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Introduction

In a recent study, Baker et al. (2025) identified the Rac guanine nucleotide exchange
factor VAV2 as a marker of poor prognosis and a signaling link that contributes to
the proliferation and aggressiveness of castration-resistant prostate cancer (CRPC) cells.
Prostate cancer (PCa) is the most common noncutaneous malignancy among men
worldwide, with 1 in 8men diagnosed with this disease during their lifetime.While patients
with organ-confined, locally advanced, or regionally spread disease display a 5-year survival
rate greater than 99%, the survival rate for advanced-stage disease with distant metastatic
spread declines to 30%–40% (American Cancer Society, 2025). Androgen deprivation
therapy (ADT) remains the cornerstone of treatment for patients with high-risk localized
and advanced PCa. Despite initial biochemical or radiological remission after ADT, most
patients eventually progress to metastatic castration-resistant prostate cancer (mCRPC), a
highly heterogeneous, aggressive, and lethal disease. Deregulation of oncogenic and invasive
signaling pathways represents a major hallmark of CRPC cells, enabling their escape from
the primary tumor to secondary sites, particularly the axial skeleton (Rebello et al., 2021).

Rac1, a member of the Rho GTPase family, represents a crucially deregulated signaling
player leading to tumor progression, particularly in the metastatic spread of cancer cells.
Rac1 has been recognized as a major regulator of actin cytoskeleton reorganization, which
promotes the formation of cell surface projections (e.g., lamellipodia, membrane ruffles)
necessary for cell migration and invasion during metastasis. Additionally, Rac1 regulates a
diverse range of cellular functions in cancer cells, including proliferation, gene expression,
metabolism, and epithelial-to-mesenchymal transition (EMT),making it an attractive target
for cancer therapy (Bustelo, 2018; Kazanietz and Caloca, 2017; De et al., 2020; Casado-
Medrano et al., 2019). Like most members of the Rho GTPase family, Rac1 functions as
a binary switch, being active in its GTP-bound form and inactive in its GDP-bound form.
This “on-off” cycling is tightly regulated by Rac Guanine nucleotide Exchange Factors (Rac-
GEFs), which facilitate GTP loading and thus activate Rac1. Inactivation of Rac1 ismediated
by GTPase-activating proteins (Rac-GAPs) that accelerate GTP hydrolysis. Active (GTP-
bound) Rac1 relays through various effectors, triggering a complex network of signaling
events that influence both actin dynamics and diverse cellular processes independent of
actin cytoskeleton remodeling. Extracellular cues, such as those involving ligand-mediated
stimulation of receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs),
represent the most common upstream inputs that confer Rac1 activation (Bustelo, 2018;
Kazanietz and Caloca, 2017; Kazanietz et al., 2022). The large size of the Rac-GEF
family, which comprises 32 Dbl-like and 11 DOCK Rac-GEFs, along with their distinctive
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expression based on cell type (Casado-Medrano et al., 2018),
suggests multifaceted coupling mechanisms that depend on the
nature of the receptor and Rac-GEF, resulting in the activation
of discrete intracellular Rac1 pools and exquisite selectivity
for downstream responses. Mechanistically, the diversity of
Rac-GEF/Rac1 signaling likely relies on strict spatiotemporal
regulation of Rac-GEFs by specific receptors and their coupling
to effectors (e.g., PI3K), ultimately influencing downstream
responses through a complex modulation of the Rac1 interactome
(Kazanietz et al., 2022; Banka et al., 2022).

