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Introduction:  The placenta is vital for fetal development, but its growth 
can become disordered in pregnancy complications, particularly at the 
maternal–fetal interface. Preeclampsia, a severe condition that arises after 
the 20th week of pregnancy, is characterized by hypertension and other 
complications, posing significant risks to both mother and fetus. Despite 
its importance, the underlying mechanisms of preeclampsia remain poorly 
understood. Unraveling these mechanisms is essential for improving outcomes 
and advancing treatment strategies. 
Objectives: This study aimed to explore the spatial heterogeneity of the placenta 
and investigate the pathogenesis of late-onset preeclampsia (LOPE).
Methods: We employed spatial transcriptomics (ST) and spatial metabolomics 
(SM) to map trophoblasts, fibroblasts, and immune cells, and analyze 
their transcriptomic and metabolomic profiles. A “spot-match” method was 
developed to integrate ST and SM data, revealing cell type-specific gene and 
metabolite changes during trophoblast differentiation.
Results:  The preeclamptic placenta showed increased fibroblasts and VCT 
proportions but a reduced SCT proportion. Complex interactions among 
trophoblasts, fibroblasts, and macrophages were observed in LOPE patients. Major 
metabolic reprogramming, particularly in glycerophospholipid and sphingolipid 
metabolism, was identified, potentially influencing trophoblast differentiation. 
Conclusion: Our ST and SM data offer new insights into LOPE mechanisms, 
providing valuable information for its prevention and treatment.
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1 Introduction

Preeclampsia is a serious pregnancy complication characterized 
by hypertension and additional symptoms, such as proteinuria and 
maternal organ dysfunction, occurring after 20 weeks of gestation. 
Affecting 2%–8% of pregnancies, it contributes significantly to 
maternal and fetal morbidity and mortality (Ives et al., 2020; 
Yang et al., 2021). According to the International Society for 
the Study of Hypertension in Pregnancy (ISSHP), preeclampsia 
is categorized as early-onset (EOPE, before 34 weeks) and late-
onset (LOPE, at or after 34 weeks), reflecting different clinical and 
pathological mechanisms (Magee et al., 2022; Wójtowicz et al., 
2019). Currently, the only definitive treatment is early delivery of 
the placenta, which often results in premature births. Understanding 
the molecular, immunological, and metabolic mechanisms of 
preeclampsia is critical for advancing prevention and treatment 
strategies.

While research has provided insights into EOPE, such as 
improving predictions through early screening and low-dose 
aspirin (De Borre et al., 2023; Chaemsaithong et al., 2022; 
Rolnik et al., 2022), the mechanisms underlying LOPE remain 
poorly understood. The classic two-stage hypothesis links EOPE 
to inadequate placentation and maternal systemic responses 
(Dimitriadis et al., 2023; Redman, 1991), but it inadequately 
explains LOPE, where neonates often reach term without growth 
restriction. Recent studies propose that LOPE may result from 
uteroplacental malperfusion at term, where placental compression 
disrupts intervillous perfusion and induces syncytiotrophoblast 
(SCT) stress (Weissgerber and Mudd, 2015; Staff, 2019). This 
“intrinsic” pathway highlights the need for detailed investigations 
into the spatial and metabolic mechanisms underlying LOPE.

Recent advances in single-cell sequencing, spatial 
transcriptomics (STs), and spatial metabolomics (SMs) provide 
powerful tools for addressing these gaps (Alexandrov et al., 
2023). While single-cell RNA sequencing (scRNA-seq) excels at 
identifying cell types and gene expression at high resolution, 
crucial spatial information is lost because of the mechanical 
dissociation of tissue into single cells. This loss of spatial context 
obscures the true distribution and interactions of cells within their 
native environment. STs overcomes this limitation by providing 
gene expression profiles with near-single-cell resolution while 
preserving the spatial locations of cells within tissue sections 
(Williams et al., 2022). Similarly, SMs, through mass spectrometry 
imaging (MSI), enables the detailed mapping of metabolite 
distributions and concentrations within tissues at the micron scale 

Abbreviations: LOPE, late-onset preeclampsia; EOPE, early-onset 
preeclampsia; ST, spatial transcriptomics; SM, spatial metabolomics; 
scRNA-seq, single-cell RNA sequencing; MSI, mass spectrometry imaging; 
EVT, extravillous trophoblast; SCT, syncytiotrophoblast; VCTs, villous 
cytotrophoblasts; t-SNE, t-distributed stochastic neighbor embedding; SSCC, 
spatial shrunken centroid clustering; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; DEGs, differentially expressed genes; RCTD, robust cell type 
decomposition; UMAP, uniform manifold approximation and projection; 
NK cells, natural killer cells; MCs, macrophages; SMCs, smooth muscle 
cells; TG, triacylglycerol; DGKZ, diacylglycerol kinase zeta; LPL, Lipoprotein 
lipase; PA, phosphatidic acid; DG, diacylglycerol; PC, phosphatidylcholine; 
PS, phosphatidylserine; PG, phosphatidylglycerol; LacCer, lactosylceramide; 
Cer, ceramide; PI, phosphatidylinositol; CDP-DAG, cyclic diphosphate 
diacylglycerol.

(Santos et al., 2024; Li et al., 2024). The simultaneous application of 
STs and SMs provides a groundbreaking approach for studying the 
placenta in preeclampsia. This combined methodology uncovers the 
intricate spatial and functional architecture of the placenta, revealing 
the heterogeneous distribution of cell populations, variations in gene 
expression across different regions, and the spatial organization 
of metabolic processes. These findings would bridge the gap in 
spatial location in previous transcriptomic and metabolic studies of 
preeclampsia, thus advancing our knowledge of the mechanisms 
driving preeclampsia and identifying potential biomarkers and 
therapeutic targets.

In this research, we employed a multiomic strategy that 
integrates SMs and STs to develop a detailed spatiotemporal atlas 
of the placenta in LOPE. We analyzed the transcriptomic and 
metabolomic profiles of trophoblasts, fibroblasts, and immune cells 
in placental tissue and examined immune cell infiltration patterns 
and interactions with trophoblasts. Our study mapped the cell type-
specific metabolic changes in the placenta, identifying a metabolic 
trajectory from villous cytotrophoblasts (VCTs) to SCTs and 
EVTs. Notably, we observed substantial metabolic reprogramming, 
particularly in glycerophospholipid metabolism, with STs revealing 
abnormal expression of key enzymes involved in this pathway, which 
drives the observed metabolic changes. 

2 Materials and methods

2.1 Human placental tissue specimens

Participants were selected based on the diagnostic criteria 
for preeclampsia outlined in the 2019 ACOG Practice Bulletin, 
including individuals with late-onset preeclampsia (LOPE) and 
those with uncomplicated pregnancies (Author Anonymous, 
2019). Women diagnosed with hypertension, kidney disease, 
cardiovascular disease, or other pregnancy complications (such 
as thyroid dysfunction, diabetes, and intrahepatic cholestasis 
of pregnancy) prior to conception were excluded. Additionally, 
women diagnosed with chorioamnionitis or with abnormal fetal 
chromosomes were excluded. Detailed information on these 
patients is shown in Supplementary Table S1. All patients underwent 
cesarean section to terminate the pregnancy. Immediately after 
placental delivery, fresh placental tissue near the maternal surface 
(adjacent to the decidua) was excised via sterile scissors. The tissue 
samples measured approximately 6.5 mm × 6.5 mm × 6.5 mm. For 
sampling, we avoided calcified areas, and the sites were located 
2–5 cm from the center of the umbilical cord. The fresh tissue 
samples were blotted dry with paper towels to remove surface 
blood, rapidly placed in a histology plastic cassette and embedded 
in Cryo-Gel on dry ice. The samples were then stored at −80 °C for 
subsequent spatial transcriptomic and metabolomic analyses. All 
steps were completed within 15 min of placental delivery.

