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Purpose: To develop and evaluate deep learning (DL) models for detecting
multiple retinal diseases using bimodal imaging of color fundus photography
(CFP) and optical coherence tomography (OCT), assessing diagnostic
performance and generalizability.

Methods: This cross-sectional study utilized 1445 CFP-OCT pairs from 1,029
patients across three hospitals. Five bimodal models developed, and the model
with best performance (Fusion-MIL) was tested and compared with CFP-MIL
and OCT-MIL. Models were trained on 710 pairs (Maestro device), validated on
241, and tested on 255 (dataset 1). Additional tests used different devices and
scanning patterns: 88 pairs (dataset 2, DRI-OCT), 91 (dataset 3, DRI-OCT), 60
(dataset 4, Visucam/VG200 OCT). Seven retinal conditions, including normal,
diabetic retinopathy, dry and wet age-related macular degeneration, pathologic
myopia (PM), epiretinal membran, and macular edema, were assessed. PM ATN
(atrophy, traction, neovascularization) classification was trained and tested on
another 1,184 pairs. Area under receiver operating characteristic curve (AUC)
was calculated to evaluated the performance.

Results: Fusion-MIL achieved mean AUC 0.985 (95% Cl 0.971-0.999) in
dataset 2, outperforming CFP-MIL (0.876, P < 0.001) and OCT-MIL (0.982,
P = 0.337), as well as in dataset 3 (0.978 vs. 0.913, P < 0.001 and 0.962,
P = 0.025) and dataset 4 (0.962 vs. 0.962, P < 0.001 and 0962, P =
0.079). Fusion-MIL also achieved superior accuracy. In ATN classification, AUC
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ranges 0.902-0.997 for atrophy, 0.869-0.982 for traction, and 0.742-0.976 for
neovascularization.

Conclusion: Bimodal

Fusion-MIL improved diagnosis over single-modal

models, showing strong generalizability across devices and detailed grading
ability, valuable for various scenarios.

KEYWORDS

deep learning, diagnosis, fundus photography, optical coherence tomography, retinal

disease

1 Introduction

Retinal diseases are one of the leading causes of irreversible
blindness worldwide, including age-related macular degeneration
(AMD) and diabetic retinopathy (DR) (Bourne et al., 2013). Color
fundus photography (CFP) and optical coherence tomography
(OCT) are widely used imaging modalities, with CFP providing
en-face views and OCT offering high-resolution cross-sectional
scans. Although deep learning (DL)-based screening or diagnosis
of retinal diseases using CFPs has been extensively investigated,
CFP alone may be insufficient for detecting certain retinal
conditions due to limitations in information dimensions (Ting et al.,
2019; Schmidt-Erfurth et al., 2018). For instance, the Atrophy-
Traction-Neovascularization (ATN) classification system for myopic
maculopathy emphasizes both en-face and cross-sectional changes
of the retina, which requires the application of CFP and OCT
technology for better grading (Ruiz-Medrano et al., 2019). Other
retinal diseases can also rely on such enhanced imaging strategy
to improve diagnostic accuracies (Midena et al., 2020; Tran and
Pakzad-Vaezi, 2018; Acén and Wu, 2018; Garrity et al., 2018; Sandhu
and Talks, 2005; Liu et al., 2020).

Thus, with the emergent concept of information fusion from
different medical images, multimodal image-based DL algorithms
have gained unique advantage of reflecting a more comprehensive
understanding of the underlying pathology (Li et al., 2024; Jin et al.,
2025; Wang et al., 2024; Yang et al., 2022). Currently, many studies
have explored multimodal DL systems for diagnosing specific
retinal disorders such as DR (Hervella et al., 2022), pathological
myopia (Xu et al,, 2025), AMD (Jin et al., 2022; Chen et al,
2021; De Silva et al,, 2021; Yang et al., 2020), polypoidal choroidal
vasculopathy (Xu et al,, 2021), and glaucoma (Xiong et al., 2022),
demonstrating advantages to single modality-based models to
varying degrees. In contrast, using multimodal imaging-based
DL models to simultaneously detect multiple fundus conditions
remains poorly reported (Li et al, 2020; Siikei et al, 2024;
Ma et al,, 2025/01; Ou et al, 2024). Advances in this regard is
exceptional meaningful, as current medical AI technologies are

Abbreviations: AMD, age-related macular degeneration; AUC, areas under
receiver operating characteristic curves; Cl, confidence interval; CFP, color
fundus photography; DL, deep learning; DR, diabetic retinopathy; DRI, Deep
Range Imaging; ERM, epiretinal membrane; FA, fluorescein angiography;
ICGA, indocyanine green angiography; ME, macular edema; MM-MIL,
multimodal multi-instance learning; OCT, optical coherence tomography;
PM, pathologic myopia; SD-OCT, spectral-domain optical coherence
tomography; SS-OCT, swept-source optical coherence tomography.
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mainly aimed for situations like screening and auxiliary diagnosis,
where comprehensive detection of the fundus is of vital importance.

In this multicenter study, we developed and evaluated DL
models using both CFP and OCT to diagnose seven common retinal
conditions, including normal retina and six pathologies: diabetic
retinopathy (DR), dry and wet age-related macular degeneration
(AMD), pathologic myopia (PM), epiretinal membrane (ERM), and
macular edema (ME). This study aimed to evaluate the diagnostic
performance and generalizability of bimodal DL models across
different devices and scanning protocols. To further explore the
capability of deep learning for precise and detailed disease grading,
we conducted a study on the performance of ATN (atrophy, traction,
and neovascularization) grading classification of PM.

2 Methods

This study was approved by the Institutional Review Board at
Peking Union Medical College Hospital (PUMCH, approval number
S-K2038), with written consent waived due to the retrospective
nature of the study, and the de-identified data used. It was conducted
in accordance with the tenets of the Declaration of Helsinki. The
proposed workflow is illustrated in Supplementary Figure S1.

