, facilitating EMT through upregulation of 
mesenchymal markers and downregulation of epithelial junction proteins, enhancing cell migration, and promoting angiogenesis by its loss in 
cancer-associated fibroblasts (CAFs), which stimulates secretion of pro-tumorigenic growth factors and cytokines.

modulating β-catenin–Tcf/Lef-mediated transcriptional pathways. 
Specifically, Cav1 downregulates the anti-apoptotic protein survivin 
via inhibition of β-catenin transcriptional activity, a process 
critically dependent on the presence of E-cadherin. A consequent 
loss of E-cadherin - a hallmark of EMT -impairs this regulatory 
mechanism, enhancing cell survival and promoting metastatic 
potential (Torres et al., 2006; Torres et al., 2007). Cav1 maintains 
cell-cell adhesion and epithelial integrity by stabilizing adherens 
and tight junctions, inhibits the expression of transcription 
factors like Snail, Slug, and Twist, and negatively regulates 
matrix metalloproteinases (MMPs), involved in extracellular matrix 
degradation and instrumental to cancer invasion and metastasis 
(Dalton et al., 2023; Miotti et al., 2005; Nagasaka et al., 2017; 
Salem et al., 2011; Strippoli et al., 2015).

Conversely, Cav1 can promote cancer progression and 
metastasis depending on the cellular context by enhancing 
cell survival under stress, facilitating metastasis and invasion, 
modulating the tumor microenvironment, and activating pro-
oncogenic signaling pathways. Cav1 supports cancer cell 
survival under metabolic stress, hypoxia, and oxidative stress 
(Castillo Bennett et al., 2018; Mao et al., 2016). Increased Cav1 
expression in certain cancers inhibits pro-apoptotic proteins 
such as BAX while increasing anti-apoptotic proteins like Bcl-2, 
thereby promoting cell survival (Zou et al., 2012). In advanced-
stage cancers, Cav1 promotes EMT by upregulating mesenchymal 

markers such as vimentin and N-cadherin while reducing epithelial 
markers like E-cadherin (Liang et al., 2014; Zhang K. et al., 2016). 
Furthermore, Cav1 enhances cell migration and invasion by 
interacting with focal adhesion kinase (FAK) and activating Rho 
GTPases, which regulate cell motility and cytoskeletal dynamics 
(Bailey and Liu, 2008). Moreover, Cav1 loss in stromal cells, 
such as cancer-associated fibroblasts (CAFs), correlates with more 
aggressive cancer phenotypes, as it promotes the secretion of growth 
factors and cytokines that drive tumor growth and angiogenesis 
(Martinez-Outschoorn et al., 2010; Shi et al., 2016; Simpkins et al., 
2012; Sotgia et al., 2012; Zhao et al., 2013). Caveolae-mediated 
mechanosensing regulates the activity of invadosomes, these 
specialized cellular protrusions that favor cell dissemination through 
degradation of collagen fibers (Monteiro et al., 2023). 

3.4 Caveolin-1 as a secreted protein

Caveolin-1 is traditionally described as a membrane-associated 
protein, crucial for the formation of caveolae and the regulation 
of various signaling pathways. However, studies have revealed that 
Cav1 can also be found as a secreted protein, functioning outside 
the cell to influence intercellular communication, inflammation, 
cancer progression, and tissue repair. The discovery of Cav1 as 
a secreted protein dates back to 1999, when Liu et al. reported 
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Cav1 sequestration in cytoplasmic lipoprotein vesicles in mouse 
pancreatic exocrine cells. In this study, pancreases from mice treated 
with different secretagogue mixtures were removed and cultured in 
media. The presence of Cav1 in the culture media provided the first 
evidence of Cav1 secretion outside cells (Liu et al., 1999). It is now 
understood that Cav1 can be secreted via non-classical pathways, 
including EV-mediated secretion. 

4 Caveolin-1 in EV biogenesis

Cargo sorting is a critical step during EV biogenesis. This 
process is tightly regulated by diverse molecular mechanisms that 
coordinate the incorporation of proteins, lipids, metabolites, and 
genetic material into EVs.

