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Purpose: To develop and evaluate deep learning (DL) models for detecting 
multiple retinal diseases using bimodal imaging of color fundus photography 
(CFP) and optical coherence tomography (OCT), assessing diagnostic 
performance and generalizability.
Methods: This cross-sectional study utilized 1445 CFP-OCT pairs from 1,029 
patients across three hospitals. Five bimodal models developed, and the model 
with best performance (Fusion-MIL) was tested and compared with CFP-MIL 
and OCT-MIL. Models were trained on 710 pairs (Maestro device), validated on 
241, and tested on 255 (dataset 1). Additional tests used different devices and 
scanning patterns: 88 pairs (dataset 2, DRI-OCT), 91 (dataset 3, DRI-OCT), 60 
(dataset 4, Visucam/VG200 OCT). Seven retinal conditions, including normal, 
diabetic retinopathy, dry and wet age-related macular degeneration, pathologic 
myopia (PM), epiretinal membran, and macular edema, were assessed. PM ATN 
(atrophy, traction, neovascularization) classification was trained and tested on 
another 1,184 pairs. Area under receiver operating characteristic curve (AUC) 
was calculated to evaluated the performance.
Results: Fusion-MIL achieved mean AUC 0.985 (95% CI 0.971–0.999) in 
dataset 2, outperforming CFP-MIL (0.876, P < 0.001) and OCT-MIL (0.982,
P = 0.337), as well as in dataset 3 (0.978 vs. 0.913, P < 0.001 and 0.962,
P = 0.025) and dataset 4 (0.962 vs. 0.962, P < 0.001 and 0.962, P = 
0.079). Fusion-MIL also achieved superior accuracy. In ATN classification, AUC
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ranges 0.902–0.997 for atrophy, 0.869–0.982 for traction, and 0.742–0.976 for 
neovascularization.
Conclusion: Bimodal Fusion-MIL improved diagnosis over single-modal 
models, showing strong generalizability across devices and detailed grading 
ability, valuable for various scenarios.

KEYWORDS

deep learning, diagnosis, fundus photography, optical coherence tomography, retinal 
disease 

1 Introduction

Retinal diseases are one of the leading causes of irreversible 
blindness worldwide, including age-related macular degeneration 
(AMD) and diabetic retinopathy (DR) (Bourne et al., 2013). Color 
fundus photography (CFP) and optical coherence tomography 
(OCT) are widely used imaging modalities, with CFP providing 
en-face views and OCT offering high-resolution cross-sectional 
scans. Although deep learning (DL)-based screening or diagnosis 
of retinal diseases using CFPs has been extensively investigated, 
CFP alone may be insufficient for detecting certain retinal 
conditions due to limitations in information dimensions (Ting et al., 
2019; Schmidt-Erfurth et al., 2018). For instance, the Atrophy-
Traction-Neovascularization (ATN) classification system for myopic 
maculopathy emphasizes both en-face and cross-sectional changes 
of the retina, which requires the application of CFP and OCT 
technology for better grading (Ruiz-Medrano et al., 2019). Other 
retinal diseases can also rely on such enhanced imaging strategy 
to improve diagnostic accuracies (Midena et al., 2020; Tran and 
Pakzad-Vaezi, 2018; Acón and Wu, 2018; Garrity et al., 2018; Sandhu 
and Talks, 2005; Liu et al., 2020).

Thus, with the emergent concept of information fusion from 
different medical images, multimodal image-based DL algorithms 
have gained unique advantage of reflecting a more comprehensive 
understanding of the underlying pathology (Li et al., 2024; Jin et al., 
2025; Wang et al., 2024; Yang et al., 2022). Currently, many studies 
have explored multimodal DL systems for diagnosing specific 
retinal disorders such as DR (Hervella et al., 2022), pathological 
myopia (Xu et al., 2025), AMD (Jin et al., 2022; Chen et al., 
2021; De Silva et al., 2021; Yang et al., 2020), polypoidal choroidal 
vasculopathy (Xu et al., 2021), and glaucoma (Xiong et al., 2022), 
demonstrating advantages to single modality-based models to 
varying degrees. In contrast, using multimodal imaging-based 
DL models to simultaneously detect multiple fundus conditions 
remains poorly reported (Li et al., 2020; Sükei et al., 2024; 
Ma et al., 2025/01; Ou et al., 2024). Advances in this regard is 
exceptional meaningful, as current medical AI technologies are 

Abbreviations: AMD, age-related macular degeneration; AUC, areas under 
receiver operating characteristic curves; CI, confidence interval; CFP, color 
fundus photography; DL, deep learning; DR, diabetic retinopathy; DRI, Deep 
Range Imaging; ERM, epiretinal membrane; FA, fluorescein angiography; 
ICGA, indocyanine green angiography; ME, macular edema; MM-MIL, 
multimodal multi-instance learning; OCT, optical coherence tomography; 
PM, pathologic myopia; SD-OCT, spectral-domain optical coherence 
tomography; SS-OCT, swept-source optical coherence tomography.

mainly aimed for situations like screening and auxiliary diagnosis, 
where comprehensive detection of the fundus is of vital importance.

In this multicenter study, we developed and evaluated DL 
models using both CFP and OCT to diagnose seven common retinal 
conditions, including normal retina and six pathologies: diabetic 
retinopathy (DR), dry and wet age-related macular degeneration 
(AMD), pathologic myopia (PM), epiretinal membrane (ERM), and 
macular edema (ME). This study aimed to evaluate the diagnostic 
performance and generalizability of bimodal DL models across 
different devices and scanning protocols. To further explore the 
capability of deep learning for precise and detailed disease grading, 
we conducted a study on the performance of ATN (atrophy, traction, 
and neovascularization) grading classification of PM. 

2 Methods

This study was approved by the Institutional Review Board at 
Peking Union Medical College Hospital (PUMCH, approval number 
S-K2038), with written consent waived due to the retrospective 
nature of the study, and the de-identified data used. It was conducted 
in accordance with the tenets of the Declaration of Helsinki. The 
proposed workflow is illustrated in Supplementary Figure S1. 

