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Artificial intelligence in cataract
grading system: a LOCS llI-based
hybrid model achieving
high-precision classification

Gege Tang", Jie Zhang?, Yingqi Du?, Dexun Jiang®, Yanhua Qi'*
and Nan Zhou™*

'Department of Ophthalmology, The Second Affiliated Hospital, Harbin Medical University, Harbin,
China, ?National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin,
China, *Harbin University, Harbin, China

Purpose: To design an artificial intelligence (Al) algorithm based on the Lens
Opacities Classification System Il (LOCS Ill) to realize automatic diagnosis of
cataracts and classification of its.

Methods: This retrospective study develops an Al-based neural network to
diagnose cataracts and grade lens opacity. According to the LOCS lll, cataracts
are classified into Nuclear Opalescence (NO), Nuclear Color (NC), Cortical(C)
and Posterior subcapsular(P). The newly developed neural network system uses
grayscale, binarization, cluster analysis, “dilation-corrosion” and other methods
to process and analyze the images, then the study need to test and evaluate the
generalization ability of the system.

Results: The new neural network system can identify 100% of lens anatomy. It
has an accuracy of 92.28%-100% in the diagnosis of nuclear cataract, cortical
cataract and posterior subcapsular cataract. The classification accuracy rate of
the system for cataract NO, NC, C, P is between 90.88% and 100%, the Area
Under the Curve (AUC) is between 96.68% and 1007%.

Conclusion: A novel cataract diagnostic and grading system can be developed
based on the Al recognition algorithm, which establishes an automatic cataract
diagnosis and grading scheme. The system facilitates rapid and accurate cataract
diagnosis and grading.

KEYWORDS

cataract, neural network, artificial intelligence, anterior segment image, Lens Opacities
Classification System Il (LOCS IlI)

1 Introduction

Cataract is a main cause of visual impairment and blindness worldwide (Lee and
Afshari, 2023). Surgery is the most effective treatment for cataract. Severe cataract can
cause complications such as lens nucleus dislocation and glaucoma (Guan et al., 2022)
significantly increasing surgical risks. Thus, early and precise diagnosis is clinically critical.
In clinical practice, cataract is typically diagnosed under a slit lamp (Brown et al,
1987) and graded using the lens opacity grading system II or IIT (Chylack et al., 1989;
Chylack et al., 1993). However, the accurate diagnosis and grading of lens diseases depend
on ophthalmologists’ clinical experience. Different ophthalmologists may evaluate the
patient’s eye condition differently based on their years of experience (Lu et al., 2025). In
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remote areas, limited access to professional ophthalmologists
and ophthalmic equipment, along with inconvenient
medical conditions, lead to delayed diagnosis and treatment
for patients (Mundy et al., 2016).

Artificial intelligence (AI), as an interdisciplinary technological
domain, is dedicated to developing computational systems that
emulate human cognitive processes (Liu et al., 2021). Its medical
applications predominantly utilize machine learning (ML) and deep
learning (DL) frameworks for imaging diagnostics (Castiglioni et al.,
2021). Ophthalmology currently represents one of the most
dynamic frontiers in AI research (Yang et al., 2023), where
image-based diagnostic systems show remarkable suitability for
traditional ML and DL implementations (Wang et al, 2024).
Owing to its exceptional capability in extracting high-level features
and latent patterns from massive datasets, DL systems now
match clinicians’ performance levels in feature-based diagnostic
tasks (Yu et al, 2018). The scope of applications has expanded
significantly, progressing beyond its initial focus on diagnosing
retinal pathologies (e.g., diabetic retinopathy, age-related macular
degeneration, and retinopathy of prematurity) (Oganov et al,
2023; Zhang et al, 2023; Xu et al, 2024) to now include
screening for anterior segment conditions such as glaucoma,
cataracts, iris abnormalities, and corneal diseases (Ting et al., 2021;
Wu et al., 2022). Currently, machine learning and image processing
technology are widely used by researchers in their studies to develop
cataract detection methods (Wan Zaki et al,, 2022; Gali et al,
2019). Many researchers employ various deep learning algorithms
(Xu et al., 2020; Wu et al., 2019), such as Convolutional Neural
Networks (CNN), Residual Neural Network (ResNet) and Support
Vector Machine (SVM) (Imran et al., 2020), to diagnose image-
based categorization of cataract as non-cataract, mild, moderate,
and severe. However, there is a lack of utilizing deep learning
algorithms for simultaneous diagnosis and grading of various types
of cataracts in anterior segment images, including nuclear (N)
(Li et al., 20105 Li et al., 2009), cortical (C) (Lu et al., 2022), and
posterior subcapsular (P) cataract, based on the Lens Opacities
Classification System III (LOCS III).