All procedures involving the participants were performed in 
compliance with relevant laws and institutional guidelines and 
have been approved by the Ethics Committee of the Medical 
Ethics Committee of the International Peace Maternity and Child 
Health Hospital of China Welfare Institute, Shanghai [Date: 2021, 
Approval number: (GKLW) 2021-17]. This study was conducted 
in accordance with the Declaration of Helsinki. All patients were 
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fully informed, and the consent form of the spatial-omics study was 
obtained in written form. The privacy rights of human subjects have 
been observed. 

2.2 Tissue processing

The frozen Cryo-Gel blocks were cut into consecutive sagittal 
slices approximately 10 μm thick, totaling approximately 10 

slices, via a precooled cryostat microtome (Leica CM 1860 
UV, United States) at −20 °C. One set of tissue sections was 
stained with H&E and imaged at 5x magnification via a 
Leica DM5500 B microscope (Leica Microsystems, Germany) 
to capture and merge images of the entire array. Two sets 
were thaw-mounted on positive charge desorption plates 
(Thermo Scientific, United States). The sections were stored 
at −80 °C before further Waters-DESI analysis. Another set 
was mounted onto Visium CytAssist Spatial Gene Expression 
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slides for ST analysis. The remaining tissue slices were kept 
for backup. 

2.3 Spatial transcriptomics

The tissue sections were processed following the manufacturer’s 
protocol for Visium CytAssist Spatial Gene Expression for Fresh 
Frozen (CG000614). First, the placental sections were fully 
immersed in chilled methanol, incubated upright at −20 °C for 
30 min, and then stained with H&E. After staining, the sections 
were covered with a coverslip and imaged under brightfield 
conditions via the 3D HISTECH Pannoramic MIDI FL system 
at ×40 magnification. Once the coverslip was removed, a destaining 
step was carried out. Following destaining, the slides were processed 
as outlined in the user guide (Visium CytAssist Spatial Gene 
Expression, CG000495). Probe hybridization was performed at 
50 °C for 16–24 h, followed by ligation at 37 °C for 1 h, and 
then incubation at 4 °C. The tissue removal enzyme and probe 
release mixture were combined and incubated at 37 °C for 30 min. 
The Visium CytAssist Spatial Gene Expression slide was then 
transferred to a new 6.5 mm Visium Cassette, where probe 
extension was conducted at 45 °C for 15 min. Finally, KOH mixture 
was added for elution, and the mixture was incubated at room 
temperature for 10 min. 

2.4 Library construction and sequencing

A space ranger was used to capture the area of the tissue 
in the slide, which measured 6.5 mm × 6.5 mm. Each area 
contained 5,000 barcoded spots with a diameter of 55 μm, and 
the spot-to-spot distance was 100 μm. Library construction was 
performed via the Visium CytAssist Spatial Gene Expression 
kit for Fresh Frozen (PN-1000520 for Human, 6.5 mm). Post-
library construction quality control was performed via an Agilent 
Bioanalyzer High Sensitivity chip. The average fragment size was 
determined from the Bioanalyzer trace. The expected average 
fragment size was 240 bp, which was used as the insert size for 
library quantification. The DNA libraries were subjected to high-
throughput sequencing in paired-end 150-bp sequencing (PE-150) 
mode. The sequencing results were visually analyzed via Loupe 
Browser (10x Genomics). 

2.5 ST data processing

The FASTQ files were aligned to the GRCh38 human reference 
genome with Space Ranger software (version 2.0.1) from 10x 
Genomics, and unique molecular identifier (UMI) counts were 
compiled for each barcode. The detection of tissue overlaying spots, 
as opposed to the background, was performed via image analysis. 
The filtered UMI count matrix was subsequently analyzed with the 
Seurat R package (version 4.3.0). Normalization of the data was 
conducted with Sctransform, which applies a regularized negative 
binomial model to detect genes with significant variability. For 
dimensionality reduction on the log‒transformed gene‒barcode 
matrices of highly variable genes, PCA was employed. The cells 

were clustered on the basis of marker genes, which were determined 
via graph-based techniques with the FindAllMarkers function 
(test.use = bimod) and visualized via a 2-dimensional UMAP 
algorithm via the RunUMAP function. DEGs were identified 
through the Seurat function FindMarkers (test.use = presto), 
applying thresholds of p < 0.05 and |log2foldchange| > 0.58 for 
significance. 

2.6 Cell type identification and RCTD 
analysis

A public preeclampsia scRNA-seq dataset (available at https://
g i t h u b . c o m / J u s t M o v e O n n n / p r e e c l a m p s i a / t r e e / m a i n / s i n g l e _
 c e l l _ m a t r i x / d a t a) was utilized as a reference for integration 
with our ST profile via RCTD (version 1.1.0) (Yang et al., 2023). 
This approach addresses the challenge of the limited resolution 
of STs, which often results in multiple cell types being present 
within a single spot. By leveraging annotated scRNA-seq data, 
RCTD employs supervised learning to define and map cell-specific 
states within the spatial data, enabling the inference of cell-type 
composition and proportions at each spot. For implementation, 
the scRNA-seq data were preprocessed via the NormalizeData 
and ScaleData Seurat functions. Dimensionality reduction was 
achieved through PCA with the RunPCA function. Cell clustering 
was performed using graph-based methods with the FindClusters 
function, and visualization was carried out via 2D UMAP with 
the RunUMAP function. The marker genes for each cluster were 
determined via the FindAllMarkers function (test.use = presto). The 
creat.RCTD function was used with default parameters, requiring 
at least one cell per cell type and one UMI per pixel, while the 
run.RCTD function was configured with doublet_mode set to 
FALSE. The cell type for each spot was ultimately assigned according 
to the highest proportion principle. 

2.7 Spatial metabolomics

The frozen slides prepared earlier were freeze-dried at −20 °C 
for 1 h followed by 2 h at room temperature prior to mass 
spectrometry imaging (MSI) analysis, which utilized a DESI 
source (Waters/Prosolia) coupled to a Q Exactive Orbitrap mass 
spectrometer (Thermo Fisher Scientific, USA). In negative mode, 
the solvent formula was composed of acetonitrile (ACN)/H2O 
(8:2) without formic acid, whereas in positive mode, the solvent 
formula was composed of ACN/H2O (8:2) containing 0.1% formic 
acid. The solvent flow rate was maintained at 1.5 μL/min, with 
a transporting gas flow rate of 45 L/min. The spray voltage was 
set to 7 kV, and the distance between the sample surface and 
the sprayer was 3 mm, which was also the distance from the 
sprayer to the ion transporting tube. Additionally, the MS resolution 
was set at 20,000, covering a mass range of 70–1,200 Da. The 
automated gain control (AGC) target was set to 2 × 106, and 
the maximum injection time was 200 ms. The S-lens voltage was 
adjusted to 55 V, and the capillary temperature was maintained 
at 350 °C. The scanning speed of the x-axis (Vx) in the sample 
section was 0.2 mm/s with a 100 μm vertical step in the y 
direction. 
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2.8 SM data processing

Ion images were reconstructed after background subtraction 
via the Cardinal 3 software package. All MS images underwent 
total ion count (TIC) normalization at every pixel. Region-specific 
MS profiles were derived through meticulous alignment with 
high-spatial-resolution H&E images. Discrimination of endogenous 
molecules within distinct tissue microregions was accomplished 
via supervised statistical analysis, specifically orthogonal partial 
least squares discriminant analysis (OPLS-DA). Variable importance 
of projection (VIP) values derived from the OPLS-DA model 
were used to assess the relative contribution of each variable to 
group differentiation. The VIP value indicates the significance of 
each variable in classifying sample categories based on the first 
two principal components of the OPLS-DA model. Variables with 
VIP values greater than 1 were considered to have a substantial 
impact. Metabolites were identified as significant if their VIP values 
exceeded 1.0 and their corresponding p-values were less than 
0.05. Furthermore, given the unique data structure obtained from 
MSI analysis, we applied t-SNE to reduce the dimensionality of 
the MS data at each pixel. Additionally, spatial shrunk centroid 
clustering (SSCC) was utilized for clustering MSI data, aiming to 
differentiate samples based on variations in ion abundance across 
pixels. The ions detected via Waters-DESI were annotated via the 
pySM 5 pipeline and an in-house SmetDB database (Lumingbio, 
Shanghai, China). 