Rac-GEF signaling in prostate cancer:
identification of VAV2 as an RTK
effector

Rac1 is often deregulated in pathological conditions, including
neurological diseases and cancer (Bustelo, 2018; Kazanietz and
Caloca, 2017; De et al., 2020; Casado-Medrano et al., 2019; Casado-
Medrano et al., 2018; Banka et al., 2022).While cutaneousmelanoma
can harbor activated Rac1 mutants, this is rare (Krauthammer et al.,
2012). Instead, Rac1 deregulation is due to abnormally elevated
Rac-GEF expression or hyperactivation of receptors that promote
Rac-GEF activation (Bustelo, 2018; Kazanietz and Caloca, 2017;
Casado-Medrano et al., 2018). In PCa, constitutively elevated
Rac1 activity has been observed in several cellular models of
androgen receptor (AR) negative PCa, including DU145, PC3,
and PC3-ML cell lines, compared to normal prostate epithelial
cells or androgen-dependent PCa cells (Baker et al., 2020). In
their recent study, Baker et al. (2025) demonstrated that Rac1
deficiency leads to significant defects in the migratory and
proliferative capacities of CRPC cellular models. The migratory
defect aligns with the expected role of Rac1 in actin cytoskeleton-
dependent motility and invasion signaling. Furthermore, it
correlates strongly with bioinformatics analysis in the TCGA-
PRAD human prostate carcinoma database, which reveals worse
progression-free survival in PCa patients with signatures predicting
“high Rac1 cell motility activity.” Rac1 deficiency also leads
to significant changes in gene expression, particularly affecting
transcriptional networks related to cell adhesion, ECM functions,
migration, proliferation, and inflammation. Despite the negative
regulation of E-cadherin expression by Rac1, the loss of Rac1
was insufficient to reverse the mesenchymal phenotype typical of
AR-null PCa cells.

Identifying the GEF(s) responsible for Rac activation in any
given model is daunting due to limited knowledge about the
spatial and temporal expression of individual members of the
large Rac-GEF family and their activation statuses. Overcoming
this challenge is critical to assigning specific functional roles to
individual Rac-GEFs in processes associated with oncogenesis
and metastasis. Using a pre-designed Q-PCR array, Baker et al.
(2025) defined the Rac-GEF mRNA abundance in both castration-
resistant and androgen-dependent PCa cell lines. This analysis
revealed a relatively common expression pattern among the two
groups and a shared subset of Rac-GEFs compared to cell lines
derived from other cancer types, namely, adrenocortical and lung
cancer (Cooke et al., 2023; Cooke et al., 2021). ECT2, TRIO,
FARP1, PLEKHG2, VAV2, PREX1, and FARP2 were identified as

the top-expressed Dbl-like Rac-GEFs in PCa cells, while DOCK1,
DOCK5, DOCK7, and DOCK9 were the top-expressed DOCK
family Rac-GEFs. Through the use of the PARADIGM algorithm,
statistically significant positive correlations were identified between
the expression of discrete Rac-GEFs and the “Rac1 cell motility
pathway,” with the highest correlation found for the Rac-GEF VAV2
(p = 6.7 × 10−10). Functional studies using VAV2-deficient DU145
PCa cells established this Rac-GEF as a key cell migration and
proliferation driver. Interestingly, RNAi screening revealed VAV2
to be the only Rac-GEF capable of driving Rac1 activation in
response to ligand-mediated stimulation of EGFR (Baker et al.,
2025), an RTK with established roles in PCa progression, including
metastatic dissemination (Day et al., 2017). VAV2 was also found to
mediate the invasiveness of PCa cells (Cooke et al., manuscript in
preparation).