2.1 Datasets

2.1.1 Inclusion/exclusion criteria
We retrospectively collected the macula-centered retinal 

CFP and OCT images from 1 June 2018, to 1 June 2022. 
These images were obtained and diagnosed in PUMCH, Hunan 
Provincial People’s Hospital, and Guizhou Provincial People’s 
Hospital in China (Figure 1). Inclusion criteria: (1) Paired CFP 
and OCT images captured simultaneously using a single device 
or on the same day using separate devices. (2) For patients with 
multiple paired images, only those within an interval of more 
than 6 months were included. (3) Definite diagnosis of the ocular 
conditions which could be obtained from the medical history or 
corresponding imaging methods, including CFP, OCT, fluorescein 
angiography (FFA), and indocyanine green angiography (ICGA), 
etc. Exclusion criteria: Image quality judged not readable because of 
poor visibility or undesirable field of view, such as a small pupil and 
opacity of the refractive media.

2.1.2 Image annotation
All images were de-identified and removed all personal 

information, including name, birth date, capture date, and 
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FIGURE 1
Datasets in the current study. ATN, A for atrophy, T for traction, N for neovascularization; CFP, color fundus photography; OCT, optical coherence 
tomography; PM, pathologic myopia.

gender, except for the diagnoses. We recruited seven licensed 
ophthalmologists from three hospitals to serve as readers (details 
are provided in Supplementary Table S1). Five readers labeled and 
checked the diagnosis by observing images and reviewing clinical 
information. Each image pair was evaluated by at least two readers, 
with two senior readers resolving controversies; unresolved cases 
were discarded. The quality of images was assessed before labeling, 
and images were excluded if they were judged not readable by 
even 1 reader. 

2.1.3 Dataset composition
We constructed multiple datasets from images acquired using 

various fundus photography (FP) and OCT devices for evaluation. 
We firstly collected CFP and OCT images captured with 3D OCT-
1 Maestro (Topcon, Japan) consecutively in PUMCH. One CFP and 
12 matching 9-mm radial-line cross-sectional spectral-domain (SD) 
OCT images centered on fovea were captured simultaneously by this 
device. This scanning pattern were used to create training dataset, 
validate dataset, and in-house test dataset 1 at the patient level, 
while ensuring the distribution manner of paired data was 8:1:1. 
The distribution of diagnosis was analyzed, and we found that the 
following retinal conditions were the most frequent diagnoses in this 
study, including normal condition, DR, dry AMD, wet AMD, PM, 
ERM, and ME. Thus, the 7 diagnoses with most clinical significance 
were selected to further test the diagnostic performance of the DL 
models while remaining simplicity.

To demonstrate the generalizability of our DL models, we 
further tested our DL models with three additional test datasets 
of images captured using different scanning patterns and devices 
from various hospitals. In test dataset 2 and 3, OCT and CFP 
images captured simultaneously were collected in PUMCH and 
Hunan Provincial People’s Hospital, respectively. These images were 
obtained using another swept-source (SS) OCT device, Topcon 
Deep Range Imaging (DRI) Triton OCT (Topcon, Japan). Of note, 
since patients visiting PUMCH were asked to adherence to the 
principle of using one imaging machine for follow-ups, ensuring 
no leakage of patient data between test dataset 1 and 2. In order 
to evaluate the feasibility of the DL models in a real-world clinical 
setting, the width of OCT scanning could be 6 mm, 9 mm, or 12 mm 
in test dataset 2. Moreover, considering that OCT and CFP images 
were usually not captured simultaneously using one device in clinical 
practice, we created another test dataset 4, in which OCT images 
were captured with a SS-OCT device (VG200, SVision Imaging, Ltd., 
China), and CFP images were captured with another camera (Zeiss 
Visucam 200, Zeiss, Germany) on the same day. Again, the width of 
OCT images in test dataset 4 could be ranging from 6 to 14 mm in 
various scanning patterns, including single line, radial lines, or cube 
scanning patterns. Considering that there was no published standard 
dataset of bimodal imaging for multiple retinal diseases, we did not 
use published datasets in this study.

To investigate the DL models’ capability for fine and detailed 
disease classification, we conducted a study on the ATN grading 
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classification of PM using an independent ATN sub-dataset. The 
paired CFP and OCT images were captured using Topcon DRI OCT. 

2.2 Development of the DL models

Considering that various retinal changes are evident on different 
imaging modalities, we propose a bimodal multi-instance learning 
network that targets OCT and CFP classification on seven retinal 
conditions to use information from two modalities fully based on 
previous work (Jin et al., 2022). Fundamentally, CFP and OCT 
imaging modalities capture distinct types of retinal information. 
CFP provides two-dimensional surface visualization, enabling 
the assessment of retinal structures and vascular patterns. In 
contrast, OCT generates cross-sectional views with depth resolution, 
revealing layer-specific architectural details. To address these 
inherent differences, our DL model incorporates modality-specific 
feature extraction branches. Specifically, CFP images are processed 
via spatial partitioning into patches to facilitate localized pathology 
detection, whereas OCT volumes are decomposed into individual 
B-scans for cross-sectional analysis.

In our framework, a pair of inputs contains a series of radial 
scanning OCT b-scans and a CFP image. We developed several 
models using multimodal multi-instance learning (MM-MIL) 
modules, and the model of best performance was selected for further 
analysis. The proposed MM-MIL framework employs adaptive 
attention weights that dynamically prioritize modality-specific 
features based on diagnostic relevance. For surface-level pathologies, 
the model emphasizes CFP-derived features. Conversely, for 
structural abnormalities like macular edema, it assigns greater 
weight to OCT-based features. This adaptive integration allows 
the model to effectively leverage the complementary strengths 
of each imaging modality, enhancing diagnostic accuracy. The 
AI framework describes in Supplementary Figure S2. A simplified 
schematic workflow is shown in Figure 2. We stacked 1, 2, 4, and 
8 MM-MIL modules in the first four models respectively. As for 
the fifth model, we ensembled the outputs from four MM-MIL 
modules that worked independently to gain the final decision, which 
simulated the process in the real world that multiple physicians 
make the decision together (Wu et al., 2024). Finally, we developed 
five models for bimodal imaging: MM-MIL×1, ×2, ×4, ×8, and 
-ensemble. Through empirical evaluation, we found that the ×4 
configuration achieved the best performance and selected it as our 
default architecture. The ensemble predictions are generated by this 
optimized MM-MIL×4 model, which processes the same multi-
modal inputs through four MM-MIL modules. For visualization, we 
employed attention-weighted activation maps to highlight areas of 
interest in the model.