2.9 “Spot-match” method for ST and SM 
integration

Integrating STs with SMs to analyze intrinsic biological changes 
and identify key metabolic pathways presents several challenges. 
These challenges stem from differences in spatial information 
labeling, variations in experimental procedures for different tissue 
slices, and discrepancies in spatial distributions. Consequently, 
aligning the data spatially and achieving point‒to‒point matching 
between the two datasets is complex. To overcome these 
difficulties, we developed a novel method for point-to-point 
matching of ST and SM data. This method begins by selecting 
at least six evenly distributed spots across the sample range 
in STs, obtaining their corresponding barcodes, and marking 
these spots on the H&E‒stained image. The spatial information 
from the transcriptomic barcodes and metabolomics data is 
then converted into a unified coordinate system via specific 
formulas. For transcriptomics, the coordinates are calculated 
as UTX = (TransX/2 + 0.5)∗transresolution and UTY = 
TransY∗sqrt (0.75)∗transresolution (Supplementary Table S2). For 
metabolomics, the coordinates are UMX = MetaX∗metaresolution 
and UMY = MetaY∗metaresolution (Supplementary Table S3). 
Next, the distance ratios between identified spots in both 
datasets are calculated to determine the scaling factor. This 
is done via the following formula: Ratio = sqrt [(UTXa-
UTXb)2+(UTYa-UTYb)2]/sqrt [(UMXa-UMXb)2+(UMYa-
UMYb)2] (Supplementary Table S4). The ratios are filtered to 
remove outliers, and the mean scaling factor is computed. 
Afterward, the rotation angles between corresponding spots in 
both datasets are assessed to check for sample rotation. The 

formula used is: Angle = arctan [(UMYa-UMYb)/(UMXa-UMXb)] -
arctan [(UTYa-UTYb)/(UTXa- UTXb)] (Supplementary Table S5). 
If the deviation exceeds 5°, adjustments to the transformation are 
made. Finally, the conversion of SM coordinates to match those from 
ST is carried out using the final scaling factor, rotation angle, and 
central coordinates. This comprehensive method ensures accurate 
spatial alignment between ST and SM data, facilitating effective 
multiomic analysis. 

2.10 Pseudotime analysis

Monocle was used to model the dynamic changes in cellular 
development based on key gene expression patterns. Initially, genes 
with significant variation in expression across cells were selected. 
These genes were then subjected to dimensionality reduction, and 
a minimum spanning tree (MST) was constructed to identify the 
longest path, representing the differentiation trajectories of cells 
with similar transcriptional features. Subsequent branch expression 
analysis was conducted to model gene expression associated with 
different branch fates. These branches were subsequently subjected 
to SMs to identify dynamic changes in metabolites during the 
differentiation trajectories of cells. 

2.11 Cell communication analysis

CellChat was used to infer and analyze cell‒cell communication 
networks from scRNA-seq data. Significant ligand‒receptor 
interactions were identified through interaction probability 
calculations and perturbation tests. The overall cell‒cell 
communication network was constructed by aggregating the 
number and intensity of significant interactions between cell 
types. Additionally, CellPhoneDB was employed to assess the 
expression abundance of ligand‒receptor pairs. Receptors and 
ligands with expression levels exceeding 10% in specific cell types 
were considered, while pairs with p-values greater than 0.05 were 
excluded to ensure reliable evaluation of interactions. 

2.12 Immunofluorescence

For frozen section fixation and immunofluorescence staining, 
the frozen section was first placed in a 37 °C oven for 10–20 min to 
dry and remove moisture. The slide was then immersed in a 
fixative solution for 30 min, followed by three washes in PBS 
on a decolorization shaker for 5 min each. Heat-mediated antigen 
retrieval was performed for 30 min, ensuring that excessive 
evaporation of the buffer was avoided, and the section did not 
dry out. After antigen retrieval, the slides were allowed to cool 
naturally and were washed three more times in PBS for 5 min each. 
Excess liquid was gently removed, a circle was drawn around the 
tissue using a histology pen, and 3% BSA was added to block non-
specific binding, followed by incubation for 30 min. The primary 
antibody (HLA-G, 1:200, AB52455) was then added to the section, 
and the slide was placed flat in a humidified chamber and incubated 
at 4 °C overnight. After incubation, the slide was washed three 
times in PBS (pH 7.4) for 5 min each. The secondary antibody 
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(CY3-labeled goat anti-mouse IgG, 1:300, GB21301) was added, 
and the slide was incubated in the dark at room temperature 
for 50 min. Following this, three additional washes in PBS were 
performed. DAPI staining was applied to counterstain nuclei, and 
the slide was incubated in the dark at room temperature for 10 min. 
Finally, autofluorescence was quenched using fluorescence quencher 
solution B for 5 min, followed by rinsing under running water 
for 10 min. The slide was mounted using an anti-fluorescence 
quenching mounting medium, and images were acquired with DAPI 
excitation at 330–380 nm (emission 420 nm) and CY3 excitation at 
510–560 nm (emission 590 nm). 

2.13 Statistical analysis

Statistical analyses were performed using R or GraphPad Prism 
software. Endogenous molecule discrimination across distinct 
tissue microregions was achieved through Orthogonal Partial 
Least Squares Discriminant Analysis (OPLS-DA). The Variable 
Importance in Projection (VIP) values from the OPLS-DA model 
were used to evaluate the contribution of each variable to group 
differentiation, with variables having VIP values >1 considered 
significant. Metabolites were deemed significant if their VIP values 
exceeded 1.0 and their p-values were <0.05. OPLS-DA models were 
further evaluated using standard diagnostics, including cumulative 
R2X, R2Y, and Q2 values, as well as permutation testing. For 
example, in the PE versus NC comparison, the model achieved 
R2X(cum) = 0.926, R2Y(cum) = 1.000, and Q2(cum) = 0.974, while 
permutation testing yielded negative Q2 values (Q2 = −0.235), 
confirming the robustness of the classification and excluding 
overfitting (Supplementary Table S8). 

3 Results

3.1 Overview of the multiomic data of the 
placenta in the normal control (NC) and 
LOPE groups

To explore placental metabolic changes and interactions in 
preeclampsia, we developed a spatially resolved multiomic strategy 
to combine comprehensive molecular data from the maternal–fetal 
interface. The schematic workflow of sample collection and spatial 
multiomic detection is shown in the graphical figure. For spatial 
metabolomics, we analyzed three cases and three controls in 
total. Among these, one case and one control were also used 
for spatial transcriptomics. Placental tissue samples from six 
individuals were sectioned at 10 μm intervals. These samples were 
subjected to Waters-DESI for SM analysis, whereas two samples 
were additionally analyzed via the 10× Genomics Visium CytAssist 
system for ST analysis. This study employed a spatial resolution 
of 100 μm for integrating these diverse omics datasets. Figure 1A 
shows typical hematoxylin and eosin (H&E)-stained images of 
placental tissues, including the basal plate and villus region, from 
six patients (NC-1, NC-2, NC-3, PE-1, PE-2, and PE-3). Metabolite 
profiles were extracted from these images for SM analysis, and a 
data-driven segmentation map was created based on metabolite 
fingerprints. Using unsupervised t-distributed stochastic neighbor 

embedding (t-SNE) analysis, we identified and clustered the spatial 
expression patterns of tissue metabolites into ten primary clusters, 
which highlighted the main spatial features of the metabolite 
distribution (Figure 1B). The typical metabolites of each cluster 
are shown in a heatmap (Figure 1C), and the spatial shrunken 
centroid clustering (SSCC) of the placenta is shown in the image 
(Figure 1D). Cluster 1, 3, 4, and 5 were mainly distributed in 
the basal plate, while cluster 2, 6, 7, 9, and 10 were primarily 
demonstrated in the villous region. Cluster 8 was shown in both 
regions. These results suggest significant metabolomic heterogeneity 
in placental tissue. The differentially expressed metabolites and 
their spatial signatures were then analyzed and visualized. Principal 
component analysis (PCA) was initially used to evaluate the 
expression profiles of metabolites between the two groups, and 
the validated differentially expressed metabolites are shown in 
a heatmap (Supplementary Figures S1A,B). For the PE vs. NC 
comparison, the OPLS-DA model showed strong explanatory power 
(R2X(cum) = 0.926, R2Y(cum) = 1, R2 = 0.962) and excellent 
predictive ability (Q2(cum) = 0.974). Permutation testing yielded 
negative Q2 values (Q2 = −0.235), indicating that the classification 
was not driven by overfitting. Together, these diagnostics confirm 
that the OPLS-DA model is robust and reliable. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis revealed 
that the differentially expressed metabolites were enriched in 
necroptosis, sphingolipid metabolism, and glycerophospholipid 
metabolism (Supplementary Figure S1C). A lollipop map showed 
that diacylglycerol (DG) (38:4) and N-glycoloylganglioside 
GM2 were significantly increased in the placenta of patients 
with preeclampsia, whereas phosphatidic acid (PA) (42:0) and 
phosphatidylcholine (PC) (36:4) were significantly decreased 
(Supplementary Figure S1D). The spatial metabolic image of GM2 
demonstrated that GM2 increased mainly in the villous region of the 
placenta of patients with preeclampsia (Supplementary Figure S1E).