Aberrantly elevated VAV expression in
human prostate cancer

The mammalian VAV family of Rac-GEFs comprises three
members: VAV1, VAV2, and VAV3 (Bustelo, 2014). According
to mRNA expression, VAV2 is the most highly expressed VAV
isoform in PCa cells, followed by VAV3 (Figure 1A). In contrast,
VAV1, which is primarily expressed in hematopoietic cells, is
essentially undetectable in PCa cell lines (Baker et al., 2025).
Baker et al. conducted an immunohistochemical analysis using a
large number of human PCa specimens, establishing prominent
upregulation of VAV2 in tumoral areas compared to non-tumoral
areas. No significant VAV2 staining could be observed in the
prostate stroma, ruling out the possibility of microenvironmental
effects of VAV2 in PCa progression. These results were strongly
supported by bioinformatic analysis of databases, including TCGA-
PRAD, which shows VAV2 as the top upregulated Rac-GEF in
PCa compared to normal tissue. Database analysis also revealed
the progressive upregulation of VAV2 with increasing Gleason
score, as well as in metastasis (Baker et al., 2025), in agreement
with Magani et al. (2017). Kaplan-Meier analysis revealed VAV2
to be a negative predictor for disease-specific survival (DSS),
disease-free interval (DFI), and progression-free interval (PFI),
underscoring the potential prognostic value of this Rac-GEF in
human PCa (Baker et al., 2025). Despite VAV2 being the most
highly expressed VAV isoform in PCa, studies have also revealed
that VAV3 levels are upregulated during the in vivo progression
of PCa cell lines to castration resistance (Lyons and Burnstein,
2006; Lin et al., 2012; Lyons et al., 2008). VAV3 expression is
elevated in late-stage and metastatic PCa, and its expression in
early-stage tumors is associated with a lower overall biochemical
failure-free survival rate (Lin et al., 2012). Notably, its expression
as a transgene in mouse prostates leads to the development of
prostatic intraepithelial neoplasia (PIN) and PCa (Liu et al., 2008).
Similar to VAV2, VAV3 has been established as an EGFR effector
and can mediate Rac1 activation in response to EphA2 RTK
stimulation (Lin et al., 2012). Therefore, it is plausible that both
VAV isoforms may participate in PCa progression. Since VAV2
and VAV3 are structurally related, possible functional redundancy
may occur in prostate cancer, although co-expression of these
VAV isoforms in human prostate tumors has not been thoroughly
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FIGURE 1
VAV isoforms and prostate cancer. (A) Structure of VAV isoforms expressed in prostate cancer. VAV2 and VAV3 activation occurs upon stimulation of
receptor tyrosine kinases, such as EGFR. This process involves a conformational rearrangement that exposes the DH catalytic domain, as well as
domains implicated in lipid interactions (e.g., PH and C1 domains) and protein interactions (e.g., SH2 and SH3 domains). (B) VAV isoforms mediate
effects in prostate cancer cells both in androgen receptor (AR)-independent and -dependent manners. VAV2 and VAV3 promote GDP/GTP exchange
on Rac1, the main Rac small GTPase expressed in prostate cancer cells. This small G-protein has been widely implicated in proliferative and migratory
signaling, therefore contributing to prostate tumorigenesis and metastasis. VAV isoforms also enhance ligand-independent AR nuclear translocation
and transcriptional activity, contributing to the proliferative and tumorigenic capacities of prostate cancer cells. See text for details. ARE, androgen
receptor response element; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GF, growth factor; P, phosphorylation; TF,
transcription factor.

investigated. Nonetheless, unique non-redundant roles for VAV
isoforms have also been described (Pearce et al., 2004; Conde et al.,
2021; Fujikawa et al., 2003). The reported upregulation in VAV3
expression and activation observed inVAV1/VAV2-deficientmodels
suggests the existence of compensatory mechanisms controlling
VAV isoform expression and is indicative of their complex
functional interdependence (Chang et al., 2012). The availability of
genetically engineered VAV2/VAV3 mouse models (Pearce et al.,
2004; Conde et al., 2021; Fujikawa et al., 2003; Chang et al.,
2012; Sauzeau et al., 2007; Quevedo et al., 2010; Menacho-
Márquez et al., 2013) would be instrumental in establishing
unique and/or distinctive roles in prostate cancer progression
in vivo.

VAV isoforms: roles in androgen
receptor function and drug resistance

Research from our group and others demonstrated a
complex crosstalk between VAV family members and AR in PCa
(Magani et al., 2017; Lyons and Burnstein, 2006; Dong et al., 2006;
Peacock et al., 2012; Rao et al., 2012) (Figure 1B). Through its