2.1 Datasets

2.1.1 Inclusion/exclusion criteria

We retrospectively collected the macula-centered retinal
CFP and OCT images from 1 June 2018, to 1 June 2022.
These images were obtained and diagnosed in PUMCH, Hunan
Provincial People’s Hospital, and Guizhou Provincial People’s
Hospital in China (Figure 1). Inclusion criteria: (1) Paired CFP
and OCT images captured simultaneously using a single device
or on the same day using separate devices. (2) For patients with
multiple paired images, only those within an interval of more
than 6 months were included. (3) Definite diagnosis of the ocular
conditions which could be obtained from the medical history or
corresponding imaging methods, including CFP, OCT, fluorescein
angiography (FFA), and indocyanine green angiography (ICGA),
etc. Exclusion criteria: Image quality judged not readable because of
poor visibility or undesirable field of view, such as a small pupil and
opacity of the refractive media.

2.1.2 Image annotation

All images were de-identified and removed all personal
information, including name, birth date, capture date, and
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Center 1

Hunan Provincial People's Hospital

Center 2

Guizhou Provincial People's Hospital

Center 3

Peking Union Medical College Hospital

l

P —

Training dataset Data for multiple retinal condition

710 paired CFP-OCT data
(Topcon OCT-1 Maestro)

1571 patients
1803 pairs of CFP and OCT images

Data for ATN classification Training dataset

1233 patients
1582 pairs of CFP and OCT images

705 paired CFP-OCT data
(Topcon DRI-OCT)

I

|

Validation dataset
Data after quality inspection

241 paired CFP-OCT data

(Topcon OCT-1 Maestro) 1029 patients

1431 pairs of CFP and OCT images

Data after quality inspection

942 patients
1184 pairs of CFP and OCT images

Internal test dataset 1

255 paired CFP-OCT data
(Topcon OCT-1 Maestro)

Validation dataset

239 paired CFP-OCT data

Internal test dataset 2

88 paired CFP-OCT data
(Topcon DRI-OCT)

Ground truth labeling

1) Clinical diagnosis confirmed with additional clinical information
2) Further confirmed by at least 2 independent ophthalmologists

(Topcon DRI-OCT)

External test dataset 3

91 paired CFP-OCT data
(Topcon DRI-OCT)

External test dataset 4

60 paired CFP-OCT data
(Visucam & VG200)

FIGURE 1

Internal test dataset

240 paired CFP-OCT data
(Topcon DRI-OCT)

Datasets in the current study. ATN, A for atrophy, T for traction, N for neovascularization; CFP, color fundus photography; OCT, optical coherence

tomography; PM, pathologic myopia.

gender, except for the diagnoses. We recruited seven licensed
ophthalmologists from three hospitals to serve as readers (details
are provided in Supplementary Table S1). Five readers labeled and
checked the diagnosis by observing images and reviewing clinical
information. Each image pair was evaluated by at least two readers,
with two senior readers resolving controversies; unresolved cases
were discarded. The quality of images was assessed before labeling,
and images were excluded if they were judged not readable by
even 1 reader.

2.1.3 Dataset composition

We constructed multiple datasets from images acquired using
various fundus photography (FP) and OCT devices for evaluation.
We firstly collected CFP and OCT images captured with 3D OCT-
1 Maestro (Topcon, Japan) consecutively in PUMCH. One CFP and
12 matching 9-mm radial-line cross-sectional spectral-domain (SD)
OCT images centered on fovea were captured simultaneously by this
device. This scanning pattern were used to create training dataset,
validate dataset, and in-house test dataset 1 at the patient level,
while ensuring the distribution manner of paired data was 8:1:1.
The distribution of diagnosis was analyzed, and we found that the
following retinal conditions were the most frequent diagnoses in this
study, including normal condition, DR, dry AMD, wet AMD, PM,
ERM, and ME. Thus, the 7 diagnoses with most clinical significance
were selected to further test the diagnostic performance of the DL
models while remaining simplicity.
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To demonstrate the generalizability of our DL models, we
further tested our DL models with three additional test datasets
of images captured using different scanning patterns and devices
from various hospitals. In test dataset 2 and 3, OCT and CFP
images captured simultaneously were collected in PUMCH and
Hunan Provincial People’s Hospital, respectively. These images were
obtained using another swept-source (SS) OCT device, Topcon
Deep Range Imaging (DRI) Triton OCT (Topcon, Japan). Of note,
since patients visiting PUMCH were asked to adherence to the
principle of using one imaging machine for follow-ups, ensuring
no leakage of patient data between test dataset 1 and 2. In order
to evaluate the feasibility of the DL models in a real-world clinical
setting, the width of OCT scanning could be 6 mm, 9 mm, or 12 mm
in test dataset 2. Moreover, considering that OCT and CFP images
were usually not captured simultaneously using one device in clinical
practice, we created another test dataset 4, in which OCT images
were captured with a SS-OCT device (VG200, SVision Imaging, Ltd.,
China), and CFP images were captured with another camera (Zeiss
Visucam 200, Zeiss, Germany) on the same day. Again, the width of
OCT images in test dataset 4 could be ranging from 6 to 14 mm in
various scanning patterns, including single line, radial lines, or cube
scanning patterns. Considering that there was no published standard
dataset of bimodal imaging for multiple retinal diseases, we did not
use published datasets in this study.

To investigate the DL models’ capability for fine and detailed
disease classification, we conducted a study on the ATN grading

frontiersin.org


https://doi.org/10.3389/fcell.2025.1665173
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Gu et al.

classification of PM using an independent ATN sub-dataset. The
paired CFP and OCT images were captured using Topcon DRI OCT.

2.2 Development of the DL models

Considering that various retinal changes are evident on different
imaging modalities, we propose a bimodal multi-instance learning
network that targets OCT and CFP classification on seven retinal
conditions to use information from two modalities fully based on
previous work (Jin et al., 2022). Fundamentally, CFP and OCT
imaging modalities capture distinct types of retinal information.
CFP provides two-dimensional surface visualization, enabling
the assessment of retinal structures and vascular patterns. In
contrast, OCT generates cross-sectional views with depth resolution,
revealing layer-specific architectural details. To address these
inherent differences, our DL model incorporates modality-specific
feature extraction branches. Specifically, CFP images are processed
via spatial partitioning into patches to facilitate localized pathology
detection, whereas OCT volumes are decomposed into individual
B-scans for cross-sectional analysis.