We further investigated the in situ transcriptional profiles 
and their variability in placental tissues via ST analysis. Two 
frozen placental sections (Figure 2A), which were adjacent to 
those used for SMs, were analyzed via the 10× Genomics Visium 
CytAssist platform. Dimension reduction and clustering were 
performed on the basis of the gene expression data, allowing 
us to visualize the spatial distribution of differentially expressed 
genes (DEGs). We applied uniform manifold approximation and 
projection (UMAP) to assess the transcriptomic diversity in the 
placenta (Figure 2B). The entire placental section was categorized 
into eight distinct clusters based on gene expression profiles 
from 3,581 to 4,632 spots, with an average of 5,574 to 5,620 
genes per spot (Figures 2C,D). At this stage, we performed an 
initial categorization of the mixed-cell spots, guided primarily 
by the representative marker genes enriched in each cluster. 
Owing to the intrinsic resolution of spatial transcriptomics 
(with multiple cells captured per spot), this approach allows the 
identification of region-associated cellular compositions rather 
than single-cell identities. Clusters 3 (highlighted in yellow, 
characterized by DEGs such as KRT5 (Maxwell et al., 2023), 
NEU2 (Koseki et al., 2012), and KCNJ16 (Guo et al., 2022), 
and SPRR2G (Wedenoja et al., 2020)) and 7 (highlighted in 
gray, characterized by DEGs such as RORB (Gong et al., 2021)) 
were predominantly identified in the basal plate, as annotated by 
the pathologists. In contrast, the other clusters were primarily 
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FIGURE 1
SM landscape of placental tissue from the preeclampsia and NC groups. (A) H&E staining image of placental tissue sections from three patients with 
preeclampsia and three NC individuals. (B) t-SNE was used for dimensionality reduction and visualization of the Waters-DESI data. (C) Heatmap 
showing the top 3 marker metabolites of each cluster. (D) SM feature plots of 10 clusters in six placental tissue samples.
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localized within the villous regions (Figures 2C,D). We annotated 
the biological characteristics of each cluster via the top ten marker 
genes, which generally aligned with the expected morphological 
features of the clusters (Figure 2E; Supplementary Figure S2A). 
According to the gene expression pattern, cluster 1 (KRTAP26-
1 (Miller et al., 2017), LEP (Hogg et al., 2013), and CATIP 
(Laufer et al., 2022) and cluster 2 (LEF1 (Jang et al., 2020), 
and SYT3 (Lim et al., 2020) are villus-related regions. Cluster 
4 (MYOCD and ST6GAL2 (Yung et al., 2023)) is a stroma-
related region. Cluster 5 (ITGAX (Vondra et al., 2023), CIITA 
(Scharer et al., 2015), and IL1RL1) and 8 (CXCR3 and CXCL13) 
are immune-related regions. Cluster 6 is mainly composed of the 
HBM (May et al., 2011), ALAS2, and SLC4A1 genes, indicating 
that it is a hemoglobin-related cluster. Next, the DEGs of the whole 
placental section were analyzed, and KEGG enrichment analysis 
revealed significant involvement in cytokine‒cytokine receptor 
interactions, the PI3K‒Akt signaling pathway, and extracellular 
matrix (ECM)‒receptor interactions (Figure 2F).

3.2 Spatially defined cell patterns in the 
placenta and cell–cell interaction patterns 
in preeclampsia

Given the limited spatial resolution of STs (with an average of 
2–30 cells per spot), we integrated public scRNA-seq of placentas in 
the LOPE group and performed RCTD analysis (see Methods) on 
each spot to calculate the proportion and distribution of cell types 
in placental STs (available at https://github.com/JustMoveOnnn/
preeclampsia/tree/main/single_cell_matrix/data) (Yang et al., 2023). 
RCTD is a supervised learning approach that decomposes cell 
type mixtures on the basis of profiles learned from scRNA-seq 
data, correcting for differences across sequencing technologies. This 
method maps cell types spatially, revealing the spatial components of 
cellular identity and revealing new principles of cellular organization 
in tissues (Cable et al., 2022). First, we annotated cell types on 
the basis of public single-cell data (Figures 2G,H). ST data were 
deconvolved by 10 cell types from scRNA-seq with RCTD under 
multiple modes, including EVTs, SCTs, VCTs, proliferating VCTs, 
fibroblasts, T cells, natural killer (NK) cells, macrophages (MCs), 
smooth muscle cells (SMCs), and erythrocytes (Figures 3A–C).

For cell type assignment, if the highest proportion of a cell 
type at each spot exceeded 70%, it was designated as the cell 
type in this spot; otherwise, the second most prevalent cell type 
at each spot was selected. To visualize the cellular composition 
across spots, we additionally summarized the RCTD results in a 
pie chart (Supplementary Figure S2B), in which the dominant cell 
type within each spot was selected as its representative annotation. 
This provides a straightforward overview of the predominant 
cellular identity in each spatial location. EVTs were distributed 
mainly in the basal plate, whereas SCTs, VCTs, and fibroblasts 
were distributed in the villous region. The top 10 marker genes 
of each cell type are shown in the heatmap (Figure 3D). Further, 
we performed immunofluorescence staining on the same tissue 
sections using HLA-G, a well-known marker for EVTs (Figure 3E). 
The results from these experiments are fully consistent with the 
EVT distribution observed in our spatial transcriptomics data. 
Intuitively, the basal plate may be mistaken for decidua. It is 

important to clarify that the area where EVTs are predominantly 
distributed is referred to as the basal plate, which is part of the 
placenta sample (Borbely et al., 2014). The decidua basalis, on the 
other hand, remains attached to the uterine wall and is not included 
in the placenta specimen analyzed.

Compared with those in the NC group, the proportions of 
EVTs and VCTs in the placenta in the preeclampsia group were 
greater, whereas the proportion of SCTs was lower (Figure 3F). Each 
cell type performs distinct functions. Campbell et al. constructed 
a comprehensive deconvolution reference comprising 19 fetal 
and 8 maternal cell types derived from term placental villous 
tissue. By applying this reference to eight publicly available 
preeclampsia microarray datasets (173 controls and 157 cases), 
they demonstrated that preeclamptic placentas harbor an increased 
proportion of extravillous trophoblasts (EVTs). Their analysis 
further indicated that cell composition differences account for much 
of the transcriptomic divergence observed between preeclampsia 
and control placentas (Campbell et al., 2023). Consistent with these 
results, our spatial multi-omic profiling revealed disruptions in 
trophoblast composition and function in late-onset preeclampsia. 
Collectively, these findings underscore the central role of trophoblast 
imbalance, particularly an overrepresentation of EVTs, in driving 
disease pathogenesis. KEGG analysis revealed that SCTs are 
primarily involved in the Hippo signaling pathway, PI3K‒Akt 
signaling pathway, and ECM‒receptor interactions. EVTs are 
predominantly associated with cancer pathways. Fibroblasts 
contribute mainly to cytokine‒cytokine receptor interactions, 
PI3K‒Akt signaling pathway, and ECM‒receptor interactions. DEGs 
in MCs were enriched primarily in the Rap1 signaling pathway, 
the apelin signaling pathway, and focal adhesion. In VCTs, the 
DEGs were notably enriched in focal adhesion, the PI3K‒Akt 
signaling pathway, and complement and coagulation cascades 
(Supplementary Figures S3A–E). In line with our results, Mizutani 
et al. found that inhibition of YAP/TAZ–TEAD activity was shown 
to induce CTB differentiation into SCTs, demonstrating that SCT 
development is directly regulated by the Hippo signaling pathway 
(Mizutani et al., 2022). A prior review highlights that EVTs share 
invasive, migratory, and immune-evasive properties with cancer 
cells, reinforcing their close association with tumor-like signaling 
programs, which is consistent with our finding (Pang et al., 2022).