Building an AI model involves several steps, including system
data preparation (image preprocessing), dataset partitioning, model
construction, optimization, and evaluation (Shao et al., 2023).
Prior to implementing algorithms, many researchers perform
preprocessing on images to eliminate noise, thereby enhancing the
accuracy of feature extraction (Xu et al., 2020). Due to reflection
of eyes and local uneven illumination, the quality of the original
images is affected. That effect may decrease the accuracy of feature
extraction, and consequently impact the reliability of cataract
diagnosis and grading. Xu etal. converted the original images
from RGB color mode (RGB) color space to the green component
images to eliminate the uneven illumination (Xu et al, 2020;
Linglin et al., 2017). But they did not preprocess specific areas
of the original images indetail. Gan et al. proposed two artificial
intelligence diagnostic platforms for cortical cataract classification,
dividing the cataract into four stages: incipient stage, intumescent
stage, mature stage, and hyper-mature stage (Gan et al., 2023). The
platforms did not consider the influence of bright spots in the
images and did not provide more detailed classification of cortical
cataract. In addition, preprocessing encompasses extracting regions
of interest to mitigate the influence of surrounding redundant
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information. In 1997, researchers proposed a method based on
deep learning algorithms to classify the severity of nuclear cataract,
which extracted second-order gray-level statistics from within
circular regions of the nucleus as image features (Duncan et al.,
1997). However, the algorithm did not consider the information of
elliptical lens regions, resulting in incomplete extraction of feature
information. Liet al. (Lietal., 2010) investigated an algorithm for the
automatic diagnosis of nuclear cataract based on the LOCS III that
can automatically detect the nucleus region from slit-lamp images
using the modified active shape model (ASM) method (Li and
Chutatape, 2003), which is critical for assessing nuclear cataract. This
article presents an automated nuclear cataract severity classification
algorithm that utilizes the YOLOV3 algorithm to locate the nuclear
region of the ocular lens (Hu et al., 2020). But, the complexity
and large computational burden of YOLOv3 make it challenging to
implement.

Currently, no algorithm exists that can comprehensively
diagnose and grade all types of cataracts based on LOCS III
during initial screening, and the aforementioned article also lacks
detailed description of methods for accurate localization of the
lens (Litjens et al, 2017; Li et al, 2021; Yousefi et al., 2020).
Additionally, existing research has not adequately addressed the
impact of extremely bright spots in images on the extraction of
ocular features, which may lead to inaccurate diagnostic results. In
response to the above issues, the primary contributions of this paper
are as follows.

1. Based on deep learning, this study proposes a systematic
algorithm that accurately classifies and grades various types of
cataracts according to the Lens Opacities Classification System
11 (LOCS TI).

2. The article presents a lens localization algorithm of nuclear
type image. The algorithm is based on expanded ellipse
traversal that can enhance the accuracy of interested region
localization, which can contribute to improved feature
extraction precision of Nuclear Cataract images.

3. The paper advances a color-based multivariate clustering
analysis technique for filling image highlight that contributes
to improve feature extraction precision of Cortical (C)

(P) Cataract

conduces to enhance diagnosis and grading precision

of Cand P.

and Posterior Subcapsular images and

2 Materials and methods

The experimental protocol was established Helsinki according
to the ethical guidelines of the Declaration and was approved by
the Ethics Committee of The Second Affiliated Hospital of Harbin
Medical University. Written informed consent was obtained from
all patients before collection. In this section, this study is expanded
from two models: the nuclear cataract diagnosis and grading
module and cortical and posterior subcapsular cataract diagnosis
and grading module. As shown in Figure 1, the total algorithm
framework includes preprocessing, feature extraction and cataract
grading neural network and other processing. The artificial neural
network (ANN) consists of two layers and employs the sigmoid
function as its activation function.
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FIGURE 1

The overall diagnosis framework for cataract.

For nuclear images, the preprocessing stage involves
eliminating bright spots caused by flash light and employing the
expanded ellipse traversal method to achieve lens localization.
During feature extraction, the fuzzy interval scale method
is adopted to obtain feature information regarding Nucleur
Opalescence (NO) and Nuclear Color (NC). Finally, the
into the ANN to

and grading of nuclear

extracted feature information is input
enable the automated diagnosis
cataracts.