In our framework, a pair of inputs contains a series of radial
scanning OCT b-scans and a CFP image. We developed several
models using multimodal multi-instance learning (MM-MIL)
modules, and the model of best performance was selected for further
analysis. The proposed MM-MIL framework employs adaptive
attention weights that dynamically prioritize modality-specific
features based on diagnostic relevance. For surface-level pathologies,
the model emphasizes CFP-derived features. Conversely, for
structural abnormalities like macular edema, it assigns greater
weight to OCT-based features. This adaptive integration allows
the model to effectively leverage the complementary strengths
of each imaging modality, enhancing diagnostic accuracy. The
Al framework describes in Supplementary Figure S2. A simplified
schematic workflow is shown in Figure 2. We stacked 1, 2, 4, and
8 MM-MIL modules in the first four models respectively. As for
the fifth model, we ensembled the outputs from four MM-MIL
modules that worked independently to gain the final decision, which
simulated the process in the real world that multiple physicians
make the decision together (Wu et al., 2024). Finally, we developed
five models for bimodal imaging: MM-MILx1, x2, x4, x8, and
-ensemble. Through empirical evaluation, we found that the x4
configuration achieved the best performance and selected it as our
default architecture. The ensemble predictions are generated by this
optimized MM-MILx4 model, which processes the same multi-
modal inputs through four MM-MIL modules. For visualization, we
employed attention-weighted activation maps to highlight areas of
interest in the model.

In order to compare the performance of models based on various
imaging modalities, DL models for only CFP and for only OCT
were developed. Since OCT scans consisting of a sequence of images
are suitable for MILs, the MIL method was also applied to OCT
images for classification. For CFP images, a classic and efficient
deep learning algorithm, Resnet50, was trained to achieve multi-
label classification. (He et al., 2016). Therefore, in our study, three
DL models, CFP-MIL, OCT-MIL, and Fusion-MIL, were developed
for CFP images, OCT images, and bimodal images, respectively.
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2.3 Evaluation of the DL models and
statistical analysis

The diagnostic performance of our DL models was
evaluated using four independent test datasets for various
purposes. (Yang et al, 2023). We first compared the five DL
models based on bimodal imaging, and the models with the best
performance were used for further evaluation. Areas under receiver
operating characteristic curves (AUC) were computed for each
diagnosis with a 95% confidence interval (CI). Some CFP and OCT
images had more than one diagnosis label, so accuracy was also
evaluated. We calculated “complete accuracy” to investigate whether
all diagnoses given by DL models for one case were the same as
ground truth, and “partial accuracy” to find out whether at least
one of the diagnoses given by DL models for one case was the same
as ground truth. According to the results from model selection, a
one-sided test can be used. The DeLong test is used for comparing
AUC values, whereas accuracy is compared with a chi-square test.

We also devised another experimental setting to evaluate the
superiority of DL models based on bimodal imaging of CFP and
OCT to models based on single-modal imaging. For each diagnosis,
the diagnostic performance of DL models based on CFP, OCT, and
bimodal imaging were evaluated and compared with each other. The
evaluated retinal conditions were common in clinical settings and
were not difficult to diagnose for most ophthalmologists. Therefore,
the diagnostic performance of human ophthalmologists was not
evaluated and compared with DL models.

3 Results
3.1 Demographics and datasets

For detecting multiple retinal conditions, 1803 pairs of CFP
and OCT images from 1,571 patients meeting the inclusion criteria
were initially reviewed, and we finally included 1445 CFP and OCT
pairs from 1,029 patients after checking the image quality. Of these,
1,294 image pairs from PUMCH were allocated to the training,
validation, test dataset 1, and test dataset 2. Ninety-one image
pairs from Hunan Provincial People’s Hospital were used for testing
dataset 3 and 60 images pairs from Guizhou Provincial People’s
Hospital for testing dataset 4. The mean age (standard deviation,
SD) in the three hospitals was 53.39 (19.44), 55.64 (10.53), and
57.45 (18.08) years, respectively, with no significant difference found
among them. Table | summarizes demographic information and the
distribution of the 7 retinal conditions in our in-house and external
datasets. Sample images from the four testing datasets are shown
in Supplementary Figure S3. Captured using various devices, these
images differ in contrast, clarity, and choroidal penetration depth.
For ATN classification of PM, the demographic and data feature
are listed in Table 2.

3.2 Model selection
We developed several MIL models and found that the MIL-

Ensemble model had the best diagnostic performance on test
dataset 1. The MIL-Ensemble model outperformed other MIL
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Multimodal
input

CFP and OCT images

MM-MILx1
MM-MILx2

MM-MILx4

MM-MILx8

FIGURE 2
A simplified schematic workflow diagram of the deep learning system. We used stacked multimodal multi-instance learning (MM-MIL) models to

predict retina conditions with color fundus photography (CFP) and optical coherence tomography (OCT) images.

variants, achieving a sensitivity of 0.782 (95% CI: 0.726-0.838)
and specificity of 0.967 (95% CI: 0.946-0.988). It achieved the
highest AUC for detecting normal condition (AUC = 0.995,
95% CI 0.985-1.000), followed by PM (AUC = 0.985, 95% CI
0.941-1.000), wet AMD (AUC = 0.977, 95% CI 0.922-1.000), DR
(AUC = 0.976, 95% CI 0.943-1.000), ME (AUC = 0.970, 95% CI
0.933-1.000), ERM (AUC = 0.927, 95% CI 0.879-0.974), and dry
AMD (AUC = 0.847, 95% CI 0.752-0.942). The detailed results
were shown in Supplementary Table S2. Thus, MIL-Ensemble model
was selected for further evaluation.