We analyzed cell‒cell communication to explore how cell 
types, including EVTs, SCTs, VCTs, fibroblasts, and key immune 
cells such as MCs, interact with each other at the maternal–fetal 
interface. For this analysis, we utilized the established CellChat 
tool (Jin et al., 2021), which evaluates the interaction strength 
between cell types by assessing the reciprocal expression of all 
possible interactions. As shown in Figure 3G, the color gradient 
indicates the relative strength of interactions, with red representing 
stronger interactions and blue indicating weaker ones. The cell 
types shown include Erythroblasts, EVT, Fibroblast, MC, NK, SCT, 
SMC, T cell, VCT, and pVCT. Notably, fibroblasts show a strong 
interaction with VCT and SCT. This highlights the important 
role of fibroblasts in regulating trophoblast differentiation and 
possibly their involvement in placental remodeling (Ohmaru-
Nakanishi et al., 2018). NK cells, T cells, and pVCT show very 
weak interactions, likely due to their low abundance within the 
placenta. As shown in Figures 3H,I, the THY1 signaling and the 
non-canonical WNT (ncWNT) signaling pathway network were 
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FIGURE 2
ST landscape of placental tissue from patients with preeclampsia and NC individuals. (A) H&E staining image of the placental tissue section from one 
patient with preeclampsia and one NC individual, demonstrating the villous region and the basal plate. (B–D) Unsupervised clustering analysis (UMAP) 
plots, and ST feature plots of 8 clusters in two placental samples. (E) Heatmap showing the top 5 marker genes of each cluster. (F) KEGG was used for 
differential gene enrichment analysis between patients with preeclampsia and NC individuals. (G) UMAP showing the definitions of 10 cell types in the 
placenta, including erythrocytes, EVTs, fibroblasts, macrophages, NK cells, SCTs, T cells, SMCs, VCTs, and pVCTs, based on public single-cell data. (H)
Dotplot showing the representative marker genes of each placenta cell type according to the public single-cell dataset (available at https://
github.com/JustMoveOnnn/preeclampsia/tree/main/single_cell_matrix/data).
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FIGURE 3
Mapping of cell types to spatial locations in two placental samples. (A–C) Mapping of cell types to spatial locations with RCTD in two placental 
samples. (D) Heatmap showing the top 5 differentially expressed genes for each cell type. (E) Immunofluorescence staining of HLA-G in placental 
tissue sections from patients with preeclampsia and NC individuals. Red fluorescence indicates HLA-G expression, while blue fluorescence indicates 
DAPI nuclear staining. (F) Bar chart showing the proportions of different cell types in placental tissue sections from patients with preeclampsia and NC 
individuals. (G) Interaction heatmaps showing the differential interaction strengths among different cell types, including erythrocytes, EVTs, fibroblasts, 
macrophages, NK cells, SCTs, T cells, SMCs, VCTs, and pVCTs. (H,I) Interaction plots showing the ncWNT signaling pathway network and THY1 signaling 
pathway network among different cell types. EVTs: extravillous trophoblasts; NK cells: natural killer cells; SCTs: syncytiotrophoblasts; SMCs: smooth 
muscle cells; VCTs: cytotrophoblasts; pVCTs: proliferating cytotrophoblasts.
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reduced in the preeclampsia group compared with the NC group. 
THY-1 (also known as CD90) is a cell surface glycoprotein involved 
in various cellular processes, including cell adhesion, migration, 
differentiation, proliferation, and apoptosis, and may also modulate 
immune responses and vascular development (Rege and Hagood, 
2006; Valdivia et al., 2023). Specifically in this study, THY1 signaling 
between MCs and SCTs or VCTs in preeclamptic placenta was 
reduced, suggesting a potential impairment of immune responses 
(Figure 3H). The ncWNT signaling pathway in the placenta refers to 
a branch of the Wnt signaling pathways that operates independently 
of the canonical Wnt/β-catenin pathway. In the placenta, ncWNT 
signaling plays a pivotal role in the development and function of 
trophoblast cells, which are essential for implantation, placental 
growth, and fetal development. This signaling pathway influences 
key cellular processes such as migration, differentiation, and 
blood vessel remodeling, all of which are critical for proper 
placental development. Additionally, ncWNT signaling regulates 
cell-cell interactions and cytoskeletal remodeling, both of which 
are crucial for the formation of the syncytiotrophoblast layer 
and the maintenance of normal placental function. Dysregulation 
of ncWNT signaling has been implicated in various pregnancy-
related disorders, including preeclampsia, where improper placental 
development and inadequate blood flow may result from altered 
signaling pathways (Dietrich et al., 2022; Ujita et al., 2018). 
We found a reduced interaction of ncWNT signaling among 
MC, Fibroblasts, VCT, and SCT in the preeclamptic placenta 
compared to NC (Figure 3I). 

3.3 Spatial dynamics of gene and 
metabolite changes during trophoblast 
differentiation

At present, SM and ST analyses can only be conducted separately 
on adjacent placental sections. Despite the small distance of 
10 μm between these sections, variations in section preparation 
and transfer can introduce spatial discrepancies. To better align 
the spatial features of SM and ST data from the placenta, we 
developed a spot-matching method based on the alignment 
principle described by Ravi et al. (2022), which enabled accurate 
spatial registration between transcriptomic and metabolomic 
datasets and served as the foundation for our integrative analysis. 
This technique synchronizes the spatial data from both analyses, 
ensuring accurate point-to-point correspondence. Three key 
parameters, including the final rotation angle, final scaling factor, 
and spatial coordinate of the transcriptomic center, are used to 
adjust and align the spatial coordinates of the metabolomic data 
with those of the transcriptomic data (Figure 4A). This method 
begins by selecting at least six evenly distributed spots across 
the sample range in STs, obtaining their corresponding barcodes, 
and marking these spots on the H&E‒stained image. The spatial 
information from the transcriptomic barcodes and metabolomics 
data is then converted into a unified coordinate system via 
specific formulas. For transcriptomics, the coordinates are 
calculated as UTX = (TransX/2 + 0.5)∗transresolution and UTY = 
TransY∗sqrt (0.75)∗transresolution (Supplementary Table S2). For 
metabolomics, the coordinates are UMX = MetaX∗metaresolution 
and UMY = MetaY∗metaresolution (Supplementary Table S3). 

Next, the distance ratios between identified spots in both 
datasets are calculated to determine the scaling factor. This 
is done via the following formula: Ratio = sqrt [(UTXa-
UTXb)2+(UTYa-UTYb)2]/sqrt [(UMXa-UMXb)2+(UMYa-
UMYb)2] (Supplementary Table S4). The ratios are filtered to 
remove outliers, and the mean scaling factor is computed. 
Afterward, the rotation angles between corresponding spots in 
both datasets are assessed to check for sample rotation. The 
formula used is: Angle = arctan [(UMYa-UMYb)/(UMXa-UMXb)] -
arctan [(UTYa-UTYb)/(UTXa- UTXb)] (Supplementary Table S5). 
This method increases the integration and analysis of spatial data 
from both techniques, allowing identification of cell type-specific 
metabolic changes related to preeclampsia. For identification 
of metabolic changes in the SCTs of the preeclampsia and NC 
groups, PCA was conducted, and heatmaps of differentially 
abundant metabolites are shown in Figures 4B,C. KEGG analysis 
demonstrated that the differentially abundant metabolites in SCTs 
were enriched mainly in sphingolipid metabolism, arachidonic acid 
metabolism, and glycerophospholipid metabolism (Figure 4D). 
PC (32:0) and PC (34:2) were significantly decreased in the 
SCTs of patients with preeclampsia, whereas DG (38:4) and N-
glycoloylganglioside GM2 were significantly increased in the SCTs 
of patients with preeclampsia (Figure 4E).

