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Artificial intelligence in cataract 
grading system: a LOCS III-based 
hybrid model achieving 
high-precision classification
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Purpose: To design an artificial intelligence (AI) algorithm based on the Lens 
Opacities Classification System III (LOCS III) to realize automatic diagnosis of 
cataracts and classification of its.
Methods: This retrospective study develops an AI-based neural network to 
diagnose cataracts and grade lens opacity. According to the LOCS III, cataracts 
are classified into Nuclear Opalescence (NO), Nuclear Color (NC), Cortical(C) 
and Posterior subcapsular(P). The newly developed neural network system uses 
grayscale, binarization, cluster analysis, “dilation-corrosion” and other methods 
to process and analyze the images, then the study need to test and evaluate the 
generalization ability of the system.
Results: The new neural network system can identify 100% of lens anatomy. It 
has an accuracy of 92.28%–100% in the diagnosis of nuclear cataract, cortical 
cataract and posterior subcapsular cataract. The classification accuracy rate of 
the system for cataract NO, NC, C, P is between 90.88% and 100%, the Area 
Under the Curve (AUC) is between 96.68% and 100%.
Conclusion: A novel cataract diagnostic and grading system can be developed 
based on the AI recognition algorithm, which establishes an automatic cataract 
diagnosis and grading scheme. The system facilitates rapid and accurate cataract 
diagnosis and grading.

KEYWORDS

cataract, neural network, artificial intelligence, anterior segment image, Lens Opacities 
Classification System III (LOCS III) 

 1 Introduction

Cataract is a main cause of visual impairment and blindness worldwide (Lee and 
Afshari, 2023). Surgery is the most effective treatment for cataract. Severe cataract can 
cause complications such as lens nucleus dislocation and glaucoma (Guan et al., 2022) 
significantly increasing surgical risks. Thus, early and precise diagnosis is clinically critical. 
In clinical practice, cataract is typically diagnosed under a slit lamp (Brown et al., 
1987) and graded using the lens opacity grading system II or III (Chylack et al., 1989; 
Chylack et al., 1993). However, the accurate diagnosis and grading of lens diseases depend 
on ophthalmologists’ clinical experience. Different ophthalmologists may evaluate the 
patient’s eye condition differently based on their years of experience (Lu et al., 2025). In
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remote areas, limited access to professional ophthalmologists 
and ophthalmic equipment, along with inconvenient 
medical conditions, lead to delayed diagnosis and treatment 
for patients (Mundy et al., 2016).

Artificial intelligence (AI), as an interdisciplinary technological 
domain, is dedicated to developing computational systems that 
emulate human cognitive processes (Liu et al., 2021). Its medical 
applications predominantly utilize machine learning (ML) and deep 
learning (DL) frameworks for imaging diagnostics (Castiglioni et al., 
2021). Ophthalmology currently represents one of the most 
dynamic frontiers in AI research (Yang et al., 2023), where 
image-based diagnostic systems show remarkable suitability for 
traditional ML and DL implementations (Wang et al., 2024). 
Owing to its exceptional capability in extracting high-level features 
and latent patterns from massive datasets, DL systems now 
match clinicians’ performance levels in feature-based diagnostic 
tasks (Yu et al., 2018). The scope of applications has expanded 
significantly, progressing beyond its initial focus on diagnosing 
retinal pathologies (e.g., diabetic retinopathy, age-related macular 
degeneration, and retinopathy of prematurity) (Oganov et al., 
2023; Zhang et al., 2023; Xu et al., 2024) to now include 
screening for anterior segment conditions such as glaucoma, 
cataracts, iris abnormalities, and corneal diseases (Ting et al., 2021; 
Wu et al., 2022). Currently, machine learning and image processing 
technology are widely used by researchers in their studies to develop 
cataract detection methods (Wan Zaki et al., 2022; Gali et al., 
2019). Many researchers employ various deep learning algorithms 
(Xu et al., 2020; Wu et al., 2019), such as Convolutional Neural 
Networks (CNN), Residual Neural Network (ResNet) and Support 
Vector Machine (SVM) (Imran et al., 2020), to diagnose image-
based categorization of cataract as non-cataract, mild, moderate, 
and severe. However, there is a lack of utilizing deep learning 
algorithms for simultaneous diagnosis and grading of various types 
of cataracts in anterior segment images, including nuclear (N) 
(Li et al., 2010; Li et al., 2009), cortical (C) (Lu et al., 2022), and 
posterior subcapsular (P) cataract, based on the Lens Opacities 
Classification System III (LOCS III).