3.3 Performance evaluation

Diagnostic performances of the selected MIL model for
classifying retinal conditions based on CFP and OCT pairs (Fusion-
MIL), CFP (CFP-MIL), and OCT (OCT-MIL) were evaluated and
compared. In the test dataset 1, the CFP and OCT images were
captured using Topcon OCT-1 Maestro, which was the same as the
device used in the training and validation datasets. As detailed in
Table 3, Fusion-MIL showed a higher overall AUC of 0.954 (95%
CI0.934-0.973) than CFP-MIL (AUC = 0.903, 95% CI 0.875-0.930,
P < 0.001) and OCT-MIL (AUC = 0.928, 95% CI 0.904-0.952, P
= 0.012). For each retinal condition, Fusion-MIL also had the best
performance except in eyes with wet AMD, in which the AUC of
Fusion-MIL (AUC = 0.977, 95% CI 0.922-1.000) was slightly lower
than that of OCT-MIL (AUC = 0.978, 95% CI 0.925-1.000, P =
0.954), but still significantly higher than that of CFP-MIL (AUC =
0.903, 95% CI 0.795-1.000, P = 0.008) (Table 3). To demonstrate the
ability of generalization of the MIL models, we further tested models
with images captured using another device (Topcon DRI-OCT) with
various scanning widths. Fusion-MIL also showed a higher overall
AUC of 0.985 (95% CI 0.971-0.999) than CFP-MIL (AUC 0.876,
95% CI 0.841-0.910, P < 0.001) and OCT-MIL (AUC 0.982, 95%
CI0.966-0.998, P = 0.421) (Table 3). The diagnostic performance of
Fusion-MIL on each retinal disease was superior to CFP-MIL and
OCT-MIL, except for ERM and ME. The diagnostic performance of
Fusion-MIL on ERM and ME (AUC = 0.951, 95% CI 0.887-1.000,
and 0.989, 95% CI 0.956-1.000, respectively) was slightly lower than
that of OCT-MIL (AUC = 0.972, 95% CI 0.923-1.000, P = 0.450, and
0.989,95% CI 0.958-1.000, P = 0.987, respectively), but much higher
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than that of CFP-MIL (AUC = 0.700, 95% CI 0.568-0.832, P = 0.002,
and 0.783, 95% CI 0.660-0.906, P < 0.001, respectively) (Table 3).

To further test the generalization of Fusion-Net, we used an
external test dataset that also included SS-OCT and CFP images
(Topcon DRI-OCT). In the external test dataset 3, which used the
same Topcon DRI-OCT as test dataset 2. Fusion-MIL (AUC = 0.978,
95% CI 0.958-0.997) (Table 2) presented better overall performance
than CFP-MIL (AUC = 0.913, 95% CI 0.876-0.951, P < 0.001) and
OCT-MIL (AUC = 0.962, 95% CI 0.938-0.986, P = 0.045), and was
only slightly inferior to OCT-MIL in eyes with PM (Fusion-MIL
AUC =0.995, 95% CI 0.961-1.000 vs. OCT-MIL AUC = 0.999, 95%
CI 0.982-1.000, P = 0.712) (Table 3).

Separate CFP and OCT examinations (Zeiss Visucam 224 and
Svision VG200 SS-OCT) were performed in the external test dataset
4. Fusion-MIL (AUC = 0.959, 95% CI 0.931-0.987) still exhibited
better overall performance than CFP-MIL (AUC = 0.907, 95% CI
0.867-0.947, P = 0.002) and OCT-MIL (AUC = 0.941, 95% CI
0.906-0.976, P = 0.089), but was slightly inferior to OCT-MIL in ME
(Fusion-MIL AUC = 0.974, 95% CI 0.904-1.000 vs. OCT-MIL AUC
=0.984, 95% CI 0.929-1.000, P = 0.841) and PM (Fusion-MIL AUC
=0.969, 95% CI 0.895-1.000 vs. OCT-MIL AUC = 1.000, 95% CI
1.000-1.000, P = 0.621), and inferior to CFP-MIL in PM (Fusion-
MIL AUC = 0.969, 95% CI 0.895-1.000 vs. CFP-MIL AUC = 1.000,
95% CI 1.000-1.000 P = 0.334) (Table 3).

3.4 Visualization and additional analyses

Corresponding ROC:s for the retinal conditions in the four test
datasets are shown in Figure 3. The ROCs of Fusion-MIL were
higher than those of CFP-MIL and OCT-MIL for most individual
diagnosis. Figure 4 shows the examples of original CFP and OCT
images and their activation heatmaps for each retinal condition
generated by Fusion-MIL model. Abnormalities were obviously
highlighted in various shapes, sizes, and locations according to
each retinal condition. The confusion matrices for all condition
are shown in Supplementary Figure S4, where it can accurately
classify true-positive and true-negative cases for most retinal
conditions, except for dAMD, ERM, and ME, for which the model
exhibited comparatively higher false-negative rates.

Considering that some eyes suffered multiple diseases (for
example, with both DR and ME), and their images had several labels
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TABLE 1 Patient demographics and dataset distribution for multiple retinal conditions across institutions.

Institution Peking union medical college hospital Hunan P value Guizhou P value
provincial provincial
People’s People’s
hospital hospital
Dataset Training Validate Test Test Test Test
(Device) dataset dataset dataset 1 dataset 2 dataset 3 dataset 4
(Maestro) (Maestro) (Maestro) (DRI) (DRI) (Visucam
VG200)
No. of 911 70 - 48 -
patients
No. of 536 (58.84) 36 (51.43) 0.226 23 (47.92) 0.133

women, n (%)

Age, years 53.39 +19.44 55.64 £ 10.53 0.342 57.45 + 18.08 0.162
(mean + SD)

No. of image 710 (49.13) 241 (16.68) 255 (17.65) 88 (6.09) 91 - 60 -
pairs, n

No. of eye, n 700 (48.92) 238 (16.63) 255 (17.82) 88 (6.15) 90 - 60 -
(%)