In order to compare the performance of models based on various 
imaging modalities, DL models for only CFP and for only OCT 
were developed. Since OCT scans consisting of a sequence of images 
are suitable for MILs, the MIL method was also applied to OCT 
images for classification. For CFP images, a classic and efficient 
deep learning algorithm, Resnet50, was trained to achieve multi-
label classification. (He et al., 2016). Therefore, in our study, three 
DL models, CFP-MIL, OCT-MIL, and Fusion-MIL, were developed 
for CFP images, OCT images, and bimodal images, respectively. 

2.3 Evaluation of the DL models and 
statistical analysis

The diagnostic performance of our DL models was 
evaluated using four independent test datasets for various 
purposes. (Yang et al., 2023). We first compared the five DL 
models based on bimodal imaging, and the models with the best 
performance were used for further evaluation. Areas under receiver 
operating characteristic curves (AUC) were computed for each 
diagnosis with a 95% confidence interval (CI). Some CFP and OCT 
images had more than one diagnosis label, so accuracy was also 
evaluated. We calculated “complete accuracy” to investigate whether 
all diagnoses given by DL models for one case were the same as 
ground truth, and “partial accuracy” to find out whether at least 
one of the diagnoses given by DL models for one case was the same 
as ground truth. According to the results from model selection, a 
one-sided test can be used. The DeLong test is used for comparing 
AUC values, whereas accuracy is compared with a chi-square test.

We also devised another experimental setting to evaluate the 
superiority of DL models based on bimodal imaging of CFP and 
OCT to models based on single-modal imaging. For each diagnosis, 
the diagnostic performance of DL models based on CFP, OCT, and 
bimodal imaging were evaluated and compared with each other. The 
evaluated retinal conditions were common in clinical settings and 
were not difficult to diagnose for most ophthalmologists. Therefore, 
the diagnostic performance of human ophthalmologists was not 
evaluated and compared with DL models. 

3 Results

3.1 Demographics and datasets

For detecting multiple retinal conditions, 1803 pairs of CFP 
and OCT images from 1,571 patients meeting the inclusion criteria 
were initially reviewed, and we finally included 1445 CFP and OCT 
pairs from 1,029 patients after checking the image quality. Of these, 
1,294 image pairs from PUMCH were allocated to the training, 
validation, test dataset 1, and test dataset 2. Ninety-one image 
pairs from Hunan Provincial People’s Hospital were used for testing 
dataset 3 and 60 images pairs from Guizhou Provincial People’s 
Hospital for testing dataset 4. The mean age (standard deviation, 
SD) in the three hospitals was 53.39 (19.44), 55.64 (10.53), and 
57.45 (18.08) years, respectively, with no significant difference found 
among them. Table 1 summarizes demographic information and the 
distribution of the 7 retinal conditions in our in-house and external 
datasets. Sample images from the four testing datasets are shown 
in Supplementary Figure S3. Captured using various devices, these 
images differ in contrast, clarity, and choroidal penetration depth. 
For ATN classification of PM, the demographic and data feature 
are listed in Table 2.

3.2 Model selection

We developed several MIL models and found that the MIL-
Ensemble model had the best diagnostic performance on test 
dataset 1. The MIL-Ensemble model outperformed other MIL 
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FIGURE 2
A simplified schematic workflow diagram of the deep learning system. We used stacked multimodal multi-instance learning (MM-MIL) models to 
predict retina conditions with color fundus photography (CFP) and optical coherence tomography (OCT) images.

variants, achieving a sensitivity of 0.782 (95% CI: 0.726–0.838) 
and specificity of 0.967 (95% CI: 0.946–0.988). It achieved the 
highest AUC for detecting normal condition (AUC = 0.995, 
95% CI 0.985–1.000), followed by PM (AUC = 0.985, 95% CI 
0.941–1.000), wet AMD (AUC = 0.977, 95% CI 0.922–1.000), DR 
(AUC = 0.976, 95% CI 0.943–1.000), ME (AUC = 0.970, 95% CI 
0.933–1.000), ERM (AUC = 0.927, 95% CI 0.879–0.974), and dry 
AMD (AUC = 0.847, 95% CI 0.752–0.942). The detailed results 
were shown in Supplementary Table S2. Thus, MIL-Ensemble model 
was selected for further evaluation. 