Building an AI model involves several steps, including system 
data preparation (image preprocessing), dataset partitioning, model 
construction, optimization, and evaluation (Shao et al., 2023). 
Prior to implementing algorithms, many researchers perform 
preprocessing on images to eliminate noise, thereby enhancing the 
accuracy of feature extraction (Xu et al., 2020). Due to reflection 
of eyes and local uneven illumination, the quality of the original 
images is affected. That effect may decrease the accuracy of feature 
extraction, and consequently impact the reliability of cataract 
diagnosis and grading. Xu et al. converted the original images 
from RGB color mode (RGB) color space to the green component 
images to eliminate the uneven illumination (Xu et al., 2020; 
Linglin et al., 2017). But they did not preprocess specific areas 
of the original images indetail. Gan et al. proposed two artificial 
intelligence diagnostic platforms for cortical cataract classification, 
dividing the cataract into four stages: incipient stage, intumescent 
stage, mature stage, and hyper-mature stage (Gan et al., 2023). The 
platforms did not consider the influence of bright spots in the 
images and did not provide more detailed classification of cortical 
cataract. In addition, preprocessing encompasses extracting regions 
of interest to mitigate the influence of surrounding redundant 

information. In 1997, researchers proposed a method based on 
deep learning algorithms to classify the severity of nuclear cataract, 
which extracted second-order gray-level statistics from within 
circular regions of the nucleus as image features (Duncan et al., 
1997). However, the algorithm did not consider the information of 
elliptical lens regions, resulting in incomplete extraction of feature 
information. Li et al. (Li et al., 2010) investigated an algorithm for the 
automatic diagnosis of nuclear cataract based on the LOCS III that 
can automatically detect the nucleus region from slit-lamp images 
using the modified active shape model (ASM) method (Li and 
Chutatape, 2003), which is critical for assessing nuclear cataract. This 
article presents an automated nuclear cataract severity classification 
algorithm that utilizes the YOLOv3 algorithm to locate the nuclear 
region of the ocular lens (Hu et al., 2020). But, the complexity 
and large computational burden of YOLOv3 make it challenging to 
implement.

Currently, no algorithm exists that can comprehensively 
diagnose and grade all types of cataracts based on LOCS III 
during initial screening, and the aforementioned article also lacks 
detailed description of methods for accurate localization of the 
lens (Litjens et al., 2017; Li et al., 2021; Yousefi et al., 2020). 
Additionally, existing research has not adequately addressed the 
impact of extremely bright spots in images on the extraction of 
ocular features, which may lead to inaccurate diagnostic results. In 
response to the above issues, the primary contributions of this paper 
are as follows. 

1. Based on deep learning, this study proposes a systematic 
algorithm that accurately classifies and grades various types of 
cataracts according to the Lens Opacities Classification System 
III (LOCS III).

2. The article presents a lens localization algorithm of nuclear 
type image. The algorithm is based on expanded ellipse 
traversal that can enhance the accuracy of interested region 
localization, which can contribute to improved feature 
extraction precision of Nuclear Cataract images.

3. The paper advances a color-based multivariate clustering 
analysis technique for filling image highlight that contributes 
to improve feature extraction precision of Cortical (C) 
and Posterior Subcapsular (P) Cataract images and 
conduces to enhance diagnosis and grading precision
of C and P.

2 Materials and methods

The experimental protocol was established Helsinki according 
to the ethical guidelines of the Declaration and was approved by 
the Ethics Committee of The Second Affiliated Hospital of Harbin 
Medical University. Written informed consent was obtained from 
all patients before collection. In this section, this study is expanded 
from two models: the nuclear cataract diagnosis and grading 
module and cortical and posterior subcapsular cataract diagnosis 
and grading module. As shown in Figure 1, the total algorithm 
framework includes preprocessing, feature extraction and cataract 
grading neural network and other processing. The artificial neural 
network (ANN) consists of two layers and employs the sigmoid 
function as its activation function.
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FIGURE 1
The overall diagnosis framework for cataract.

For nuclear images, the preprocessing stage involves 
eliminating bright spots caused by flash light and employing the 
expanded ellipse traversal method to achieve lens localization. 
During feature extraction, the fuzzy interval scale method 
is adopted to obtain feature information regarding Nucleur 
Opalescence (NO) and Nuclear Color (NC). Finally, the 
extracted feature information is input into the ANN to 
enable the automated diagnosis and grading of nuclear
cataracts.