No. of eyes 358 (42.12) 117 (40.07) 126 (39.50) 0 (0.00) 15 (12.93) 11 (14.47)
with normal
condition, n
(%)

No. of eyes 144 (16.94) 53 (18.15) 57 (17.87) 22(20.18) 18 (15.52) 15 (19.74)
with ERM, n
(%)

No. of eyes 104 (12.24) 35 (11.99) 41 (12.85) 21(19.27) 30 (25.86) 10 (13.16)
with ME, n
(%)

No. of eyes 106 (12.47) 37(12.67) 41 (12.85) 17 (15.60) 27(23.28) 7(9.21)
with DR, n
(%)

No. of eyes 64 (7.53) 21(7.19) 26 (8.15) 14 (12.84) 10 (8.62) 14 (18.42)
with dry
AMD, n (%)

No. of eyes 39 (4.59) 14 (4.79) 14 (4.39) 16 (14.68) 7 (6.03) 8 (10.53)
with wet
AMD, n (%)

No. of eyes 35 (4.12) 15 (5.14) 14 (4.39) 19 (17.43) 9(7.76) 11 (14.47)
with PM, n
(%)

P value (Test 0.993 0.997 - <0.001* <0.001* <0.001*
dataset 1 as
reference)

ERM, epiretinal membrane; ME, macular edema; DR, diabetic retinopathy; AMD, age-related macular degeneration; PM, pathologic myopia; SD, standard deviation; Maestro, 3D OCT-1,
Maestro (Topcon, Japan); DRI, Deep Range Imaging Triton OCT (Topcon, Japan); VG200, VG200 OCT (SVision Imaging, China); Visucam, Zeiss Visucam 224 (Zeiss, Germany).
“indicates a P value <0.05 when comparing demographic characteristics (sex and age) or retinal condition distribution between two datasets.

of diagnoses, we further calculated the accuracy three MIL models ~ 0.670-0.817) and OCT-MIL (complete accuracy 0.473-0.624, and
across the four test datasets. The Fusion-MIL had higher complete  partial accuracy 0.767-0.841) in all the four test datasets (Table 4).
accuracy (0.717-0.852) and partial accuracy (0.857-0.977) than  Of note, the difference in complete accuracy between Fusion-MIL
CFP-MIL (complete accuracy 0.429-0.608, and partial accuracy = and CFP/OCT-MIL models (difference up to 0.3) seemed to be
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TABLE 2 Patient demographics and dataset distribution for ATN classification in pathologic myopia.

Institution Training dataset Validation dataset Test dataset
No. of eyes 705 705 705
Right 239 239 239
Left 240 240 240
No. of patients 354 354 354
Male 114 114 114
Female 126 126 126
Age, years (mean + SD) 351 351 351
Atropic component
A0 103 35 35
Al 35 61 56
A2 35 100 99
A3 173 34 43
A4 182 9 7
Tractional component
TO 399 127 139
T1 127 63 58
T2 139 36 30
T3 665 7 7
T4 177 3 3
T5 63 3 3
Neovascular component
NoO 571 188 194
N1 188 5 6
N2a 194 11 10
N2s 953 35 30

ATN, A for atrophy, T for traction, and N for neovascularization; SD, standard deviation.

more significant than that in partial accuracy (difference <0.15)
(details in Supplementary Figures S5, 6).

Additionally, we evaluated the model’s capability to classify
pathologic myopia using the ATN classification system, which
integrates both CFP and OCT imaging modalities, thereby further
demonstrating the clinical applicability of our approach. The Fusion-
MIL model achieved AUC values ranging from 0.902 to 0.997 for the
atrophic component, 0.869 to 0.957 for the tractional component,
and 0.742 to 0.976 for the neovascular component (detailed results
are presented in Table 5).

Frontiers in Cell and Developmental Biology

The learning curves of the Fusion-MIL model were analyzed to
assess training stability and convergence. Supplementary Figure S7
illustrates the progression of the mean AUC, mean average precision
(AP), and loss metrics over training epochs. The mean AUC
and AP steadily improved as training progressed, demonstrating
enhanced model discrimination and precision. Concurrently, the
learning curves demonstrate a general decline in both training and
validation losses, indicating model convergence, while the validation
loss remains relatively lower than the training loss throughout
the epochs.
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TABLE 3 AUC (95% ClI) of Fusion-MIL (CFP + OCT), CFP-MIL, and OCT-MIL model for each retinal condition in 4 test datasets.