To explore the spatiotemporal transcriptomic and metabolic 
characteristics during the differentiation of trophoblasts, we 
selected spots in VCTs, EVTs and SCTs for pseudotime analysis 
via Monocle2. We constructed a trajectory of trophoblasts 
differentiation, in which the initiation of differentiation (Prebranch) 
occurred in the VCTs. The trajectory subsequently diverged into two 
branches (Branch 1 and Branch 2) on the basis of the difference in 
the transcriptional profile. SCTs were distributed mainly in Branch 1, 
whereas EVTs predominantly influenced the evolutionary directions 
of Branch 2 (Figure 5A). A Heatmap was used to display the 
expression patterns of pseudotime-specific genes in the trophoblast 
differentiation trajectory (Figure 5B). According to the results of 
point-to-point registration, the spot involved in VCT, EVT and 
SCT also has metabolite level data. Spots in different branches were 
then projected to spatial metabolism, and the trajectory of metabolic 
changes during trophoblast differentiation was depicted (Figure 5C). 
It is interesting to find a dual peak for EVTs in Figure 5C. This 
observation can be explained by the heterogeneity in EVT origins. 
While most EVTs are derived from the differentiation of VCTs, there 
is evidence suggesting that EVT subpopulations can arise directly 
from other sources, such as partially differentiated precursor cells 
or trophoblast stem cells (TSCs) in the early placenta. These TSCs 
have the potential to bypass the VCT stage and differentiate directly 
into EVTs or other trophoblast types, contributing to the dual-peak 
pattern observed (Nandi et al., 2018).

Sphingomyelin [d18:2(4E, 14Z)/24:2(5Z, 9Z)], Sphingomyelin 
(d42:0), and phosphatidyl ethanolamine (PE) (42:3) decreased 
during the differentiation of VCTs to SCTs and EVTs (Figure 5D). 
PC (38:2) remained unchanged during VCT to SCT differentiation 
but increased during VCT to EVT differentiation. DG (38:4), 
PC (32:3), GM2, lactosylceramide (LacCer) (d34:1), and ceramide 
(Cer) (d32:0) decreased during VCT to SCT differentiation but 
increased during VCT to EVT differentiation (Figure 5E). PE 
(44:11), phosphatidylglycerol (PG) (42:8), phosphatidylserine (PS) 
(40:6), phosphatidate (44:5), PC (20:1), and PC (18:0) increased 
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FIGURE 4
Differentially abundant metabolite ex pression in SCTs between patients with preeclampsia and NC individuals. (A) Schematic workflow of the 
“spot-match” method. This method begins by selecting at least six evenly distributed spots across the sample range in STs, obtaining their 
corresponding barcodes, and marking these spots on the H&E-stained image. The spatial information from transcriptomics barcodes and 
metabolomics data is then converted into a unified coordinate system via specific formulas. Next, the distance ratios between identified spots in both 
datasets are calculated to determine the scaling factor. The ratios are filtered to remove outliers, and the mean scaling factor is computed. Afterward, 
the rotation angles between corresponding spots in both datasets are assessed to check for sample rotation. If the deviation exceeds 5°, adjustments to 
the transformation are made. Finally, the conversion of SMs coordinates to match those from STs is carried out using the final scaling factor, rotation 
angle, and central coordinates. (B) PCA was used to reduce dimensionality and reveal key metabolite patterns in SCTs between patients with 
preeclampsia and NC individuals. (C) Heatmap showing the differentially abundant metabolites of the SCTs between patients with preeclampsia and 
NC individuals. (D) KEGG was used to identify and interpret biological pathways and networks that are significantly altered in SCTs. (E) Lollipop map was 
used to visualize the relative abundance of metabolites of SCTs between patients with preeclampsia and NC individuals.
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FIGURE 5
Pseudotime analysis revealing the dynamic metabolite and gene change patterns during trophoblast differentiation. (A) Trajectory reconstruction of 
trophoblast differentiation in placental tissues consisting of three branches: prebranch (VCTs), Branch 1 (SCTs), and Branch 2 (EVTs). Each point 
corresponds to a spot. (B) Heatmap plot displaying the expression patterns of pseudotime-specific genes associated with the trajectory of trophoblast 
differentiation. (C) Density plot illustrating the temporal changes in metabolic activity across VCTs, SCTs, and EVTs. This plot displays the frequency 
distribution of pseudotime scores assigned to each spot, with the pseudotime representing the progression of metabolic changes over time. (D)
Sphingomyelin (m/z 809.6589, 855.6732), and PE (m/z 826.6346) decreased during the differentiation of VCTs to SCTs and EVTs. (E) PC (m/z 836.6184) 
remained unchanged during VCT to SCT differentiation but increased during VCT to EVT differentiation. DG (m/z 627.5386), PC (m/z 728.5266), GM2 
(m/z 744.6417), LacCer (m/z 844.6165), and Cer (m/z 556.4625) decreased during VCT to SCT differentiation but increased during VCT to EVT 
differentiation. (F) PE (m/z 820.5336), PG (m/z 847.5538), PS (m/z 836.5394), phosphatidate (m/z 829.5653), PC (m/z 876.5647), and PC (m/z 768.5801) 
increased during VCT to SCT differentiation but decreased during VCT to EVT differentiation. PE: phosphatidyl ethanolamine; PC: phosphatidylcholine; 
GM2: GM2 ganglioside; LacCer: lactosylceramide; Cer: ceramide; PG: phosphatidylglycerol; PS: phosphatidylserine; EVTs: extravillous trophoblasts; 
SCTs: syncytiotrophoblasts; VCTs: cytotrophoblasts.
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during VCT to SCT differentiation but decreased during VCT to 
EVT differentiation (Figure 5F). 

3.4 Dysregulated glycerophospholipid 
metabolism is a metabolic hallmark in 
preeclampsia

Phospholipids are essential components of cellular membranes 
and play crucial roles in signaling processes that are vital for 
cell growth and communication. Figure 6A shows a schematic of 
glycerophospholipid metabolism. Glycerophospholipids feature a 
glycerol backbone with three carbon atoms, and their synthesis 
involves modifications at the phosphate head group attached 
to the C3 position (Ziegler and Tavosanis, 2019). Lipoprotein 
lipase (LPL) plays a crucial role in converting triacylglycerol 
(TG) to DG, while the diacylglycerol kinase zeta (DGKZ) 
gene is essential for converting DG to PA. PC is the most 
prevalent phospholipid, while PE is the second most common 
phospholipid and is formed through headgroup exchange 
from PS (Butler et al., 2020). PS is synthesized through a 
headgroup exchange mechanism involving PC and PE. The key 
contributors to membrane lipid production include choline and 
ethanolamine (Joseph et al., 2020).