For cortical and posterior subcapsular images, the preprocessing 
stage includes image segmentation using the minimum 
circumscribed circle method and filling image bright spots through 
color multivariate cluster analysis. In the subsequent feature 
extraction phase, the Hough transform is employed to detect 

line information in the images as feature information for cortical 
cataracts, and lesion contour information is extracted as feature 
information for posterior subcapsular cataracts. Ultimately, this 
extracted feature information is fed into the ANN to facilitate 
the diagnosis and grading of cortical and posterior subcapsular
cataracts. 

2.1 Dataset and statistical methods

All slit-lamp photographs were obtained from the Department 
of Ophthalmology of the Second Affiliated Hospital of Harbin 
Medical University from 2019 to 2022, including 1,003 photographs 
of normal lenses and cataracts of different severities. Each 
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FIGURE 2
Lens opacities classification system Ⅲ, LOCS Ⅲ Chylack et al., 1989.

photograph was taken under mydriatic conditions. Different 
modes were used: slit-beam mode was used for NO and 
NC evaluation, and retro-illuminated photographs were used 
to assess C and P based on LOCS III (Figure 2). Slit-beam 
photos were taken with an angle greater than 15° between 
the illumination arm and the viewing arm, while the retro-
illuminated photographs were taken with a frontal view
of the lens.

The exclusion criteria for the photo were: (1) pupil diameter ≤ 
5 mm in mydriatic conditions or unclear image; (2) other special 
types of cataracts; (3) presence of other anterior segment diseases, 
trauma, surgical history and so on.

The data sets were partitioned. After that, each type of 
anterior segment images was divided into two disjoint subsets. 
The training set accounts for 70% of the data, while the test 
set accounts for 30% (Krizhevsky et al., 2017). The dataset 
comprised 1,003 anterior segment images, including 215 from 
healthy lenses and 788 from cataractous lenses classified per 
LOCS III criteria. All images were categorized by modality: slit-
beam illumination (n = 717) and retro-illumination (n = 286). 
Healthy lenses were uniformly graded as NO0/NC0, while cataract 
severity followed LOCS III grading (NO1-6, NC1-6, C0-5, P0-5)
(Supplementary Tables S1-S2).

To address the limited original image dataset, we need to 
augment it to prevent model overfitting and improve algorithm 
performance. Multiple methods were used to augment the data set, 

including adding salt and pepper noise, gaussian noise, dimming 
the image, brightening the image, rotating, mirror flipping, mix-
up, and more. 

2.2 Nuclear cataract diagnosis and grading 
module

2.2.1 Preprocessing
2.2.1.1 Removing bright spots

The original image is obtained by using the slit-beam 
mode of the anterior segment. Due to the influence of flash 
light, there are usually two kinds of light spots in the nuclear 
type image: one is white light spots due to the reflection of 
cornea and the other is yellow spots on the skin near the 
eye, as shown in Figure 3a. Due to reflection of eyes and 
local uneven illumination, the quality of original images is 
impacted, which may hinder the detection and grading of cataract
precisely.

Figure 3c is a lens contour obtained using a basic contour 
extraction algorithm for Figure 3b, which contains a large amount 
of interference information. The highlighted area in Figure 3d is 
the region where inaccurate localization of the lens occurs due 
to the influence of bright spots. Therefore, in this paper, we first 
use the method of drawing black dots on bright areas with three 
RGB values above 250 to reduce the high-brightness light spot, 

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1669696
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Tang et al. 10.3389/fcell.2025.1669696

FIGURE 3
Nuclear image preprocessing under slit-beam photos. (a) Original image; (b) Binary result of Fig. (a) affected by highlighted noise; (c) Localization 
results of oversized lens; (d) Incorrect lens positioning results; (e) The result of drawing black dots; (f) Lens localization result based on expanded 
ellipse traversal; (g) Intercepted lens area.

as shown in Figure 3e. In this way, it is impossible to form a large 
internal ellipse in the bright area and the contour area where the lens 
is located is maximized. Then, the algorithm converts the original 
image into a gray image, and uses dynamic threshold to binarize the 
gray image. 