3.3 Performance evaluation

Diagnostic performances of the selected MIL model for 
classifying retinal conditions based on CFP and OCT pairs (Fusion-
MIL), CFP (CFP-MIL), and OCT (OCT-MIL) were evaluated and 
compared. In the test dataset 1, the CFP and OCT images were 
captured using Topcon OCT-1 Maestro, which was the same as the 
device used in the training and validation datasets. As detailed in 
Table 3, Fusion-MIL showed a higher overall AUC of 0.954 (95% 
CI 0.934–0.973) than CFP-MIL (AUC = 0.903, 95% CI 0.875–0.930, 
P < 0.001) and OCT-MIL (AUC = 0.928, 95% CI 0.904–0.952, P
= 0.012). For each retinal condition, Fusion-MIL also had the best 
performance except in eyes with wet AMD, in which the AUC of 
Fusion-MIL (AUC = 0.977, 95% CI 0.922–1.000) was slightly lower 
than that of OCT-MIL (AUC = 0.978, 95% CI 0.925–1.000, P = 
0.954), but still significantly higher than that of CFP-MIL (AUC = 
0.903, 95% CI 0.795–1.000, P = 0.008) (Table 3). To demonstrate the 
ability of generalization of the MIL models, we further tested models 
with images captured using another device (Topcon DRI-OCT) with 
various scanning widths. Fusion-MIL also showed a higher overall 
AUC of 0.985 (95% CI 0.971–0.999) than CFP-MIL (AUC 0.876, 
95% CI 0.841–0.910, P < 0.001) and OCT-MIL (AUC 0.982, 95% 
CI 0.966–0.998, P = 0.421) (Table 3). The diagnostic performance of 
Fusion-MIL on each retinal disease was superior to CFP-MIL and 
OCT-MIL, except for ERM and ME. The diagnostic performance of 
Fusion-MIL on ERM and ME (AUC = 0.951, 95% CI 0.887–1.000, 
and 0.989, 95% CI 0.956–1.000, respectively) was slightly lower than 
that of OCT-MIL (AUC = 0.972, 95% CI 0.923–1.000, P = 0.450, and 
0.989, 95% CI 0.958–1.000, P = 0.987, respectively), but much higher 

than that of CFP-MIL (AUC = 0.700, 95% CI 0.568–0.832, P = 0.002, 
and 0.783, 95% CI 0.660–0.906, P < 0.001, respectively) (Table 3).

To further test the generalization of Fusion-Net, we used an 
external test dataset that also included SS-OCT and CFP images 
(Topcon DRI-OCT). In the external test dataset 3, which used the 
same Topcon DRI-OCT as test dataset 2. Fusion-MIL (AUC = 0.978, 
95% CI 0.958–0.997) (Table 2) presented better overall performance 
than CFP-MIL (AUC = 0.913, 95% CI 0.876–0.951, P < 0.001) and 
OCT-MIL (AUC = 0.962, 95% CI 0.938–0.986, P = 0.045), and was 
only slightly inferior to OCT-MIL in eyes with PM (Fusion-MIL 
AUC = 0.995, 95% CI 0.961–1.000 vs. OCT-MIL AUC = 0.999, 95% 
CI 0.982–1.000, P = 0.712) (Table 3).

Separate CFP and OCT examinations (Zeiss Visucam 224 and 
Svision VG200 SS-OCT) were performed in the external test dataset 
4. Fusion-MIL (AUC = 0.959, 95% CI 0.931–0.987) still exhibited 
better overall performance than CFP-MIL (AUC = 0.907, 95% CI 
0.867–0.947, P = 0.002) and OCT-MIL (AUC = 0.941, 95% CI 
0.906–0.976, P = 0.089), but was slightly inferior to OCT-MIL in ME 
(Fusion-MIL AUC = 0.974, 95% CI 0.904–1.000 vs. OCT-MIL AUC 
= 0.984, 95% CI 0.929–1.000, P = 0.841) and PM (Fusion-MIL AUC 
= 0.969, 95% CI 0.895–1.000 vs. OCT-MIL AUC = 1.000, 95% CI 
1.000–1.000, P = 0.621), and inferior to CFP-MIL in PM (Fusion-
MIL AUC = 0.969, 95% CI 0.895–1.000 vs. CFP-MIL AUC = 1.000, 
95% CI 1.000–1.000 P = 0.334) (Table 3). 

3.4 Visualization and additional analyses

Corresponding ROCs for the retinal conditions in the four test 
datasets are shown in Figure 3. The ROCs of Fusion-MIL were 
higher than those of CFP-MIL and OCT-MIL for most individual 
diagnosis. Figure 4 shows the examples of original CFP and OCT 
images and their activation heatmaps for each retinal condition 
generated by Fusion-MIL model. Abnormalities were obviously 
highlighted in various shapes, sizes, and locations according to 
each retinal condition. The confusion matrices for all condition 
are shown in Supplementary Figure S4, where it can accurately 
classify true-positive and true-negative cases for most retinal 
conditions, except for dAMD, ERM, and ME, for which the model 
exhibited comparatively higher false-negative rates.

Considering that some eyes suffered multiple diseases (for 
example, with both DR and ME), and their images had several labels 
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TABLE 1  Patient demographics and dataset distribution for multiple retinal conditions across institutions.

Institution Peking union medical college hospital Hunan 
provincial 
People’s 
hospital

P value Guizhou 
provincial 
People’s 
hospital

P value

Dataset 
(Device)

Training 
dataset 

(Maestro)

Validate 
dataset 

(Maestro)

Test 
dataset 1 
(Maestro)

Test 
dataset 2 

(DRI)

Test 
dataset 3 

(DRI)

Test 
dataset 4 
(Visucam 
VG200)

No. of 
patients

911 70 - 48 -

No. of 
women, n (%)

536 (58.84) 36 (51.43) 0.226 23 (47.92) 0.133

Age, years 
(mean ± SD)

53.39 ± 19.44 55.64 ± 10.53 0.342 57.45 ± 18.08 0.162

No. of image 
pairs, n

710 (49.13) 241 (16.68) 255 (17.65) 88 (6.09) 91 - 60 -

No. of eye, n 
(%)

700 (48.92) 238 (16.63) 255 (17.82) 88 (6.15) 90 - 60 -

No. of eyes 
with normal 
condition, n 
(%)

358 (42.12) 117 (40.07) 126 (39.50) 0 (0.00) 15 (12.93) 11 (14.47)

No. of eyes 
with ERM, n 
(%)

144 (16.94) 53 (18.15) 57 (17.87) 22 (20.18) 18 (15.52) 15 (19.74)

No. of eyes 
with ME, n 
(%)

104 (12.24) 35 (11.99) 41 (12.85) 21 (19.27) 30 (25.86) 10 (13.16)

No. of eyes 
with DR, n 
(%)

106 (12.47) 37 (12.67) 41 (12.85) 17 (15.60) 27 (23.28) 7 (9.21)

No. of eyes 
with dry 
AMD, n (%)

64 (7.53) 21 (7.19) 26 (8.15) 14 (12.84) 10 (8.62) 14 (18.42)