Fundus Test dataset = Pvalue | Testdataset Pvalue | Testdataset | Pvalue | Testdataset | Pvalue
condition 1 2 3 4
(Maestro) (DRI) (DRI) (Visucam +
VG200)
Normal
condition
CFP + OCT 0.995 (0.985-1.00) - - - 0.983 (0.929-1.000) - 0.983 (0.970-0.996) -
Only CFP 0.981 (0.964-0.998) 0.021" - - 0.978 (0.916-1.000) 0.785 0.958 (0.938-0.978) 0.042*
Only OCT 0.981 (0.963-0.998) 0.102 - - 0.994 (0.963-1.000) 0.317 0.979 (0.965-0.993) 0.21
ERM
CFP + OCT 0.927 (0.879-0.974) - 0.951 (0.887-1.000) - 0.951 (0.880-1.000) - 0.846 (0.717-0.975) -
Only CFP 0.821 (0.752-0.890) <0.001* 0.700 (0.568-0.832) 0.002* 0.826 (0.704-0.948) 0.012* 0.676 (0.513-0.838) 0.038"
Only OCT 0.886 (0.828-0.944) 0.221 0.972 (0.923-1.000) 0.450 0.935 (0.854-1.000) 0.624 0.822 (0.685-0.958) 0.712
ME
CFP + OCT 0.970 (0.933-1.000) - 0.989 (0.956-1.000) - 0.975 (0.936-1.000) - 0.974 (0.904-1.000) -
Only CFP 0.893 (0.827-0.959) 0.003* 0.783 (0.660-0.906) <0.001* 0.840 (0.746-0.934) 0.001* 0.820 (0.655-0.985) 0.008*
Only OCT 0.969 (0.932-1.000) 0.956 0.989 (0.958-1.000) 0.987 0.955 (0.902-1.000) 0.210 0.984 (0.929-1.000) 0.841
DR
CFP + OCT 0.976 (0.943-1.000) - 0.999 (0.989-1.000) - 0.973 (0.929-1.000) - 0.997 (0.970-1.000) -
Only CFP 0.963 (0.922-1.000) 0.412 0.991 (0.959-1.000) 0.125 0.966 (0.917-1.000) 0.745 0.995 (0.956-1.000) 0.876
Only OCT 0.923 (0.866-0.980) 0.018" 0.988 (0.952-1.000) 0.334 0.930 (0.862-0.999) 0.045" 0.952 (0.839-1.000) 0.012*
Dry AMD
CFP + OCT 0.847 (0.752-0.942) - 0.972 (0.911-1.000) - 0.963 (0.880-1.000) - 0.944 (0.859-1.000) -
Only CFP 0.789 (0.683-0.895) 0.156 0.876 (0.755-0.996) 0.024" 0.898 (0.767-1.000) 0.089 0.932 (0.838-1.000) 0.712
Only OCT 0.809 (0.706-0.912) 0.432 0.957 (0.881-1.000) 0.621 0.946 (0.847-1.000) 0.534 0.893 (0.778-1.000) 0.205
Wet AMD
CFP + OCT 0.977 (0.922-1.000) - 0.997 (0.980-1.000) - 1.000 (1.000-1.000) - 0.998 (0.973-1.000) -
Only CFP 0.903 (0.795-1.000) 0.008" 0.926 (0.836-1.000) 0.003* 0.922 (0.792-1.000) 0.042" 0.952 (0.847-1.000) 0.078
Only OCT 0.978 (0.925-1.000) 0.954 0.984 (0.939-1.000) 0.245 0.997 (0.970-1.000) 0.501 0.957 (0.857-1.000) 0.112
PM
CFP + OCT 0.985 (0.941-1.000) - 1.000 (1.000-1.000) - 0.995 (0.961-1.000) - 0.969 (0.895-1.000) -
Only CFP 0.968 (0.904-1.000) 0.210 0.978 (0.931-1.000) 0.056 0.993 (0.955-1.000) 0.876 1.000 (1.000-1.000) 0.334
Only OCT 0.951 (0.872-1.000) 0.045" 1.000 (1.000-1.000) 0.501 0.999 (0.982-1.000) 0.712 0.985 (0.934-1.000) 0.621
(Continued on the following page)
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TABLE 3 (Continued) AUC (95% CI) of Fusion-MIL (CFP + OCT), CFP-MIL, and OCT-MIL model for each retinal condition in 4 test datasets.

Fundus Test dataset P value Test dataset P value Test dataset P value Test dataset P value
condition 1 2 3 4

(Maestro) (DRI) (DRI) (Visucam +

VG200)

Overall
CFP + OCT 0.954 (0.934-0.973) 0.985 (0.971-0.999) 0.978 (0.958-0.997) 0.959 (0.931-0.987)
Only CFP 0.903 (0.875-0.930) <0.001* 0.876 (0.841-0.910) <0.001* 0.913 (0.876-0.951) <0.001* 0.907 (0.867-0.947) 0.002*
Only OCT 0.928 (0.904-0.952) 0.012* 0.982 (0.966-0.998) 0.421 0.962 (0.938-0.986) 0.045* 0.941 (0.906-0.976) 0.089

AUC, areas under receiver operating characteristic curve; CFP, color fundus photography; CI, confidence interval; DR, diabetic retinopathy; AMD, dry age-related macular degeneration; ERM,
epiretinal membrane; ME, macular edema; MIL, multiple instance learning; OCT, optical coherence tomography; PM, pathologic myopia; Maestro, 3D OCT-1, Maestro (Topcon, Japan); DRI,
Deep Range Imaging Triton OCT (Topcon, Japan); Visucam, Zeiss Visucam 224 (Zeiss, Germany); VG200, VG200 OCT (SVision Imaging, China).

*P value <0.05 P value indicates the significance when comparing CFP-MIL, or OCT-MIL, with Fusion MIL (CEP + OCT), respectively.

4 Discussion

In this study, we introduced a DL model based on the MM-
MIL algorithm for classifying multiple retinal conditions using
CFP and OCT images. The Fusion-MIL based on bimodal imaging
showed reliable performance for 7 common retinal conditions,
including normal fundus, ERM, ME, DR, dry AMD, wet AMD,
and PM. It achieved stable AUC values of 0.954-0.985 across
four different test datasets. Fusion-MIL also outperformed CFP-
MIL and OCT-MIL models which were based on single-modal
images. The ATN classification of PM demonstrated that Fusion-
MIL could also be used for more detailed classification and
treatment decision.

The proposed bimodal imaging strategy using CFP and OCT
emulates real-world clinical evaluation processes. Our results show
that this hybrid method combines analysis of en-face CFP and
cross-sectional OCT images, which can obtain more information
from medical data and improve the performance for various
retinal conditions (Jaffe and Caprioli, 2004). Kang et al. reported
a multimodal imaging-based DL model for five retinal vascular
diseases, including diabetic macular edema (DME), neovascular
AMD, myopic choroidal neovascularization (mCNV), and branch
and central retinal vein occlusion (BRVO/CRVO) using images
of CFP, OCT, and fluorescein angiography (FA), with or without
indocyanine green angiography (ICGA) (Kang et al., 2021). Their
models were trained with images from 2,992 eyes and the AUC
detecting wet AMD (one condition also detected by our model)
achieved 0.990. In our study, the AUCs detecting wet AMD in
the four test datasets were 0.9772, 0.9974, 1.0000, and 0.9976,
respectively, similar to Kang’s study. Therefore, more imaging
modalities (e.g., invasive methods like FA and ICGA) in addition
to CFP and OCT might not improve diagnostic performance
significantly. Li etal. also trained a CFP- and FA-based bimodal
DL model for detecting AMD and PM with two public datasets
(Ichallenge-AMD and Ichallenge-PM). It showed AUC values of
0.756 for AMD and 0.986 for PM, respectively, (Li et al., 2020),
which is not superior to our Fusion-MIL, as it's AUCs for dry AMD,
wet AMD, and PM were 0.847-0.972, 0.977-1.000, and 0.969-1.000
across four test datasets, respectively. Therefore, bimodal imaging
of CFP and OCT rather than other imaging methods might be
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more likely to improve DL model’s diagnostic performance, which is
concordant to the clinical practice that CFP and OCT are the most
regular non-noninvasive examinations for retinal diseases (Li et al.,
2018). Perhaps benefiting from the efficient diagnostic information
provided by bimodal imaging, our MIL models were trained
on a relatively small dataset (710 image pairs) and obtained a
robust performance on the test datasets (mean AUC above 0.95).
Furthermore, DL models relying on invasive examinations (e.g., FA
and ICGA) are unsuitable for screening purposes. In contrast, as
CFP and OCT are widely used, non-invasive, rapid, convenient, and
repeatable examinations, our method may have greater potential to
be applied to a broader range of diseases.