2.2.1.2 Lens localization algorithm of nuclear image 
based on expanded ellipse traversal

Figure 3c illustrates the imprecise lens contour obtained 
using basic contour detection methods, which contains a lot of 
useless information, thereby compromising the accuracy of feature 
extraction. Therefore, prior to implementing the DL model, it is 
necessary to accurately extract the region of interest from the 
original image. This section proposes a lens localization method 
based on extended elliptical traversal for kernel images, which 
processes the binarized image in Figure 3b.

Before that, we need to use the contour search function to 
find the approximate position of the lens contour, and find the 
minimum rectangular boundary covering this contour to obtain the 
position coordinates, width and height of the upper left corner of 
the rectangle. We think that the lens contour circled by the contour 
search function is approximately the maximum contour. Next, we 

will use the approximate coordinates and other information to 
accurately locate the lens. During the positioning, we first traverse all 
rectangles in the maximum contour and obtain their inner ellipses. 
Then we need to traverse all points in the bounding rectangle to 
determine whether they are inside the ellipse. If so, we need to check 
whether the point is white. Once some spots inside the ellipses are 
not white, the ellipse does not meet the conditions and other ellipses 
need to be traversed. In fact, the ultimate goal of the algorithm is 
to find the largest elliptical area that is completely filled with white. 
Therefore, the algorithm eventually obtains the largest ellipse after 
many iterations, as shown in Figure 3f.

The specific implementation process of lens positioning 
algorithm is shown in Algorithm 1. The input of the algorithm is 
that we use the contour search function in computer vision to get 
the largest possible area of the lens, and obtain the coordinates (x1, 
y1) of the top left corner of the outer rectangle of the area, as well as 
the width w1 and height h1.

The lens part is not strictly elliptical shape, resulting in the ellipse 
not containing the complete lens. Therefore, it is necessary to fine-
tune the size of the ellipse to obtain the final lens positioning result. 
Finally, the algorithm intercepts the lens portion for subsequent 
feature extraction, as shown in Figure 3g. 
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FIGURE 4
Slit-beam photos preprocessing. (a) Original image; (b) Ideal result using minimum circumscribed circle; (c) Inaccurate eye region positioning results;
(d) Unfilled Image; (e) Filled image; (f) Filled color image after debugging.

2.2.2 Nuclear cataract diagnosis and grading 
neural network
2.2.2.1 Feature extraction

The diagnosis and classification of nuclear cataract include NO 
and NC. We make use of color proportion to classify, in which cyan 
pixels are used to judge NO and yellow pixels are used to judge NC. In 
this part, we use a kernel image color eigenvalue extraction algorithm 
based on fuzzy interval scale. The specific process is as follows. 

We first need to set the standard color (cyan or yellow) and 
the offset interval Offset. We assume that the RGB of the standard 
color is (r,g,b). According to this, we can calculate the corresponding 
fuzzy interval, which are respectively R = [r-Offset,r + Offset], G = 
[g-Offset,g + Offset], B = [b-Offset,b + Offset]. It is not difficult to 
see that different standard colors and offset intervals will obtain 
different fuzzy intervals. After that we traverse all pixels in the 
image and count the proportion of pixels points whose RGB 
values are in the fuzzy interval, which is color feature of nuclear
type image. 

2.2.2.2 Lens nucleus diagnosis and grading method based 
on neural network

The input of the neural network is the ratio value of cyan or 
yellow pixels in the lens image after image expansion, positioning 
and clipping. The input data set is divided into training set 
and test set according to the ratio of 7:3. The output layer 

of the neural network is a point, representing the grade of 
the nuclear classification. After the above processing, we have 
obtained a complete nuclear cataract diagnosis and classification 
model, including the classification of Nucleus Opacification and 
Nucleus Color. 

2.3 Cortical and posterior subcapsular 
cataract diagnosis and grading module

2.3.1 Preprocessing
Before feature extraction, we need to preprocess the original 

image, which mainly includes two steps: image positioning 
segmentation and bright spot filling. This phenomenon occurs 
because the eyeball’s three-dimensional structure generates 
luminance gradients under unidirectional illumination. At the 
same time, flash lights make bright spots unavoidable in the 
image. These problems will interfere with feature extraction, so 
preprocessing is needed. 