No. of eyes 
with wet 
AMD, n (%)

39 (4.59) 14 (4.79) 14 (4.39) 16 (14.68) 7 (6.03) 8 (10.53)

No. of eyes 
with PM, n 
(%)

35 (4.12) 15 (5.14) 14 (4.39) 19 (17.43) 9 (7.76) 11 (14.47)

P value (Test 
dataset 1 as 
reference)

0.993 0.997 - <0.001∗ <0.001∗ <0.001∗

ERM, epiretinal membrane; ME, macular edema; DR, diabetic retinopathy; AMD, age-related macular degeneration; PM, pathologic myopia; SD, standard deviation; Maestro, 3D OCT-1, 
Maestro (Topcon, Japan); DRI, Deep Range Imaging Triton OCT (Topcon, Japan); VG200, VG200 OCT (SVision Imaging, China); Visucam, Zeiss Visucam 224 (Zeiss, Germany).
∗indicates a P value <0.05 when comparing demographic characteristics (sex and age) or retinal condition distribution between two datasets.

of diagnoses, we further calculated the accuracy three MIL models 
across the four test datasets. The Fusion-MIL had higher complete 
accuracy (0.717–0.852) and partial accuracy (0.857–0.977) than 
CFP-MIL (complete accuracy 0.429–0.608, and partial accuracy 

0.670–0.817) and OCT-MIL (complete accuracy 0.473–0.624, and 
partial accuracy 0.767–0.841) in all the four test datasets (Table 4). 
Of note, the difference in complete accuracy between Fusion-MIL 
and CFP/OCT-MIL models (difference up to 0.3) seemed to be 
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TABLE 2  Patient demographics and dataset distribution for ATN classification in pathologic myopia.

Institution Training dataset Validation dataset Test dataset

No. of eyes 705 705 705

 Right 239 239 239

 Left 240 240 240

No. of patients 354 354 354

 Male 114 114 114

 Female 126 126 126

Age, years (mean ± SD) 351 351 351

Atropic component

 A0 103 35 35

 A1 35 61 56

 A2 35 100 99

 A3 173 34 43

 A4 182 9 7

Tractional component

 T0 399 127 139

 T1 127 63 58

 T2 139 36 30

 T3 665 7 7

 T4 177 3 3

 T5 63 3 3

Neovascular component

 N0 571 188 194

 N1 188 5 6

 N2a 194 11 10

 N2s 953 35 30

ATN, A for atrophy, T for traction, and N for neovascularization; SD, standard deviation.

more significant than that in partial accuracy (difference <0.15) 
(details in Supplementary Figures S5, 6).

Additionally, we evaluated the model’s capability to classify 
pathologic myopia using the ATN classification system, which 
integrates both CFP and OCT imaging modalities, thereby further 
demonstrating the clinical applicability of our approach. The Fusion-
MIL model achieved AUC values ranging from 0.902 to 0.997 for the 
atrophic component, 0.869 to 0.957 for the tractional component, 
and 0.742 to 0.976 for the neovascular component (detailed results 
are presented in Table 5).

The learning curves of the Fusion-MIL model were analyzed to 
assess training stability and convergence. Supplementary Figure S7 
illustrates the progression of the mean AUC, mean average precision 
(AP), and loss metrics over training epochs. The mean AUC 
and AP steadily improved as training progressed, demonstrating 
enhanced model discrimination and precision. Concurrently, the 
learning curves demonstrate a general decline in both training and 
validation losses, indicating model convergence, while the validation 
loss remains relatively lower than the training loss throughout 
the epochs. 
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TABLE 3  AUC (95% CI) of Fusion-MIL (CFP + OCT), CFP-MIL, and OCT-MIL model for each retinal condition in 4 test datasets.

Fundus 
condition

Test dataset
1

P value Test dataset 
2

P value Test dataset 
3

P value Test dataset 
4

P value

(Maestro) (DRI) (DRI) (Visucam + 
VG200)

Normal
condition

CFP + OCT 0.995 (0.985–1.00) - - - 0.983 (0.929–1.000) - 0.983 (0.970–0.996) -

Only CFP 0.981 (0.964–0.998) 0.021∗ - - 0.978 (0.916–1.000) 0.785 0.958 (0.938–0.978) 0.042∗

Only OCT 0.981 (0.963–0.998) 0.102 - - 0.994 (0.963–1.000) 0.317 0.979 (0.965–0.993) 0.21

ERM

CFP + OCT 0.927 (0.879–0.974) - 0.951 (0.887–1.000) - 0.951 (0.880–1.000) - 0.846 (0.717–0.975) -

Only CFP 0.821 (0.752–0.890) <0.001∗ 0.700 (0.568–0.832) 0.002∗ 0.826 (0.704–0.948) 0.012∗ 0.676 (0.513–0.838) 0.038∗

Only OCT 0.886 (0.828–0.944) 0.221 0.972 (0.923–1.000) 0.450 0.935 (0.854–1.000) 0.624 0.822 (0.685–0.958) 0.712

ME

CFP + OCT 0.970 (0.933–1.000) - 0.989 (0.956–1.000) - 0.975 (0.936–1.000) - 0.974 (0.904–1.000) -

Only CFP 0.893 (0.827–0.959) 0.003∗ 0.783 (0.660–0.906) <0.001∗ 0.840 (0.746–0.934) 0.001∗ 0.820 (0.655–0.985) 0.008∗

Only OCT 0.969 (0.932–1.000) 0.956 0.989 (0.958–1.000) 0.987 0.955 (0.902–1.000) 0.210 0.984 (0.929–1.000) 0.841

DR

CFP + OCT 0.976 (0.943–1.000) - 0.999 (0.989–1.000) - 0.973 (0.929–1.000) - 0.997 (0.970–1.000) -

Only CFP 0.963 (0.922–1.000) 0.412 0.991 (0.959–1.000) 0.125 0.966 (0.917–1.000) 0.745 0.995 (0.956–1.000) 0.876