However, we noticed that Fusion-Net was inferior to OCT-
Net or CFP-Net in detecting some specific diseases occasionally.
For example, Fusion-Net (AUC 0.9685, 95% CI 0.8951-1.0000)
was inferior to CFP-Net (AUC 1.0000, 95% CI 1.0000-1.0000) in
detecting PM when using test dataset 4. As PM usually presents
typical tessellated fundus in CFP images, but OCT features that
showed no apparent abnormalities might decrease the diagnostic
performance of Fusion-Net for PM. In contrast, other retinal
diseases, such as ERM, ME, and wet AMD, usually exhibit
significant OCT lesions easily detected by Fusion-Net. Therefore,
optimizing the weights of imaging features of different modalities
for various diseases could further enhance DL models based on
multimodal imaging.

For a diagnostic model, its performance metrics usually shows a
decrease trend from validation to test to external test sets to indicate
the model is not overfitting. However, in our study, AUC values
in test dataset 2 — 4 were even higher than that in test dataset I,
which had a more similar dataset composition with training and
validation sets. Several reason may be considered: First, differences
in imaging devices and their inherent technical specifications likely
contributed to performance disparities. Test dataset 1 comprised
images acquired using the 3D OCT-1 Maestro (Topcon, Japan), a
SD-OCT system, which was also employed for model training and
internal validation. In contrast, test datasets 2 and 3 were derived
from the DRI Triton OCT (Topcon, Japan), and test dataset 4 from
the VG200 (SVision Imaging, China) - both SS-OCT systems. SS-
OCT typically offers superior image clarity, resolution, and signal-
to-noise ratio compared to SD-OCT, which may have enhanced
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FIGURE 3

Receiver operating characteristic curves for all retinal conditions in test datasets. AUC, areas under receiver operating characteristic curve.
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FIGURE 4

Original images and their activation heatmaps of abnormalities detected by deep learning models demonstrating representative changes of various
retinal diseases. Original color fundus photography and optical coherence tomography images (above) and corresponding activation heatmaps

(bellow) are shown.

the models ability to discern discriminative features, leading to
improved diagnostic performance. Second, variations in dataset
composition may have further influenced model performance.
Although test datasets 2 and 3 were obtained using the same DRI
Triton OCT device, their retinal condition distributions differed
substantially, as test dataset 2 does not include “Normal” cases,
resulting in a more balanced and simplified classification task.
This structural difference may explain the higher AUC in test
dataset 2 compared to test dataset 3. These findings underscore
the importance of considering both imaging modality differences
and dataset heterogeneity when evaluating AT model generalizability
across diverse clinical settings.

In the current study, deep learning algorithms had the best
diagnostic performance in ocular images with multiple disease
labels. In the real-world clinical setting, comprehensive diagnoses
are correlated with the urgency of referral and the necessity of
treatment. For example, ME in eyes with wet AMD or DR could
be an indication for treatment. In the current study, the Fusion-
Net had the highest complete accuracy and partial accuracy than
CFP-Net and OCT-Net and showed apparent advantages in giving
disease labels on the whole. Our results suggest that bimodal
imaging enhanced the DL models’ ability to minimize missed
diagnoses by obtaining more diagnostic information. The Fusion-
Net can reduce missed diagnoses, which is needed in scenarios of
clinic diagnosis and community screening, and might assist doctors
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without abundant clinical experience in the early learning stage and
clinical practice (Resnikoff et al., 2020).

A critical feature of this study is the test of generalization
using bimodal imaging data from different devices from various
manufacturers. Fauw et al. reported that a well-trained SD-OCT-
based model for detecting retinal diseases was tested with SD-
OCT images captured with a new scanning device; the performance
was unsatisfying unless the models were retrained with images
of new devices (De Fauw et al., 2018). Limited generalizability is
also one of the common issues of DL models mentioned in many
other studies (Wang et al., 2024; Goutam et al., 2022). However,
in the current study, the SD-OCT and CFP-trained Fusion-Net
models were tested with SS-OCT and CFP images captured with
various devices, and diagnostic performance using the test dataset
2-4 remained stable. We speculated that one possible explanation is
that Fusion-Net did not depend on a solitary imaging method, and
the two imaging methods provided complementary information.
Therefore, bimodal imaging improved the models’ adaptability.
Another possible explanation is that our models extracted features
automatedly rather than learned features by annotated lesions. These
models avoid over-reliance on the characteristics of localized lesions.
Once the style features of images changed, our models exhibited
good identification ability.