2.3.1.1 Image segmentation technology based on 
minimum circumscribed circle

The eyeball occupies only a small part of the original image. 
In order to obtain the features of the eyeball image, it is necessary 
to locate the eye part of the original red light reflection image. 
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FIGURE 5
Slit-beam photos feature extraction results. (a) Filled color image after debugging; (b) Suspected cortical binarization image preserving lesion 
information; (c) Suspected posterior subcapsular binary image preserving lesion information; (d) Result of binary original image line fitting based on 
Hough transform method; (e) Original image contour extraction results.

TABLE 1  Recall, Precision, F1-Score, AUC and Accuracy of different types of cataract.

Types Precision (%) Recall (%) F1 (%) AUC (%) Accuracy (%)

NO 84.56 98.24 95.30 96.68 92.28

NC 99.48 96.45 97.94 99.55 97.19

C 100.00 100.00 100.00 100.00 100.00

P 96.88 100.00 98.41 100.00 98.26

In this paper, we use the method of minimum circumcircle to 
segment the original images to remove the information of dark 
features. Figure 4b shows the ideal result of interception, which can 
accurately extract the eyeball region.

However, there are often several bright spots in the real cataract 
eyeball images due to the existence of flash during the photographing 
process, and the image often exist uneven light and dark distribution 
because of the three-dimensional shape of the eyeball, which will 
lead to inaccurate positioning results of some images using the above 
method, as shown in Figure 4c.

Therefore, in order to solve the above inaccurate results, we first 
use bright spot filling technology to remove noise, and then locate 
the part of the eyeball. 

2.3.1.2 Image bright spot filling technology based on 
color multivariate cluster analysis

Due to local uneven illumination and reflection of eyes, the 
quality of original images are impacted, which may hinder the 
detection and grading of cataract precisely. Therefore, we adopt color 
filling to make the RGB values approximately consistent between 
bright spot area and the surrounding pixels to eliminate the effect 
of bright spots.

We use the idea of averaging to select the required fill color. 
The algorithm first classifies the image pixels in the circular domain 
using the idea of clustering, which can be roughly divided into 
three categories: yellow, white and black. Then, the algorithm 
calculates the mean value of the RGB values of all pixels in the 
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FIGURE 6
ROC Curve of the cataract grading system.

yellow classification. Finally, the algorithm fills the bright spot 
area with the color corresponding to the mean value, as shown in 
Figure 4e. The specific implementation process of the algorithm is 
as follows (Algorithm 2).

After the above processing, we can restore the image color and 
retain the image information of the bright area of the image. The 
preprocessing results of cortical or posterior subcapsular images 
after multiple adjustments is shown in Figure 4f. 

2.3.1.3 Image circular contour detection technology 
based on Hough transform

In this section, we conduct more precise eyeball localization 
on the image after removing the bright spots. We first convert the 
colored eye image into a grayscale image, then set a suitable fixed 
threshold to remove some noise, and finally use Hough transform to 
detect the circular contour of the eyeball image. 

2.3.2 Cortical and posterior subcapsular cataract 
diagnosis and grading neural network
2.3.2.1 Feature extraction

In order to preserve the images feature of the lesion in the 
eyeball, we use an adaptive threshold method to process the images. 
We first convert the color image obtained after removing the bright 
spots into a grayscale image Grey, and then use a fixed threshold 
method to obtain a binary image with the largest circular contour, 
which contains complete lesion information. Finally, we adopt an 
adaptive binarization method to process the grayscale image Grey
combining the above circular contour to obtain binarized images 
that preserve the lesion information, as shown in Figures 5b,c.

There are differences feature information in binary images 
of cortical and posterior subcapsular cataract. It is necessary to 
adopt other feature extraction methods to obtain more accurate 
feature information in binary images. We use Hough transform 
to detect line information in binary images, including the length, 
position, and distance between the line and the center of the 
circle, which are used as feature information of cortical cataract, 
as shown in Figure 5d. Subsequently, we extracted the lesion 

contour information from the binary image, including the area ratio, 
perimeter ratio, and contour centroid of the contour to the circular 
contour of the eyeball, which are used as feature information of 
posterior subcapsular cataract, as shown in Figure 5e. 

2.3.2.2 Cortical and posterior subcapsular cataract 
diagnosis and grading method based on neural network

The input of the neural network is the feature information 
obtained from the cortical and posterior subcapsular cataract 
images in the previous section. The input data set is divided 
into training set and test set according to the ratio of 7:3. The 
output layer of the neural network is a point, representing 
the classification of the cortical and posterior subcapsular 
cataract. After the above processing, we have obtained a 
complete cortical and posterior subcapsular cataract diagnosis and
classification model. 