Only OCT 0.923 (0.866–0.980) 0.018∗ 0.988 (0.952–1.000) 0.334 0.930 (0.862–0.999) 0.045∗ 0.952 (0.839–1.000) 0.012∗

Dry AMD

CFP + OCT 0.847 (0.752–0.942) - 0.972 (0.911–1.000) - 0.963 (0.880–1.000) - 0.944 (0.859–1.000) -

Only CFP 0.789 (0.683–0.895) 0.156 0.876 (0.755–0.996) 0.024∗ 0.898 (0.767–1.000) 0.089 0.932 (0.838–1.000) 0.712

Only OCT 0.809 (0.706–0.912) 0.432 0.957 (0.881–1.000) 0.621 0.946 (0.847–1.000) 0.534 0.893 (0.778–1.000) 0.205

Wet AMD

CFP + OCT 0.977 (0.922–1.000) - 0.997 (0.980–1.000) - 1.000 (1.000–1.000) - 0.998 (0.973–1.000) -

Only CFP 0.903 (0.795–1.000) 0.008∗ 0.926 (0.836–1.000) 0.003∗ 0.922 (0.792–1.000) 0.042∗ 0.952 (0.847–1.000) 0.078

Only OCT 0.978 (0.925–1.000) 0.954 0.984 (0.939–1.000) 0.245 0.997 (0.970–1.000) 0.501 0.957 (0.857–1.000) 0.112

PM

CFP + OCT 0.985 (0.941–1.000) - 1.000 (1.000–1.000) - 0.995 (0.961–1.000) - 0.969 (0.895–1.000) -

Only CFP 0.968 (0.904–1.000) 0.210 0.978 (0.931–1.000) 0.056 0.993 (0.955–1.000) 0.876 1.000 (1.000–1.000) 0.334

Only OCT 0.951 (0.872–1.000) 0.045∗ 1.000 (1.000–1.000) 0.501 0.999 (0.982–1.000) 0.712 0.985 (0.934–1.000) 0.621

(Continued on the following page)
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TABLE 3  (Continued) AUC (95% CI) of Fusion-MIL (CFP + OCT), CFP-MIL, and OCT-MIL model for each retinal condition in 4 test datasets.

Fundus 
condition

Test dataset
1

P value Test dataset 
2

P value Test dataset 
3

P value Test dataset 
4

P value

(Maestro) (DRI) (DRI) (Visucam + 
VG200)

Overall

CFP + OCT 0.954 (0.934–0.973) - 0.985 (0.971–0.999) - 0.978 (0.958–0.997) - 0.959 (0.931–0.987) -

Only CFP 0.903 (0.875–0.930) <0.001∗ 0.876 (0.841–0.910) <0.001∗ 0.913 (0.876–0.951) <0.001∗ 0.907 (0.867–0.947) 0.002∗

Only OCT 0.928 (0.904–0.952) 0.012∗ 0.982 (0.966–0.998) 0.421 0.962 (0.938–0.986) 0.045∗ 0.941 (0.906–0.976) 0.089

AUC, areas under receiver operating characteristic curve; CFP, color fundus photography; CI, confidence interval; DR, diabetic retinopathy; AMD, dry age-related macular degeneration; ERM, 
epiretinal membrane; ME, macular edema; MIL, multiple instance learning; OCT, optical coherence tomography; PM, pathologic myopia; Maestro, 3D OCT-1, Maestro (Topcon, Japan); DRI, 
Deep Range Imaging Triton OCT (Topcon, Japan); Visucam, Zeiss Visucam 224 (Zeiss, Germany); VG200, VG200 OCT (SVision Imaging, China).
∗P value <0.05 P value indicates the significance when comparing CFP-MIL, or OCT-MIL, with Fusion MIL (CFP + OCT), respectively.

4 Discussion

In this study, we introduced a DL model based on the MM-
MIL algorithm for classifying multiple retinal conditions using 
CFP and OCT images. The Fusion-MIL based on bimodal imaging 
showed reliable performance for 7 common retinal conditions, 
including normal fundus, ERM, ME, DR, dry AMD, wet AMD, 
and PM. It achieved stable AUC values of 0.954–0.985 across 
four different test datasets. Fusion-MIL also outperformed CFP-
MIL and OCT-MIL models which were based on single-modal 
images. The ATN classification of PM demonstrated that Fusion-
MIL could also be used for more detailed classification and
treatment decision.

The proposed bimodal imaging strategy using CFP and OCT 
emulates real-world clinical evaluation processes. Our results show 
that this hybrid method combines analysis of en-face CFP and 
cross-sectional OCT images, which can obtain more information 
from medical data and improve the performance for various 
retinal conditions (Jaffe and Caprioli, 2004). Kang et al. reported 
a multimodal imaging-based DL model for five retinal vascular 
diseases, including diabetic macular edema (DME), neovascular 
AMD, myopic choroidal neovascularization (mCNV), and branch 
and central retinal vein occlusion (BRVO/CRVO) using images 
of CFP, OCT, and fluorescein angiography (FA), with or without 
indocyanine green angiography (ICGA) (Kang et al., 2021). Their 
models were trained with images from 2,992 eyes and the AUC 
detecting wet AMD (one condition also detected by our model) 
achieved 0.990. In our study, the AUCs detecting wet AMD in 
the four test datasets were 0.9772, 0.9974, 1.0000, and 0.9976, 
respectively, similar to Kang’s study. Therefore, more imaging 
modalities (e.g., invasive methods like FA and ICGA) in addition 
to CFP and OCT might not improve diagnostic performance 
significantly. Li et al. also trained a CFP- and FA-based bimodal 
DL model for detecting AMD and PM with two public datasets 
(Ichallenge-AMD and Ichallenge-PM). It showed AUC values of 
0.756 for AMD and 0.986 for PM, respectively, (Li et al., 2020), 
which is not superior to our Fusion-MIL, as it’s AUCs for dry AMD, 
wet AMD, and PM were 0.847–0.972, 0.977–1.000, and 0.969-1.000 
across four test datasets, respectively. Therefore, bimodal imaging 
of CFP and OCT rather than other imaging methods might be 

more likely to improve DL model’s diagnostic performance, which is 
concordant to the clinical practice that CFP and OCT are the most 
regular non-noninvasive examinations for retinal diseases (Li et al., 
2018). Perhaps benefiting from the efficient diagnostic information 
provided by bimodal imaging, our MIL models were trained 
on a relatively small dataset (710 image pairs) and obtained a 
robust performance on the test datasets (mean AUC above 0.95). 
Furthermore, DL models relying on invasive examinations (e.g., FA 
and ICGA) are unsuitable for screening purposes. In contrast, as 
CFP and OCT are widely used, non-invasive, rapid, convenient, and 
repeatable examinations, our method may have greater potential to 
be applied to a broader range of diseases.