For cortical and posterior subcapsular images, the preprocessing
stage includes the
circumscribed circle method and filling image bright spots through

color multivariate cluster analysis. In the subsequent feature

image segmentation using minimum

extraction phase, the Hough transform is employed to detect
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line information in the images as feature information for cortical
cataracts, and lesion contour information is extracted as feature
information for posterior subcapsular cataracts. Ultimately, this
extracted feature information is fed into the ANN to facilitate
the diagnosis and grading of cortical and posterior subcapsular
cataracts.

2.1 Dataset and statistical methods

All slit-lamp photographs were obtained from the Department
of Ophthalmology of the Second Affiliated Hospital of Harbin
Medical University from 2019 to 2022, including 1,003 photographs

of normal lenses and cataracts of different severities. Each
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FIGURE 2
Lens opacities classification system III, LOCS III Chylack et al., 1989.

photograph was taken under mydriatic conditions. Different
NO and
NC evaluation, and retro-illuminated photographs were used
to assess C and P based on LOCS III (Figure2). Slit-beam
photos were taken with an angle greater than 15° between

modes were used: slit-beam mode was used for

the illumination arm and the viewing arm, while the retro-
illuminated photographs were taken with a frontal view
of the lens.

The exclusion criteria for the photo were: (1) pupil diameter <
5 mm in mydriatic conditions or unclear image; (2) other special
types of cataracts; (3) presence of other anterior segment diseases,
trauma, surgical history and so on.

The data sets were partitioned. After that, each type of
anterior segment images was divided into two disjoint subsets.
The training set accounts for 70% of the data, while the test
set accounts for 30% (Krizhevsky et al, 2017). The dataset
comprised 1,003 anterior segment images, including 215 from
healthy lenses and 788 from cataractous lenses classified per
LOCS III criteria. All images were categorized by modality: slit-
beam illumination (n = 717) and retro-illumination (n = 286).
Healthy lenses were uniformly graded as NOO/NCO, while cataract
severity followed LOCS III grading (NO1-6, NC1-6, C0-5, P0-5)
(Supplementary Tables S1-S2).

To address the limited original image dataset, we need to
augment it to prevent model overfitting and improve algorithm
performance. Multiple methods were used to augment the data set,
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including adding salt and pepper noise, gaussian noise, dimming
the image, brightening the image, rotating, mirror flipping, mix-
up, and more.

2.2 Nuclear cataract diagnosis and grading
module

2.2.1 Preprocessing
2.2.1.1 Removing bright spots

The original image is obtained by using the slit-beam
mode of the anterior segment. Due to the influence of flash
light, there are usually two kinds of light spots in the nuclear
type image: one is white light spots due to the reflection of
cornea and the other is yellow spots on the skin near the
eye, as shown in Figure 3a. Due to reflection of eyes and
local uneven illumination, the quality of original images is
impacted, which may hinder the detection and grading of cataract
precisely.

Figure 3¢ is a lens contour obtained using a basic contour
extraction algorithm for Figure 3b, which contains a large amount
of interference information. The highlighted area in Figure 3d is
the region where inaccurate localization of the lens occurs due
to the influence of bright spots. Therefore, in this paper, we first
use the method of drawing black dots on bright areas with three
RGB values above 250 to reduce the high-brightness light spot,
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(b)

(e)

FIGURE 3

10.3389/fcell.2025.1669696

) (2)

Nuclear image preprocessing under slit-beam photos. (a) Original image; (b) Binary result of Fig. (a) affected by highlighted noise; (c) Localization
results of oversized lens; (d) Incorrect lens positioning results; (e) The result of drawing black dots; (f) Lens localization result based on expanded

ellipse traversal; (g) Intercepted lens area.

as shown in Figure 3e. In this way, it is impossible to form a large
internal ellipse in the bright area and the contour area where the lens
is located is maximized. Then, the algorithm converts the original
image into a gray image, and uses dynamic threshold to binarize the
gray image.

2.2.1.2 Lens localization algorithm of nuclear image

based on expanded ellipse traversal
Figure 3¢ illustrates the imprecise lens contour obtained

using basic contour detection methods, which contains a lot of
useless information, thereby compromising the accuracy of feature
extraction. Therefore, prior to implementing the DL model, it is
necessary to accurately extract the region of interest from the
original image. This section proposes a lens localization method
based on extended elliptical traversal for kernel images, which
processes the binarized image in Figure 3b.