3 Results and analysis

The diagnosis and grading results of cataract was evaluated 
using a confusion matrix. To comprehensively assess the diagnostic 
and grading performance of the neural network, the following 
metrics were employed: Precision, Recall, F1-score, Accuracy, 
Receiver Operating Characteristic (ROC) curves and the Area 
Under the Curve (AUC). Precision, recall, and F1-score were 
primarily utilized to evaluate the classification effectiveness of 
various categories within the system, while Accuracy and AUC 
were employed to assess the overall performance of system. 
A total of 1,003 original images were marked, with 715 slit-
lamp images used to differentiate between NO and NC, and 
an additional 288 retro-illumination images used to differentiate 
between C and P. In this study, we set level zero, NO0 is 
the transparent lens nucleus, NC0 is the normal color of lens 
nuclear, C0 and P0 is the transparent area of lens cortex and
posterior subcapsular.

As shown in Table 1, the metrics for C and P outperform 
those for NO and NC. which can achieve 96.88% classification 
Precision, 98.41% F1-score and 98.26%Accuracy, with all other 
metrics at 100%. It can be seen that the overall accuracy of 
the Neural Network for diagnosing is above 92.28%, and the 
accuracy for C is the highest, which is 100%. The AUC is 
99.96% (shown in Figure 6). These results indicate that the 
proposed algorithm performs well in the classification of various
cataract types. 

3.1 Result of NO grade

In this study, a neural network was utilized to categorize anterior 
segment images captured by slit-lamp photography into seven 
levels ranging from NO0/Normal to NO6. The overall accuracy 
exceeded 90.88%, with an AUC of 96.68% (shown in Figure 7). As 
illustrated in Table 2, concerning the NO classification outcomes of 
the neural network, the recall for NO1, NO2, and NO4 all exceeded 
91.46%, indicating satisfactory performance of the system in these 
NO classifications. While the model demonstrated high sensitivity 
for early nuclear opacity (NO1, 95.24%), its performance was more 
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FIGURE 7
ROC Curves of the NO, NC, C, and P grading.

limited for normal lenses (NO0, 68.97%). This suggests inherent 
challenges in detecting subtle features of normal lenses from static 
images compared to clinical dynamic evaluation. 

3.2 Result of NC grade

As shown in Table 2, for the classification ranging from NC0 to 
NC6, the overall accuracy surpassed 93.68%, with an AUC reaching 
99.55% (as illustrated in Figure 7). Specifically, the classification 
recall for NC0-NC4 all exceeded 95.23%. These results indicate 
excellent performance of the proposed neural network in the task 
of NC classification. 

3.3 Result of C grade

The proposed algorithm subdivides anterior segment images 
under red reflex into levels ranging from C0/Normal to C5. The 
overall grading accuracy exceeds 98.26%, with an AUC value of 
99.98%. As demonstrated in Table 2, the recall for levels C0 to 
C4 all remain above 91.67%, while precision exceeds 95.24%. This 
algorithm exhibits significant advantages in distinguishing non-
severe cortical cataract. 

3.4 Result of P grade

The overall accuracy for the six grades P0 to P5 reached 
98.26%, according to Table 2, with an AUC of 100% (as 
illustrated in Figure 7). The recall in the P classification exceeded 
91.30%. These results demonstrate a significant advantage of the 
algorithm in P classification. 

4 Discussion

In this paper, we propose a novel paradigm for automatic 
cataract detection. This study first expanded the dataset and divided 
it in a 7:3 ratio. Subsequently, several image preprocessing methods 
were proposed, including a lens localization algorithm for nuclear 
cataract images and a bright spot filling algorithm for cortical and 
subcapsular cataract images (Son et al., 2022). The processed images 
were then diagnosed and graded using deep learning algorithms. In 
terms of diagnostic results, the neural network achieved accuracies 
of 92.28%, 97.19%, 100%, and 98.26% for the NO, NC, C, and P 
classifications. respectively, demonstrating good image recognition 
performance under retro-illumination conditions. Regarding 
grading, the algorithm achieved accuracies exceeding 92.28% for 
NO grading, over 97.19% for NC grading, and above 100%,98.26% 
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TABLE 2  Recall, precision and F1-Score of NO, NC, C, and P.