However, we noticed that Fusion-Net was inferior to OCT-
Net or CFP-Net in detecting some specific diseases occasionally. 
For example, Fusion-Net (AUC 0.9685, 95% CI 0.8951–1.0000) 
was inferior to CFP-Net (AUC 1.0000, 95% CI 1.0000–1.0000) in 
detecting PM when using test dataset 4. As PM usually presents 
typical tessellated fundus in CFP images, but OCT features that 
showed no apparent abnormalities might decrease the diagnostic 
performance of Fusion-Net for PM. In contrast, other retinal 
diseases, such as ERM, ME, and wet AMD, usually exhibit 
significant OCT lesions easily detected by Fusion-Net. Therefore, 
optimizing the weights of imaging features of different modalities 
for various diseases could further enhance DL models based on 
multimodal imaging.

For a diagnostic model, its performance metrics usually shows a 
decrease trend from validation to test to external test sets to indicate 
the model is not overfitting. However, in our study, AUC values 
in test dataset 2 – 4 were even higher than that in test dataset 1, 
which had a more similar dataset composition with training and 
validation sets. Several reason may be considered: First, differences 
in imaging devices and their inherent technical specifications likely 
contributed to performance disparities. Test dataset 1 comprised 
images acquired using the 3D OCT-1 Maestro (Topcon, Japan), a 
SD-OCT system, which was also employed for model training and 
internal validation. In contrast, test datasets 2 and 3 were derived 
from the DRI Triton OCT (Topcon, Japan), and test dataset 4 from 
the VG200 (SVision Imaging, China) - both SS-OCT systems. SS-
OCT typically offers superior image clarity, resolution, and signal-
to-noise ratio compared to SD-OCT, which may have enhanced 

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1665173
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Gu et al. 10.3389/fcell.2025.1665173

FIGURE 3
Receiver operating characteristic curves for all retinal conditions in test datasets. AUC, areas under receiver operating characteristic curve.
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FIGURE 4
Original images and their activation heatmaps of abnormalities detected by deep learning models demonstrating representative changes of various 
retinal diseases. Original color fundus photography and optical coherence tomography images (above) and corresponding activation heatmaps 
(bellow) are shown.

the model’s ability to discern discriminative features, leading to 
improved diagnostic performance. Second, variations in dataset 
composition may have further influenced model performance. 
Although test datasets 2 and 3 were obtained using the same DRI 
Triton OCT device, their retinal condition distributions differed 
substantially, as test dataset 2 does not include “Normal” cases, 
resulting in a more balanced and simplified classification task. 
This structural difference may explain the higher AUC in test 
dataset 2 compared to test dataset 3. These findings underscore 
the importance of considering both imaging modality differences 
and dataset heterogeneity when evaluating AI model generalizability 
across diverse clinical settings.

In the current study, deep learning algorithms had the best 
diagnostic performance in ocular images with multiple disease 
labels. In the real-world clinical setting, comprehensive diagnoses 
are correlated with the urgency of referral and the necessity of 
treatment. For example, ME in eyes with wet AMD or DR could 
be an indication for treatment. In the current study, the Fusion-
Net had the highest complete accuracy and partial accuracy than 
CFP-Net and OCT-Net and showed apparent advantages in giving 
disease labels on the whole. Our results suggest that bimodal 
imaging enhanced the DL models’ ability to minimize missed 
diagnoses by obtaining more diagnostic information. The Fusion-
Net can reduce missed diagnoses, which is needed in scenarios of 
clinic diagnosis and community screening, and might assist doctors 

without abundant clinical experience in the early learning stage and 
clinical practice (Resnikoff et al., 2020).

A critical feature of this study is the test of generalization 
using bimodal imaging data from different devices from various 
manufacturers. Fauw et al. reported that a well-trained SD-OCT-
based model for detecting retinal diseases was tested with SD-
OCT images captured with a new scanning device; the performance 
was unsatisfying unless the models were retrained with images 
of new devices (De Fauw et al., 2018). Limited generalizability is 
also one of the common issues of DL models mentioned in many 
other studies (Wang et al., 2024; Goutam et al., 2022). However, 
in the current study, the SD-OCT and CFP-trained Fusion-Net 
models were tested with SS-OCT and CFP images captured with 
various devices, and diagnostic performance using the test dataset 
2-4 remained stable. We speculated that one possible explanation is 
that Fusion-Net did not depend on a solitary imaging method, and 
the two imaging methods provided complementary information. 
Therefore, bimodal imaging improved the models’ adaptability. 
Another possible explanation is that our models extracted features 
automatedly rather than learned features by annotated lesions. These 
models avoid over-reliance on the characteristics of localized lesions. 
Once the style features of images changed, our models exhibited 
good identification ability.

In terms of the model’s visualization, the interpretability 
component leverages attention mechanisms to produce clinically 
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TABLE 4  Complete accuracy and partial accuracy of MIL models in 4 test datasets.