Cav1 is integral to the formation of membrane curvature, 
a critical aspect of EV biogenesis. As a principal component 
of caveolae, Cav1 facilitates membrane curvature through 
its oligomerization and interaction with cholesterol- and 
phosphatidylserine-enriched lipid nanodomains at the plasma 
membrane (Doktorova et al., 2025; Zhou et al., 2021). This structural 
role of Cav1 in membrane deformation suggests a potential 
mechanism by which it may influence EV biogenesis. In addition, the 
interaction between Cav1 and cholesterol has been associated with 
regulation of exosome formation and cargo sorting in MVBs. It was 
demonstrated that Cav1 regulates exosome biogenesis and exosomal 
protein cargo sorting by controlling cholesterol levels at the MVBs, 
acting as a “cholesterol rheostat (Albacete-Albacete et al., 2020).

While direct evidence linking Cav1-induced membrane 
curvature to EV budding is still under investigation, the established 
functions of Cav1 in membrane dynamics and curvature support its 
possible involvement in EV formation processes (Table 1).

Recent findings from our group suggest that mechanical stress 
induces a significant increase of small EV release in cancer cells. This 
release was found to be Cav1 and ESCRT-0-dependent, indicating 
that Cav1 plays a crucial role in the mechanosensing pathways that 
govern EV biogenesis under physical stress conditions (Saquel et al., 
2025). Furthermore, these Cav1-depentent EVs released after 
mechanical stress show a preferential tropism towards the liver. 

4.1 EV cargo and biomarker potential

Cav1 is commonly found in EVs from various cell types. 
Notably, Cav1 is abundant in TEVs and has been proposed as 
a biomarker for cancer progression (Campos et al., 2019). In 
melanoma, EVs purified from human plasma samples revealed 
significantly high levels of Cav1/Rab-5b double-positive EVs in 
patients compared to healthy donors, underscoring its potential as 
a disease biomarker (Logozzi et al., 2009). Further supporting this 
notion, proteomic analyses of exosomes derived from melanoma 
cell lines, with varying degrees of aggressiveness, revealed a distinct 
protein signature associated with metastatic cell lines. This signature 
included oncoproteins involved in cellular migration, angiogenesis, 
and immune responses, with Cav1 being a central component 
(Lazar et al., 2015). In a broader cancer context, proteomic profiling 
of EVs from the NCI-60 panel, comprising 60 human cancer 
cell lines from cancerous tissues such as the brain, colon, breast, 

kidney, prostate, and ovary, identified Cav1 as a common protein 
cargo across multiple cancer types, alongside other cancer-specific 
biomarkers (Hurwitz et al., 2016). Beyond being a significant cargo 
protein, Cav1 also plays an active role in selecting and recruiting 
specific miRNAs and proteins for EV incorporation (Albacete-
Albacete et al., 2020; Campos et al., 2018; Campos et al., 2023). 

4.2 miRNA and protein sorting

The selective loading of miRNAs into EVs involves RNA-binding 
proteins, primarily heterogeneous nuclear ribonucleoproteins 
(hnRNPs). These proteins recognize and bind to distinct nucleotide 
sequences in miRNAs, guiding their incorporation into EVs. The 
strength and specificity of the interaction between hnRNPs and 
miRNAs plays a crucial role in determining which miRNAs are 
preferentially sorted into EVs. Additionally, post-translational 
modifications of hnRNPs, such as sumoylation, phosphorylation 
or methylation, among others, can influence their biological 
functions, including their binding preferences, thereby modulating 
the miRNAs sorting process (Villarroya-beltri et al., 2013).