Types Classification Recall (%) Precision (%) F1-score (%) Accuracy (%)

NO

NO0/Normal 68.97 99.91 78.43 92.44

NO1 95.24 62.50 75.47 95.44

NO2 91.46 90.36 90.91 94.74

NO3 83.58 78.87 81.16 90.88

NO4 92.86 61.90 74.29 93.33

NO5 82.14 92.00 86.79 97.54

NO6 66.67 90.91 76.92 97.89

NC

NC0/Normal 98.86 92.55 95.60 97.19

NC1 100.00 72.73 84.21 97.89

NC2 98.61 95.90 97.26 98.60

NC3 95.23 93.75 94.49 97.54

NC4 100.00 61.54 76.19 98.25

NC5 57.14 80.00 66.67 98.60

NC6 41.94 100.00 59.09 93.68

C

C0/Normal 100.00 100.00 100.00 100.00

C1 100.00 100.00 100.00 100.00

C2 95.24 95.24 95.24 98.26

C3 100.00 96.00 97.96 99.13

C4 91.67 100.00 95.65 99.13

C5 75.00 75.00 75.00 98.26

P

P0/Normal 96.23 100.00 98.08 100.00

P1 100.00 100.00 100.00 98.26

P2 100.00 86.67 92.86 98.26

P3 100.00 60.00 75.00 98.26

P4 100.00 100.00 100.00 100.00

P5 91.30 100.00 95.45 98.26

for C, P grading, particularly excelling in C and P grading. To 
further contextualize our findings, we compare our results with 
recent state-of-the-art approaches in automatic cataract detection 
(Table 3). While previous studies predominantly focused on specific 
cataract types (e.g., Wu et al., 2019 on mixed cases or Shimizu et al., 
2023 on nuclear cataracts), our method achieves both high 
accuracy (up to 100% for C grading) and broad generalization 
across NO, NC, C, and P categories. Our model consistently 

outperforms these benchmarks while maintaining strong sensitivity
and specificity.

After systematic analysis of diagnostic error causes, three 
primary biases were identified: Firstly, inconsistencies in exposure 
intensity impair feature extraction efficacy, particularly in 
underexposed regions. Secondly, unilateral illumination in slit-
lamp systems induces image shadows that mimic pathological 
lesions, significantly complicating accurate lesion identification 
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TABLE 3  Comparative performance analysis of AI models in automatic cataract detection.

Authors Samples 
(images)

Typle of 
cataract

AI 
algorithms

AUC Accuracy (%) Sensitivity 
(%)

Specificity 
(%)

Wu et al. (2019) 37,638 normal lens, 
cataract or 
postoperative eye

ResNet 95.96% 88.79% 92.00% 83.85%

Wu et al. (2022) 16,200 cataract and 
noncataract

CNN >91% >84% >71% >89%

Acharya et al. 
(2010)

140 normal lens, 
cataract or 
postoperative eye

ANN - 93.3% 98% 100%

Gan et al. (2023) 647 cortical cataract FCNResnet50 >90% - - -

Shimizu et al. 
(2023)

38,320 nuclear cataracts Grad-CAM 93.4% 94.2% 96.2% 93.1%

 Input: Binary image src to be detected (x1, y1), 

w1 and h1

 Output: Position coordinates (x2, y2), width w2

and height h2 of lens
 Begin

  Input binary image src;

  While The ellipse area that meets the following 

conditions is the largest:
   Traverse all rectangles rect within the width w1

and height h1 range;
   Obtain the inscribed ellipses ellipse of the 

rectangles rect;

   If all points within the ellipse are white:
    Calculate the elliptical area that meets the 

condition;

    Obtain the outer bounding rectangle 

corresponding to the ellipse with the 

maximum area;
    Output The coordinates of the top-left corner 

(x2, y2), width w2, and height h2 of the rectangle.

 End 

Algorithm 1. Eye lens location algorithm based on maximum ellipse search.

in shadowed areas. Thirdly, dataset limitations critically constrain 
artificial intelligence performance: recognition accuracy exhibits 
strong dependence on both training data volume and feature 
diversity, adhering to the scaling laws demonstrated in ophthalmic 
AI studies (Zhao et al., 2023).