Test dataset Diagnostic accuracy CFP + OCT CFP P value OCT P value

Test dataset 1
Complete accuracy 0.733 0.608 <0.01∗ 0.624 <0.01∗

Partial accuracy 0.898 0.804 <0.01∗ 0.828 <0.01∗

Test dataset 2
Complete accuracy 0.852 0.443 <0.01∗ 0.580 <0.01∗

Partial accuracy 0.977 0.727 <0.01∗ 0.841 <0.01∗

Test dataset 3
Complete accuracy 0.736 0.429 <0.01∗ 0.473 <0.01∗

Partial accuracy 0.857 0.670 <0.01∗ 0.824 <0.01∗

Test dataset 4
Complete accuracy 0.717 0.483 <0.01∗ 0.500 <0.01∗

Partial accuracy 0.900 0.817 <0.01∗ 0.767 <0.01∗

CFP, color fundus photography; OCT, optical coherence tomography; MIL, multiple instance learning.
Complete accuracy, defined as all diagnoses given by MIL, models for one case are the same as ground truth.
Partial accuracy, defined as at least one of the diagnoses given by MIL, models for one case is the same as ground truth, while no misdiagnosis is given.
P value indicates the significance when comparing CFP-MIL, or OCT-MIL, with Fusion MIL (CFP + OCT), respectively.
∗P value <0.05.

TABLE 5  AUC of Fusion-MIL for ATN classification of PM and therapy decision.

Atrophic 
component

AUC (95% CI) Tractional 
component

AUC (95% CI) Neovascular 
component

AUC (95% CI)

A0: no myopic retinal 
lesions

0.997 (0.975–1.000) T0: no macular schisis 0.957 (0.850–1.000) N0: no myopic CNV 0.898 (0.861–0.935)

A1: tessellated fundus 
only

0.914 (0.775–1.000) T1: inner or outer 
foveoschisis

0.878 (0.780–0.940) N1: macular lacquer 
cracks

0.742 (0.572–0.912)

A2: diffuse chorioretinal 
atrophy

0.902 (0.757–0.964) T2: Inner + outer 
foveoschisis

0.887 (0.780–0.950) N2a: active CNV 0.976 (0.833–1.000)

A3: patchy chorioretinal 
atrophy

0.918 (0.625–1.000) T3: foveal detachment 0.953 (0.625–1.000) N2s: scar/Fuchs spot 0.904 (0.815–0.993)

A4: complete macular 
atrophy

0.965 (0.800–1.000) T4: full-thickness MH 0.869 (0.780–0.995)

T5: MH + retinal 
detachment

0.982 (0.875–1.000)

ATN, A for atrophy, T for traction, and N for neovascularization; AUC, areas under receiver operating characteristic curve; CI, confidence interval; CNV, choroidal neovascularization; MH, 
macular hole; PM, pathologic myopia; VEGF, vascular endothelial growth factor.

meaningful visualizations, enhancing model transparency and 
aiding clinicians in understanding diagnostic decisions. Through 
multi-model ensembling, it generates attention-weighted heatmaps: 
OCT B-scans are ranked by attention scores to emphasize 
diagnostically significant cross-sections, while CFP images receive 
spatial overlays where intensity gradients highlight areas of 
focus. Although this enhances clinical utility, heatmaps may 
not accurately mirror underlying decision logic and may be 
susceptible to misinterpretation, reflecting the broader challenges 
of post-hoc explainability in medical imaging AI (Ennab and 
McHeick, 2024). There is also a risk of bias if training datasets 
lack demographic diversity, potentially undermining performance 

for underrepresented patient groups (Houssein et al., 2025; 
Nouis et al., 2025). Future work should explore hybrid or self-
explainable AI approaches that embed interpretability into the 
model’s architecture, address bias via representative data and 
auditing, and rigorously validate outputs in real-world clinical 
settings—all supported by human oversight to ensure trust, 
accountability, and ethical deployment in healthcare (Nouis et al., 
2025; Alkhanbouli et al., 2025; Gong et al., 2024).

There are several limitations in the current study. First, the 
Fusion-MIL model was not tested with published external dataset, 
because there are no such datasets of bimodal imaging for multiple 
retinal diseases currently, and we chose to verify DL methods 
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with data from various centers. Even though, true external data 
collected independently is crucial for more convinced assessment 
of our model’s generalizability and potential of clinical translation. 
More importantly, closely following the latest regulatory guidance 
on AI/machine learning in medical devices, such as Good Machine 
Learning Practice (GMLP) for Medical Device Development, (FDA, 
2021), provides a robust framework for model test and cross-model 
comparison. Thus, the comparison proposed in our study need to be 
interpreted with caution. Second, we did not compare the diagnostic 
performance of DL models with human ophthalmologists, because 
the tested retinal conditions were selected according to the 
prevalence in real-world clinical setting. Therefore, these conditions 
were not difficult for most ophthalmologists to diagnose, and this 
study focused on the comparison of DL-assisted diagnosis based on 
bimodal and single-model imaging, rather than comparison of DL 
methods and human. Further research is required to overcome these 
limitations. Third, the image data is relatively limited compared 
with other studies. Though the MIL models already achieved high 
classification accuracy, it remains unclear whether larger training 
dataset could help further improve model performance. Fourth, we 
included only 7 retinal conditions in this preliminary study. More 
retinal diseases, such as retinal vein occlusion, will be included in 
future investigation.

In conclusion, the Fusion-MIL model, based on bimodal 
imaging with CFP and OCT, achieved both accurate and 
comprehensive diagnoses of several retinal diseases. It outperformed 
models based on single-modal imaging and demonstrated non-
inferior performance compared to other state-of-the-art multimodal 
models. The model’s stable performance across test datasets 
from different devices and medical centers suggests that it is 
highly generalizable to heterogeneous clinical settings. The simple 
combination of CFP and OCT, rather than more complex or invasive 
imaging methods, may be sufficient for automatic and effective 
detection of common retinal diseases. Future work could focus on 
optimizing the weighting of each imaging modality for different 
retinal diseases, expanding the size of training and testing datasets, 
evaluating the model with truly independent external datasets, 
and including human-machine comparisons. We believe that, with 
further validation across more retinal diseases, our approach has 
the potential to support fundus screening and early diagnosis of 
vision-threatening conditions in areas lacking access to experienced 
ophthalmologists.
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