In terms of the models visualization, the interpretability
component leverages attention mechanisms to produce clinically
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TABLE 4 Complete accuracy and partial accuracy of MIL models in 4 test datasets.
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Test dataset Diagnostic accuracy CFP + OCT CFP P value ’ OCT ’ P value

Complete accuracy 0.733 0.608 <0.01" 0.624 <0.01"

Test dataset 1
Partial accuracy 0.898 0.804 <0.01* 0.828 <0.01*
Complete accuracy 0.852 0.443 <0.01" 0.580 <0.01"

Test dataset 2
Partial accuracy 0.977 0.727 <0.01" 0.841 <0.01*
Complete accuracy 0.736 0.429 <0.01" 0.473 <0.01"

Test dataset 3
Partial accuracy 0.857 0.670 <0.01" 0.824 <0.01*
Complete accuracy 0.717 0.483 <0.01" 0.500 <0.01"

Test dataset 4
Partial accuracy 0.900 0.817 <0.01" 0.767 <0.01"

CFP, color fundus photography; OCT, optical coherence tomography; MIL, multiple instance learning.

Complete accuracy, defined as all diagnoses given by MIL, models for one case are the same as ground truth.
Partial accuracy, defined as at least one of the diagnoses given by MIL, models for one case is the same as ground truth, while no misdiagnosis is given.
P value indicates the significance when comparing CFP-MIL, or OCT-MIL, with Fusion MIL (CFP + OCT), respectively.

*P value <0.05.

TABLE 5 AUC of Fusion-MIL for ATN classification of PM and therapy decision.

Atrophic

component

AUC (95% CI)

Tractional
component

AUC (95% ClI)

Neovascular
component

AUC (95% CI)

A0: no myopic retinal
lesions

0.997 (0.975-1.000)

TO: no macular schisis

0.957 (0.850-1.000)

NO: no myopic CNV

0.898 (0.861-0.935)

Al: tessellated fundus
only

0.914 (0.775-1.000)

T1: inner or outer
foveoschisis

0.878 (0.780-0.940)

N1: macular lacquer
cracks

0.742 (0.572-0.912)

A2: diffuse chorioretinal
atrophy

0.902 (0.757-0.964)

T2: Inner + outer
foveoschisis

0.887 (0.780-0.950)

N2a: active CNV

0.976 (0.833-1.000)

A3: patchy chorioretinal
atrophy

0.918 (0.625-1.000)

T3: foveal detachment

0.953 (0.625-1.000)

N2s: scar/Fuchs spot

0.904 (0.815-0.993)

A4: complete macular
atrophy

0.965 (0.800-1.000)

T4: full-thickness MH

0.869 (0.780-0.995)

T5: MH + retinal
detachment

0.982 (0.875-1.000)

ATN, A for atrophy, T for traction, and N for neovascularization; AUC, areas under receiver operating characteristic curve; CI, confidence interval; CNV, choroidal neovascularization; MH,
macular hole; PM, pathologic myopia; VEGE, vascular endothelial growth factor.

meaningful visualizations, enhancing model transparency and
aiding clinicians in understanding diagnostic decisions. Through
multi-model ensembling, it generates attention-weighted heatmaps:
OCT B-scans are ranked by attention scores to emphasize
diagnostically significant cross-sections, while CFP images receive
spatial overlays where intensity gradients highlight areas of
focus. Although this enhances clinical utility, heatmaps may
not accurately mirror underlying decision logic and may be
susceptible to misinterpretation, reflecting the broader challenges
of post-hoc explainability in medical imaging AI (Ennab and
McHeick, 2024). There is also a risk of bias if training datasets
lack demographic diversity, potentially undermining performance

Frontiers in Cell and Developmental Biology

12

for underrepresented patient groups (Houssein et al, 2025;
Nouis et al., 2025). Future work should explore hybrid or self-
explainable AI approaches that embed interpretability into the
model’s architecture, address bias via representative data and
auditing, and rigorously validate outputs in real-world clinical
settings—all supported by human oversight to ensure trust,
accountability, and ethical deployment in healthcare (Nouis et al.,

2025; Alkhanbouli et al., 2025; Gong et al., 2024).

There are several limitations in the current study. First, the
Fusion-MIL model was not tested with published external dataset,
because there are no such datasets of bimodal imaging for multiple
retinal diseases currently, and we chose to verify DL methods
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with data from various centers. Even though, true external data
collected independently is crucial for more convinced assessment
of our model’s generalizability and potential of clinical translation.
More importantly, closely following the latest regulatory guidance
on Al/machine learning in medical devices, such as Good Machine
Learning Practice (GMLP) for Medical Device Development, (FDA,
2021), provides a robust framework for model test and cross-model
comparison. Thus, the comparison proposed in our study need to be
interpreted with caution. Second, we did not compare the diagnostic
performance of DL models with human ophthalmologists, because
the tested retinal conditions were selected according to the
prevalence in real-world clinical setting. Therefore, these conditions
were not difficult for most ophthalmologists to diagnose, and this
study focused on the comparison of DL-assisted diagnosis based on
bimodal and single-model imaging, rather than comparison of DL
methods and human. Further research is required to overcome these
limitations. Third, the image data is relatively limited compared
with other studies. Though the MIL models already achieved high
classification accuracy, it remains unclear whether larger training
dataset could help further improve model performance. Fourth, we
included only 7 retinal conditions in this preliminary study. More
retinal diseases, such as retinal vein occlusion, will be included in
future investigation.

In conclusion, the Fusion-MIL model, based on bimodal
imaging with CFP and OCT, achieved both accurate and
comprehensive diagnoses of several retinal diseases. It outperformed
models based on single-modal imaging and demonstrated non-
inferior performance compared to other state-of-the-art multimodal
models. The model’s stable performance across test datasets
from different devices and medical centers suggests that it is
highly generalizable to heterogeneous clinical settings. The simple
combination of CFP and OCT, rather than more complex or invasive
imaging methods, may be sufficient for automatic and effective
detection of common retinal diseases. Future work could focus on
optimizing the weighting of each imaging modality for different
retinal diseases, expanding the size of training and testing datasets,
evaluating the model with truly independent external datasets,
and including human-machine comparisons. We believe that, with
further validation across more retinal diseases, our approach has
the potential to support fundus screening and early diagnosis of
vision-threatening conditions in areas lacking access to experienced
ophthalmologists.
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