To this day, Artificial intelligence algorithms have been applied 
to the diagnosis and grading of cataract in fundus images. Early 
on, Xu et al. employed a CNN model to analyze fundus images 
for cataract diagnosis and grading (Xu et al., 2020). In the early 
years, in clinical practice, ophthalmologists rely more on observing 
anterior segment images under a slit lamp for intuitive and 

 Input: the image img of preserving the circular 

target area of the eyeball
 Output: Color image src after removing 

bright spots
 Begin

  Input the image img with bright spots;
  An array B is defined to indicate whether 

clustering has been completed;

  Array C is defined to represent the categories 

of clustering;

  Foreach (all pixels in the image):
   Calculate the color space distance distance

between any two pixel points;
   Save all distance information to the list list;

   Traverse list to obtain the minimum distance;
   Locate the two pixel points corresponding to 

the minimum distance in the image and calculate 

the average of the RGB values of the two points;
   Update the values of arrays B and C;
  Based on distance information, a simple 

clustering method is used to cluster all pixel 

points into three categories;

   Obtain the average value Avg of all pixels 

clustered into a yellow class;
   Traverse the pixel points in the image, assign 

the RGB value of Avg to the pixel points at the 

bright spot position, and obtain a new image src.

 End 

Algorithm 2. Image bright spot filling technology based on color 
multivariate cluster analysis.

accurate cataract diagnosis. Wu et al. utilized anterior segment 
images to develop a remote cataract screening platform based on 
deep learning algorithms, specifically targeting nuclear cataract
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(Wu et al., 2019). This study categorized cataract into mild, 
moderate, and severe, providing corresponding treatment 
recommendations. However, it is worth noting that this study 
focused solely on nuclear cataract and did not provide precise 
grading results, which somewhat limits the AI system’s ability 
to follow up and assess patients’ conditions. In contrast, our 
algorithm design offers several significant advantages: Firstly, we 
employ the more precise LOCS III criteria for cataract diagnosis 
and grading, ensuring diagnostic accuracy. Secondly, our study 
explicitly delineates the current severity of cataract, providing 
robust support for patient follow-up. Lastly, we not only investigate 
the diagnosis and grading of nuclear cataract but also encompass 
cortical and posterior subcapsular cataract, thus achieving a more 
comprehensive study for cataract.

This study explores the application of artificial intelligence in the 
diagnosis and grading of cataract. The application of this technology 
has the potential to significantly optimize healthcare delivery for 
remote areas, impoverished communities, and elderly patients, 
addressing challenges such as long-distance travel and high costs, 
thereby reducing the economic burden on the populace (Ting et al., 
2019). For diagnosed cataract patients, the technology provides a 
relatively standardized severity index, facilitating follow-up visits 
and optimizing patients management. In clinical practice, the 
implementation of this system is expected to enhance the efficiency 
of healthcare providers, allowing ophthalmologists to serve more 
patients and increase screening rates. Furthermore, the objective 
data parameters provided by the system can offer standardized 
guidance for surgical operators, thereby enhancing surgical safety. 
In conclusion, this study provides novel insights for future research 
and underscores the significance of integrating emerging artificial 
intelligence technologies into clinical practice. During the image 
collection process, we encountered several challenges. (1) The 
eyeball is a three-dimensional structure, while anterior segment 
images are two-dimensional. When attempting to focus on a specific 
point, surrounding features may appear blurred to varying degrees. 
Therefore, during image acquisition, multiple adjustments of focus 
were necessary to capture images at different planes, demanding 
precise alignment of the focus on specific points on the lens 
in clinical practice. (2) The majority of patients in the clinic 
present with various types of cataracts. When patients have two 
or more types of cataracts, the images obtained in practice are 
often not as clear and discernible as those displayed in the LOCS 
III. (3) In clinical practice, there is significant variability in the 
number of images collected for each grading, and the study lacks
sufficient data support. 

5 Conclusion

This study has successfully developed a novel artificial 
intelligence system for identifying nuclear cataract, cortical and 
posterior subcapsular cataract. Among the various types of cataracts, 
the system demonstrates particularly outstanding accuracy in 
identifying cortical cataract. Not only does this neural network 
system possess the capability to diagnose the types of cataracts, 
but it also accurately grades the severity of cataract into NO, NC, 
C, and P. Particularly noteworthy is its performance in grading 
between C and P, where the system excels. Furthermore, the system 

exhibits superior sensitivity in cataract grading when the opacity of 
the lens is at a lower level compared to higher opacity levels. These 
findings underscore the promising prospects of artificial intelligence 
in cataract diagnosis and grading. Hence, continued efforts should 
be directed towards the development and optimization of more 
precise algorithms to facilitate its widespread application in
clinical practice.
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