Analysis combining the ST and SM data revealed that, in 
the placental glycerophospholipid metabolic flux, products such 
as DG, PA, PG, PS, phosphatidylinositol (PI), PE, and PC, along 
with genes such as LPL and DGKZ, presented distinct distribution 
patterns. These findings indicate that disrupted glycerophospholipid 
metabolism is a key metabolic characteristic in the placenta and 
might critically contribute to the development of preeclampsia. Our 
results revealed that DG (38:4, m/z 627.53860) had a relatively 
high abundance in the SCTs of preeclampsia, while there was no 
significant difference in TG (46:6, m/z 803.55520) (Figure 6C). 
ST data revealed that the LPL gene was more abundant in 
the villous region of the preeclampsia group than in that of 
the NC group, which was consistent with the increased level 
of DG (38:4, m/z 627.53) (Figure 6B). DGKZ gene expression 
decreased in the villous region in preeclampsia, which was 
consistent with the distribution of its downstream metabolite 
PA (42:0, m/z 833.59400) (Figures 6D,E). Compared with that 
in the NC group, the level of PA (42:0, m/z 833.59400) in the 
SCTs and VCTs of the preeclampsia group decreased significantly 
(Supplementary Figure S4A). There was no significant difference 
in cyclic diphosphate diacylglycerol (CDP-DAG) (40:5, m/z = 
1094.51880) in the placentas of the preeclampsia and NC groups. 
However, its downstream metabolites PG (36:2, m/z 775.54640), 
PE (20:3, m/z 788.53230), PC (32:0, m/z 756.55620), PS (38:3, 
m/z 794.53960), and PI (36:1, m/z 885.54840) showed a decreased 
distribution in the villous region of the preeclampsia group 
(Supplementary Figures S4B–D, S5A,B). Consistent with our KEGG 
analysis, a recent integrated metabolomic and lipidomic study 
of preeclamptic placentas demonstrated that both metabolites 
and lipids were predominantly altered in the glycerophospholipid 
metabolism pathway. Specifically, levels of PC, PE, and PS were 
decreased, whereas LPC and LPE were increased, reflecting 
abnormal membrane remodeling and activation of phospholipase 
A2–driven lipid turnover (Zhang et al., 2022). These disturbances 

are implicated in apoptosis, inflammation, mitochondrial stress, 
and ferroptosis, reinforcing the notion that glycerophospholipid 
dysregulation contributes critically to preeclampsia pathogenesis. 

4 Discussion

We present the first study on preeclampsia addressing the 
clinically significant question of placental heterogeneity through 
spatial transcriptomics (ST) and spatial metabolomics (SM) 
techniques. Spatial omics is pivotal in understanding cellular 
heterogeneity and interactions within tissue microenvironments. 
While previous research extensively mapped placental 
transcriptomics, these studies lacked the spatial resolution needed 
to correlate gene expression with functional outcomes. Our 
integrative “spot-match” method combines ST, SM, and public 
single-cell sequencing data to identify distinct transcriptomic and 
metabolic patterns in LOPE placentas, uncovering cell type-specific 
metabolite profiles and mapping lipid metabolism pathways crucial 
to trophoblast differentiation.

The placenta is essential for pregnancy, mediating nutrient 
transfer, immune tolerance, and maternal–fetal adaptation 
(Pavličev et al., 2017). Its development involves critical processes 
such as the differentiation of trophoblast cells, the remodeling 
of maternal uterine vessels, and the establishment of immune 
tolerance at the maternal–fetal interface (Wei et al., 2022). The 
chorionic villus, the placenta’s functional unit, is composed of 
a stromal core, VCTs, and multinucleated SCTs, which facilitate 
the exchange of gases and nutrients between the mother and 
fetus. VCTs, which act as progenitor cells, either fuse to create 
SCTs or develop into EVTs that anchor the placenta and remodel 
uterine arteries (Liu et al., 2018). Disruptions in these placenta-
specific cells, including VCTs, SCTs, EVTs, and macrophages 
are linked to placental diseases such as preeclampsia, where 
inadequate EVT invasion and uterine spiral artery dysfunction 
are major contributors (Pique-Regi et al., 2019). Our analysis 
revealed increased proportions of VCTs and fibroblasts but 
reduced SCTs in LOPE placentas compared to controls, reflecting 
impaired trophoblast differentiation. Our team previously 
demonstrated that dysregulated trophoblast syncytialization, 
mediated by MLL1 through epigenetic modulation of the Hippo 
signaling pathway, plays a key role in the development of 
preeclampsia (Wu et al., 2024).

Metabolic reprogramming was another key feature identified. 
Changes in lipid levels have been identified as potential 
risk factors for preeclampsia (Lu et al., 2021). Yang et al. 
suggested that abnormalities in lipid metabolism could be 
key risk factors for the onset and progression of preeclampsia 
(Yang et al., 2022). In this study, we found that sphingolipid 
metabolism and glycerophospholipid metabolism were significantly 
reprogrammed spatially in the placenta of patients with 
preeclampsia. We employed SMs to visualize the spatial 
distribution of various lipids, including DG, PC, PE, PS, PG, 
PI, and PA, within placental tissues. Our findings revealed 
several spatial patterns: most glycerophospholipids, except 
for DG, showed reduced levels in placental tissues affected 
by preeclampsia, whereas some sphingolipids, such as GM2, 
presented markedly increased levels in the villous regions of 
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FIGURE 6
Metabolic reprogramming of glycerophospholipid metabolism in the placenta of patients with preeclampsia. (A) Schematic maps of 
glycerophospholipid metabolism: essential metabolites and enzymes involved in glycerophospholipid metabolism in the placenta of patients with 
preeclampsia. (B) STs images of the LPL gene in the placentas of patients with preeclampsia and NC individuals. Violin plot showing the LPL expression 
level in the villous region of the placenta was increased in the PE group compared with the NC group (p < 2.22e-16). (C) SM images of DG (38:4) in six 
placenta samples (intensity in the MS image color scale is the relative value, and the intensity in the gene image color scale is log2 transformed). The 
intensity of DG(38:4) was significantly increased in the PE group compared with the NC group (p < 0.001, statistical details are 
provided in Supplementary Table S6). (D) ST images of the DGKZ gene in the placentas of the preeclampsia and NC groups. (E) Violin plot showing the 
DGKZ expression level in the villous region of the placenta was decreased in the PE group compared with the NC group (p < 2.22e-16). LPL: lipoprotein 
lipase; DGKZ: diacylglycerol kinase zeta.
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the placenta in patients with preeclampsia compared with those 
in the NC group. Concurrent ST analysis indicated that the 
expression of genes such as LPL and DGKZ, which are involved 
in phospholipid synthesis, also shifted accordingly. Similarly, 
He et al. also reported that PCs were generally decreased in 
preeclampsia, which is associated with alterations in phospholipid 
metabolism (He et al., 2021).

Sphingolipids, including Sphingomyelin, are vital for 
maintaining cell membrane stability and function (Hannun 
and Obeid, 2018). In preeclampsia, a condition characterized 
by oxidative stress, abnormal sphingolipid metabolism occurs. 
Studies have demonstrated that oxidative stress leads to excessive 
production of ceramides, which accumulate and increase 
autophagy in trophoblast cells (Melland-Smith et al., 2015). 
Gaudio et al. reported that Sphingomyelin levels are markedly 
elevated in the chorionic arteries of placentas affected by 
preeclampsia (Del Gaudio et al., 2020). Notably, lipid alterations 
strongly impact the differentiation of trophoblasts. Sphingomyelin 
(d42:0) and PE (42:3) decreased during the differentiation of VCTs 
to EVTs, whereas PC (38:2) increased during the differentiation 
to EVT. DG (38:4), PC (32:3), GM2, LacCer (d34:1), and Cer 
(d32:0) decreased during differentiation to SCTs, but increased 
during differentiation to EVTs. PE (44:11), PG (42:8), PS (40:6), PA 
(44:5), PC (20:1), and PC (18:0) increased during the differentiation 
of VCTs to SCTs, while decreased in the differentiation of 
VCTs to EVTs.

STs offers a major advantage by correlating RNA molecules 
to specific tissue areas, enabling the precise identification of 
molecular differences among various tissue and cell types. 
This capability is particularly valuable for distinguishing tissue 
types that lack clear histological boundaries, such as the villous 
regions in the placenta. A key limitation of STs is that each 
spot typically represents an average expression profile from 
multiple cells. In our study, we address this challenge by using 
RCTD to deconvolve these mixed profiles, allowing a more 
detailed identification of transcriptional programs within a 
broader tissue context. Building on the foundational work of 
Liu et al. (2022), Greenbaum et al. (2023), who explored STs 
at the maternal–fetal interface during early pregnancy, our 
research extends these findings by providing both metabolic and 
transcriptomic data from the placenta during late pregnancy. 
This advancement not only helps elucidate placental function and 
development over time but also offers new insights into the dynamic 
changes occurring at the maternal–fetal interface as pregnancy 
progresses.