Cav1 is essential for sorting specific miRNAs into EVs. 
Phosphorylation of Cav1 at tyrosine 14 (pY14) promotes its 
interaction with O-GlcNAcylated hnRNPA2B1, inducing the 
trafficking of the Cav1/hnRNPA2B1 complex into EVs together 
with specific miRNA subsets (Lee et al., 2019). Additionally, 
Cav1 interacts with SUMOylated hnRNPA1, assisting in miRNA 
loading into EVs. The absence of Cav1 reduces hnRNPA1 levels 
in EVs, impairing their ability to promote tumor proliferation and 
migration (Li et al., 2021). Another microRNA-binding protein, 
hnRNPK, is also regulated by Cav1. In the absence of cavin-1, non-
caveolar Cav1 guides hnRNPK into MVBs, facilitating miRNA 
recruitment for exosomal release. Membrane lipid composition, 
such as cholesterol depletion, modulates this process. Importantly, 
hnRNPK has been linked to bone metastasis, as its knockdown 
in prostate cancer cells impairs EV-induced osteoclastogenesis. 
Elevated hnRNPK levels have also been detected in biofluid EVs 
from metastatic cancers (Robinson et al., 2021).

The role of Cav1 in cargo sorting extends beyond miRNA 
sorting to include specific proteins. Cav1 mediates the selective 
incorporation of ECM proteins, such as Tenascin-C, CYR61, and 
fibronectin, into EVs. These proteins are crucial for cellular adhesion 
and migration (Albacete-Albacete et al., 2020; Campos et al., 
2018; Campos et al., 2023). However, the precise molecular 
mechanisms by which Cav1 directs protein sorting into EVs 
remains unclear (Table 1). 

4.3 Pro-tumorigenic cargo

The presence of Cav1 in TEVs not only serves as a potential 
biomarker for cancer progression but also actively promotes 
malignancy by facilitating the acquisition of cancerous traits in 
recipient cells. Cav1 expression is notably elevated in melanoma 
cell lines, and its silencing has been shown to reduce tumor 
growth and angiogenesis. Cav1 bearing EVs stimulate anchorage 
independence, migration, and invasion through paracrine and 
autocrine mechanisms (Felicetti et al., 2009). These EVs can transfer 
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TABLE 1  Cav1 partners in EV biogenesis.

Partner molecules Model Description References

PS, cholesterol MCF7, MDCK Cav1 interaction with lipids regulates 
membrane curvature and lipid 
nanodomain formation, suggesting an 
essential role in EV biogenesis

Zhou et al. (2021)

Cholesterol MEF Cav1 regulates cholesterol content in 
MVBs, regulating exosome biogenesis

Albacete-Albacete et al. (2020)

ESCRT-0 Various cancer cells Along with Cav1 is responsible for EV 
secretion after mechanical stress

Saquel et al. (2025) (Biorxiv)

hnRNPA2B1, hnRNPA1, hnRNPK Various cancer cells RNA-binding proteins involved in 
miRNA sorting into EVs. Cav1 guides 
them towards MVBs for loading

Lee et al. (2019), Li et al. (2021), 
Robinson et al. (2021)

Argonaute2 Various cancer cells Ago2-Cav1 interaction enhances the 
release of miRNAs via EVs

Lin et al. (2024)

Tenascin-C, Cyr61, S100A9 MEF, various cancer cells ECM and ECM-associated proteins 
enriched in EVs in the presence of Cav1

Albacete-Albacete et al. (2020), 
Campos et al. (2018), Campos et al. 
(2023); Saquel et al. (2025) (Biorxiv)

Fas/Fap1 MSCs, mouse Forms complex with Cav1 to increase 
release of IL-1RA through EVs to 
promote wound healing

Kou et al. (2018)

Cavin1 Glioblastoma, mouse Regulates caveolae formation and EV 
release

Hong et al. (2024)

metastatic properties from highly aggressive melanoma cells to less 
aggressive recipient cells. Proteomic analyses of EVs from various 
melanoma cell lines have revealed that their protein composition 
varies with the aggressiveness of the parental cells, with Cav1 levels 
in EVs specifically correlating with the metastatic potential of the 
corresponding cell lines (Lazar et al., 2015).