GEF activity, VAV3 can trigger Rac1 signaling, enhancing ligand-
independent AR nuclear translocation and transcriptional activity,
which in turn increases PCa cell proliferation (Lyons et al., 2008).
Alternatively, both VAV2 and VAV3 can act independently of their
GEF activity and serve as co-activators of full-length AR and
constitutively active AR splice variants (e.g., AR-V7) (Wu et al.,
2013; Wang et al., 2025). This AR coactivation is mediated by direct
binding to AR through the DH domain as well as by binding to
AR co-chaperones such as Cdc31, and possibly SRC-1 and SRC-
2 (Magani et al., 2017; Wu et al., 2013). The PH domain has
been shown to promote AR N/C interactions, leading to nuclear
translocation and the formation of a transcriptional complex
that regulates AR target gene expression (Magani et al., 2017;
Rao et al., 2012). This role as a coactivator has been linked to CRPC
progression (Peacock et al., 2012; Rao et al., 2012). Despite the well-
defined differences in the mechanisms of action by which VAVs
activate AR in PCa, it remains unclear whether one can prevail
over the others during disease progression. While publicly available
patient data sets show a correlation of VAV2 and VAV3 with AR-
V7 in bone metastatic CRPC (Magani et al., 2017), the interplay
between these two VAV isoforms and AR activity is another crucial
aspect that requires further elucidation.
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With the rise of advanced targeted and hormone-based
therapies, overcoming therapeutic resistance has become a primary
challenge in PCa management. Increased expression of AR
coactivators has been identified as a mechanism by which PCa
escapes AR-targeted therapies. Recently, binding of VAV2 to AR and
AR splice variants has been shown to stabilize these receptors and
mediate enzalutamide resistance (Wang et al., 2025). Additionally,
genetically engineered cells with reduced expression levels of VAV3
exhibit an improved response to docetaxel in preclinical models of
PCa (Nomura et al., 2013). Disrupting the interaction between the
DH domain of VAV3 and the TAU5 region of AR using protein
fragments decreased AR-V7 nuclear localization and, as a result,
reduced cell proliferation and migration while increasing apoptosis,
thus demonstrating the clinical relevance of targeting VAVs in PCa
(Magani et al., 2017). Direct targeting of VAVs poses a challenge - as
is also the case formost Rho-family GEFs - since thesemolecules are
subject to intricate regulatory mechanisms (i.e., phosphorylation,
protein-protein interactions) and lack druggable pockets for
selective pharmacological targeting (Neurath and Berg, 2024;
Smithers and Overduin, 2016). Drug discovery efforts exploiting
unique interfaces involved in GEF/GTPase interactions have led to
the development of promising antitumor and antimetastatic small-
molecule inhibitors (Bustelo, 2018; Kazanietz and Caloca, 2017). A
notable example that highlights the strong feasibility for the design
of inhibitors of VAV-Rac/Cdc42 interactions is the development of
Ehop-016 and Ehop-097 (Montalvo-Ortiz et al., 2012; Medina et al.,
2022). Ehop-016 shows excellent pharmacological activity in mouse
models of experimental metastasis with no significant toxicity
(Castillo-Pichardo et al., 2014; Humphries-Bickley et al., 2015).
Proof-of-principle for the potent anti-migratory activity of Ehop-
097 in CRPC cells has been established in Baker et al. (2025).
Recently, Nassar and coworkers identified IODVA1 as a first-in-
class small-molecule VAV3 inhibitor, likely acting by locking this
GEF into an autoinhibitory state that prevents Rac access to the
DH catalytic domain (Hegde et al., 2022). With the development of
new small-molecule inhibitors for VAVs, preclinical testing efforts
will be crucial in determining the translational potential of VAV
inhibitors in PCa.

Concluding remarks

Vav family members represent key therapy-resistant nodes
in advanced PCa (AR and non-AR expressing) and serve as
potential biomarkers of poor clinical outcomes. As GEFs for Rac1,
these proteins relay diverse oncogenic signals and control crucial
steps in the metastatic dissemination process. VAV2 and VAV3
coactivate AR, a primary driver of PCa, promoting proliferation and
therapy resistance. The enhancement of AR activity by VAVs can

occur in a GEF-independent manner, posing a unique therapeutic
challenge. Developing specific VAV inhibitors that can be utilized
in distinct clinical settings alongside patient-risk stratification
would be instrumental in advancing PCa therapeutic strategies.
Although PCa treatment hasmade significant strides, new resistance
mechanisms have emerged, including tumors with neuroendocrine
features as well as “double negative” tumors that lack both AR
expression and neuroendocrine markers. Given the fact that VAVs
can promote both AR-dependent and AR-independent growth,
targeting VAV/Rac signaling pathways offers a novel and promising
approach for enhancing PCa management.
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