A key innovation of this study was the development of the 
“spot-match” method, addressing alignment inaccuracies between 
ST and SM data caused by slice thickness variation. Previously, the 
integration of STs and SMs involved defining specific target regions 
on the ST and SM slices, calculating the average expression values 
for these regions, and then comparing them (Author Anonymous, 
2019; Vicari et al., 2024; Chen et al., 2024). However, this method 
is limited by inaccuracies due to the variation in thickness 
between consecutive slices. To address this issue, we developed 
the “spot-match” method, which substantially improves accuracy 
by performing point-to-point integration of the ST and SM data. 
This approach calculates the final scaling factor, rotation angle, and 
central coordinates to ensure precise alignment.

This study has some limitations. The spatial metabolomics 
analysis was based on a relatively small number of samples (n 
= 3 per group), which, although acceptable for initial discovery 
in spatial omics studies, may reduce statistical power. The spatial 
transcriptomics cohort included only one sample per group and 
was not intended for between-group statistical comparisons. These 
limitations should be addressed in future studies through larger 
sample sizes and independent validation.

In the future, the integration of spatial proteomics is expected 
to shed light on key events in the development of preeclampsia. 
Combining these approaches will not only create a more detailed 
molecular map of the placenta at single-cell resolution but also 
help identify post-transcriptional modifications through advanced 
proteomics. Research should emphasize multiomic approaches 
to placental histopathology at the single-cell level. A broad 
range of samples from various placental subtypes will increase 
our understanding of the mechanisms underlying preeclampsia. 
Continued sharing of multimodal datasets will further contribute to 
our collective knowledge of complex placental disorders. 

5 Conclusion

In conclusion, our study provides an exploratory demonstration 
of the integration of spatial metabolomics (SM) and spatial 
transcriptomics (ST) for characterizing metabolic remodeling and 
interactions within heterogeneous placental tissues. By jointly 
imaging and linking metabolite, lipid, and gene expression profiles, 
we highlight spatially convergent patterns and their associations 
with key metabolic pathways. These findings suggest trophoblast-
associated metabolic dependencies and immune–metabolic 
alterations that may contribute to placental adaptation in late-onset 
preeclampsia. While limited by sample size, our results underscore 
consistent biological themes across modalities and offer hypothesis-
generating insights that can guide future large-scale investigations 
and the development of potential therapeutic targets.
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SUPPLEMENTARY FIGURE S1
Differentially abundant metabolite analysis between patients with preeclampsia 
and NC individuals. (A) PCA was used to reduce dimensionality and reveal key 
patterns in the SM data. (B) Heatmap showing the differentially abundant 
metabolites of the placenta between patients with preeclampsia and NC 
individuals. (C) KEGG pathway analysis was used to identify and interpret 
biological pathways and networks that were significantly altered, providing 
insights into the functional impact of the observed metabolic changes. (D)
Lollipop map was used to visualize the relative abundance of metabolites 
between patients with preeclampsia and NC individuals. (E) SM images of 
N-Glycoloylganglioside GM2 in six placenta samples. The intensity of GM2 was 
significantly increased in the PE group compared with the NC group (p < 0.001, 
statistical details are provided in Supplementary Table S6).

SUPPLEMENTARY FIGURE S2
Representative marker genes of each cluster and each cell type in the placenta.
(A) Spatial expression images of representative genes in each cluster in the 
placental tissue sections. (B) Pie chart showing cell type compositions 
in each spot.

SUPPLEMENTARY FIGURE S3
KEGG analysis of different cell types between patients with preeclampsia and NC 
individuals. (A) KEGG analysis revealed that SCTs cells are primarily involved in the 
Hippo signaling pathway, PI3K‒Akt signaling pathway, and ECM‒receptor 
interaction. (B) Fibroblasts mainly function in cytokine‒cytokine receptor 
interaction, PI3K‒Akt signaling pathway, and ECM‒receptor interaction. (C) DEGs 
in MC cells are enriched primarily in the Rap1 signaling pathway, the apelin 
signaling pathway, and focal adhesion. (D) EVTs are predominantly associated 
with cancer pathways. (E) In VCTs, DEGs related to focal adhesion, the PI3K‒Akt 
signaling pathway, and the complement and coagulation cascades were notably 
enriched. KEGG: Kyoto Encyclopedia of Genes and Genomes; EVTs: extravillous 
trophoblasts; SCTs: syncytiotrophoblasts; VCTs: cytotrophoblasts.

SUPPLEMENTARY FIGURE S4
Visualization of the reprogrammed glycerophospholipid metabolic pathway in the 
placenta of patients with preeclampsia. (A–D) SM images of PA (42:0), PG (36:2), 
PC (32:0), and PE (20:3) in six placenta samples (intensity in the MS image color 
scale is the relative value, and the intensity in the gene image color scale is log2 
transformed). The difference is statistically significant when p-value <0.05. 
Statistical details are provided in Supplementary Table S6.

SUPPLEMENTARY FIGURE S5
Visualization of the reprogrammed glycerophospholipid metabolic pathway in the 
placenta of patients with preeclampsia. (A,B) SM images of PS (38:3) and PI (36:1) 
in six placenta samples (intensity in the MS image color scale is the relative value, 
and the intensity in the gene image color scale is log2 transformed). The 
difference is statistically significant when p-value <0.05. Statistical details are 
provided in Supplementary Table S6.

SUPPLEMENTARY FIGURE S6
(A,B) UMAP revealing different cell types in the decidua and placenta based on 
public single-cell data. (C,D) The pie charts of cell proportions within each spatial 
spot in two placental samples. (E,F) Mapping of cell types to spatial locations with 
RCTD in two placental samples.

SUPPLEMENTARY TABLE S1
Clinical characteristics of placental tissue samples from patients with late-onset 
preeclampsia (PE) and normal controls (NC). Information includes maternal age, 
gestational age, parity, gestational age at PE diagnosis and delivery, fetal sex, 
sampling region (basal plate vs. chorionic villi), and distance from the cord 
insertion site.

SUPPLEMENTARY TABLE S2
Barcodes and spatial coordinates of representative spots in the spatial 
transcriptomics (ST) dataset. Each spot has a unique spatial barcode (Barcode), 
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which can be used to identify its precise location on the tissue section. TransX and
TransY denote the spatial coordinate values (x and y) assigned to each spot in the 
ST platform.

SUPPLEMENTARY TABLE S3
Spatial coordinates of representative spots in the spatial metabolomics (SM) 
dataset. MetaX and MetaY denote the x and y coordinate values assigned to each 
spot in the SM platform.

SUPPLEMENTARY TABLE S4
Scaling ratio results calculated from pairwise labeled spots. The table lists the 
Euclidean distances between paired locations in the spatial transcriptomics (ST) 
and spatial metabolomics (SM) datasets, together with the corresponding scaling 
ratios used to assess alignment accuracy.

SUPPLEMENTARY TABLE S5
Pairwise rotation angle values (in degrees) calculated between spatial 
transcriptomics (ST) and spatial metabolomics (SM) spots. These angles were used 
to evaluate rotational consistency across modalities in the alignment procedure.

SUPPLEMENTARY TABLE S6
List of differential metabolites identified between late-onset preeclampsia (PE) and 
normal control (NC) placentas. The table includes metabolite features with their 
annotation, m/z, compound class, and statistical parameters (VIP, fold change, 
p-value, FDR).

SUPPLEMENTARY TABLE S7
Representative list of lipid species identified in the analysis of characteristic 
metabolic alterations during the process of cellular development. Full lipid 
IDscorrespond to annotated lipid molecules, with their measured m/z values and 
detected adduct types.

SUPPLEMENTARY TABLE S8
Summary of orthogonal partial least-squares discriminant analysis (OPLS-DA) 
model performance for PE vs. NC groups. The table reports model parameters 
including the number of predictive (PRE) and orthogonal (ORT) components, total 
components (N), cumulative explained variance (R2X(cum), R2Y(cum)), 
cumulative predictive ability (Q2(cum)), and cross-validation
values (R2, Q2).
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