Low extracellular pH, a hallmark of many tumors, 
enhances pro-cancerous traits such as invasion, migration, and 
proliferation (Corbet and Feron, 2017). In melanoma cells, acidic 
microenvironments increase EV release from donor cells and 
facilitates Cav1 delivery to recipient cells (Parolini et al., 2009). 
In hepatocellular carcinoma (HCC), TEVs enriched with Cav1 and 
Cav2 have been shown to induce migration and invasion in non-
motile hepatocytes. These EVs, which are secreted predominantly 
by highly metastatic HCC cell lines (MHCC97L and HKCI-8), 
highlight Cav1’s role in selectively packaging proteins and RNAs 
associated with metastatic behavior (He et al., 2015).

In metastatic breast cancer, Cav1-loaded EVs released by 
cancer cells, have been shown to confer pro-metastatic traits, 
such as enhanced invasion and migration to non-metastatic 
recipient cells. This effect is partly attributed to Cav1’s role 
in sorting specific ECM proteins into EVs, which facilitates 
local tumor microenvironment remodeling and stromal niche 
formation in distant tissues (Albacete-Albacete et al., 2020; 
Campos et al., 2018; Campos et al., 2023).

Tumor progression shares many features with wound healing. 
In this regard, a Fas/Fap-1/Cav1 complex has been identified as 
a key regulator of IL-1RA-enriched EV secretion in mesenchymal 
stem cells. This study demonstrated that Cav1 acts as a crucial 

scaffold protein within this complex, facilitating SNARE-mediated 
membrane fusion, which is essential for the release of small, anti-
inflammatory EVs, particularly under TNF-α stimulation, which 
enhances wound healing in mice (Kou et al., 2018).

Beyond promoting cancerous traits, Cav1 modulates EV 
dynamics to support cancer progression. In breast cancer, Cav1 
interacts through its scaffolding domain CSD with argonaute-2 
(Ago2), a key player in RNA-mediated gene silencing. The Cav1-
Ago2 interaction regulates miRNA-mediated mRNA suppression 
and enhances the release of miRNAs via EVs, contributing to 
metastasis and chemoresistance (Lin et al., 2024). Additionally, 
TRAF4, a scaffold protein with E3 ubiquitin ligase activity, binds 
to Cav1 and stabilizes it by preventing its ubiquitin-dependent 
degradation, thereby activating pro-tumorigenic signaling 
pathways. Disruption of this interaction reversed chemoresistance to 
temozolomide in glioblastoma (Li et al., 2022). In glioblastoma cells, 
Cav1’s interaction with Cavin-1 is also essential for EV secretion 
and temolozomide efflux, as disrupting this interaction reduces 
EV secretion, increases intracellular drug retention, and enhances 
drug sensitivity (Hong et al., 2024). Collectively, these findings 
highlight Cav1’s multifaceted role in cancer drug resistance and 
EV dynamics (Table 1). 

4.4 EV uptake

Cav1 is as a key regulator of PM lipid nanodomains, 
orchestrating the recruitment of specific lipid species such as 
cholesterol, phosphatidylserine, and sphingomyelin, to create 
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distinct lipidic environments (Prakash et al., 2021; Sonnino and 
Prinetti, 2009). These lipid nanodomains act as platforms for 
clustering transmembrane proteins and proteins with cholesterol 
or lipid feature affinities, such as specific acyl chains (Harayama 
and Antonny, 2023; Sezgin et al., 2017). This clustering mechanism 
suggests that Cav1 may facilitate the preferential assembly of surface 
molecules on recipient cells, enhancing interactions with EVs and 
influencing docking, fusion, and clathrin-independent endocytosis, 
ultimately impacting EV uptake efficiency.

However, EV uptake dynamics are complex and not exclusively 
dependent on PM lipid composition. Studies indicate that Cav1 
inhibition reduces EV uptake in various cell lines, including 
lung cancer cells (Javeed et al., 2015; Nanbo et al., 2013; 
Wei et al., 2017). Conversely, Cav1 upregulation in hippocampal 
neurons under ischemic conditions enhances EV uptake, acting 
as a neuroprotective mechanism against apoptosis (Yue et al., 
2019). Intriguingly, some evidence suggests that Cav1 or caveolae 
might also hinder EV uptake by modulating signaling pathways 
such as ERK1/2, where Cav1 downregulation correlates with 
increased uptake (Svensson et al., 2013).

These conflicting observations highlight the complexity and 
context-dependent role of Cav1 in EV dynamics and uptake. 
The interpretation of these findings is further complicated 
by the frequent use of pharmacological agents (e.g., filipin, 
dynasore, nystatin) that lack specificity for Cav1 and can 
disrupt overall membrane integrity, thereby confounding 
experimental outcomes. Moreover, the co-regulation of 
Cav1 and cavin1 transcription suggests broader effects on 
membrane lipid composition, which may directly influence 
EV uptake via changes in membrane structure and dynamics
(Hill et al., 2008). 

5 Conclusion

The intricate role of Cav1 in EV dynamics represents a fertile 
ground for advancing our understanding of cellular communication 
in cancer. Cav1 has emerged as a key regulator of EV biogenesis, 
cargo sorting, and uptake, with profound implications for cancer 
progression, metastasis, and therapeutic resistance. Despite 
significant advancements, many aspects of Cav1 function in EV 
biology remain unclear or controversial, highlighting the need for 
further investigation.

Cav-1-positive EVs play a pivotal role in intercellular 
communication within the TME, facilitating the transfer of 
oncogenic signals, promoting drug resistance, and enhancing tumor 
aggressiveness. Given the ability of EVs to travel long distances, 
Cav1-positive EVs may also play a role in pre-metastatic niche 
formation, priming distant tissues for colonization by cancer cells. 
Targeting Cav-1 in cancer cells and their EVs offers promising 
therapeutic opportunities, including inhibiting tumor growth, 
preventing metastasis, overcoming drug resistance, and improving 
overall patient outcomes.

The dual nature of Cav1, acting as both an oncogene 
and tumor suppressor depending on cancer type and stage, 
adds complexity to its therapeutic targeting. In cancers where 
Cav1 is downregulated, restoring its expression could increase 

sensitivity to chemotherapy and radiation therapy, inhibit pro-
survival pathways (e.g., PI3K/AKT), and improve the efficacy 
of targeted therapies like EGFR inhibitors. Additionally, Cav1 
restoration may enhance immunotherapies by modulating immune 
cell behavior and boosting cytotoxic T-cell or natural killer 
cell activity.

Conversely, in cancers where Cav-1 is upregulated, inhibiting 
Cav1 could suppress tumor proliferation, invasiveness, and 
angiogenesis. Cav1’s role in stromal crosstalk suggests that 
its inhibition could disrupt the supportive tumor niche by 
reducing fibroblast activation, angiogenesis and immune evasion. 
Downregulating Cav1 may also enhance the immune response 
by activating macrophages and dendritic cells and reducing 
immunosuppressive mechanisms, such as regulatory T-cell 
recruitment and expression of immune checkpoint molecules 
such as PD-L1.

Future therapeutic strategies for Cav1 modulation include small 
molecules, peptides, gene therapies, RNA-based approaches, and 
nanoparticles or antibody-drug conjugates delivery systems. Small 
molecule inhibitors or peptides could selectively inhibit or enhance 
Cav-1 function depending on its context-specific role. Gene therapy, 
using viral vectors or CRISPR/Cas9-based systems, may restore 
Cav-1 expression in tumor-suppressive contexts, while RNA-based 
therapies (e.g., siRNA or miRNA) could inhibit Cav-1 expression 
in cancers where it functions as an oncogene. Existing drugs that 
indirectly modulate Cav1 activity, such as statins, also hold promise 
for repurposing in combination therapies.

Harnessing advanced genomic, proteomic, and bioinformatic 
tools will be essential for identifying precise therapeutic windows 
for Cav1 modulation and minimizing off-target effects. Given the 
context-dependent roles of Cav1, refining these approaches through 
preclinical and clinical research will be crucial to ensure their safety 
and efficacy. Looking ahead, Cav1 holds significant promises as 
both a biomarker and therapeutic target. Integrating Cav1-based 
strategies into clinical practice could be a game changer in cancer 
diagnosis, prognosis, and treatment, ultimately improving patient 
outcomes and advancing the field of precision oncology.
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