Before that, we need to use the contour search function to
find the approximate position of the lens contour, and find the
minimum rectangular boundary covering this contour to obtain the
position coordinates, width and height of the upper left corner of
the rectangle. We think that the lens contour circled by the contour
search function is approximately the maximum contour. Next, we
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will use the approximate coordinates and other information to
accurately locate thelens. During the positioning, we first traverse all
rectangles in the maximum contour and obtain their inner ellipses.
Then we need to traverse all points in the bounding rectangle to
determine whether they are inside the ellipse. If so, we need to check
whether the point is white. Once some spots inside the ellipses are
not white, the ellipse does not meet the conditions and other ellipses
need to be traversed. In fact, the ultimate goal of the algorithm is
to find the largest elliptical area that is completely filled with white.
Therefore, the algorithm eventually obtains the largest ellipse after
many iterations, as shown in Figure 3f.

The specific implementation process of lens positioning
algorithm is shown in Algorithm 1. The input of the algorithm is
that we use the contour search function in computer vision to get
the largest possible area of the lens, and obtain the coordinates (x;,
y1) of the top left corner of the outer rectangle of the area, as well as
the width w, and height h,.

The lens part is not strictly elliptical shape, resulting in the ellipse
not containing the complete lens. Therefore, it is necessary to fine-
tune the size of the ellipse to obtain the final lens positioning result.
Finally, the algorithm intercepts the lens portion for subsequent
feature extraction, as shown in Figure 3g.
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FIGURE 4

(b)

(e)
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(©)

(H)

Slit-beam photos preprocessing. (a) Original image; (b) Ideal result using minimum circumscribed circle; (c) Inaccurate eye region positioning results;

(d) Unfilled Image; (e) Filled image; (f) Filled color image after debugging.

2.2.2 Nuclear cataract diagnosis and grading
neural network
2.2.2.1 Feature extraction

The diagnosis and classification of nuclear cataract include NO
and NC. We make use of color proportion to classify, in which cyan
pixels are used to judge NO and yellow pixels are used to judge NC. In
this part, we use a kernel image color eigenvalue extraction algorithm
based on fuzzy interval scale. The specific process is as follows.

We first need to set the standard color (cyan or yellow) and
the offset interval Offset. We assume that the RGB of the standard
color is (r,g,b). According to this, we can calculate the corresponding
fuzzy interval, which are respectively R = [r-Offset,r + Offset], G =
[g-Offset,g + Offset], B = [b-Offset,b + Offset]. It is not difficult to
see that different standard colors and offset intervals will obtain
different fuzzy intervals. After that we traverse all pixels in the
image and count the proportion of pixels points whose RGB
values are in the fuzzy interval, which is color feature of nuclear
type image.

2.2.2.2 Lens nucleus diagnosis and grading method based

on neural network
The input of the neural network is the ratio value of cyan or

yellow pixels in the lens image after image expansion, positioning
and clipping. The input data set is divided into training set
and test set according to the ratio of 7:3. The output layer
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of the neural network is a point, representing the grade of
the nuclear classification. After the above processing, we have
obtained a complete nuclear cataract diagnosis and classification
model, including the classification of Nucleus Opacification and
Nucleus Color.

2.3 Cortical and posterior subcapsular
cataract diagnosis and grading module

2.3.1 Preprocessing

Before feature extraction, we need to preprocess the original
image, which mainly includes two steps: image positioning
segmentation and bright spot filling. This phenomenon occurs
because the eyeball's three-dimensional structure generates
luminance gradients under unidirectional illumination. At the
same time, flash lights make bright spots unavoidable in the
image. These problems will interfere with feature extraction, so
preprocessing is needed.

2.3.1.1 Image segmentation technology based on
minimum circumscribed circle

The eyeball occupies only a small part of the original image.
In order to obtain the features of the eyeball image, it is necessary
to locate the eye part of the original red light reflection image.
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(d)

FIGURE 5

(e)

Slit-beam photos feature extraction results. (a) Filled color image after debugging; (b) Suspected cortical binarization image preserving lesion
information; (c) Suspected posterior subcapsular binary image preserving lesion information; (d) Result of binary original image line fitting based on

Hough transform method; (e) Original image contour extraction results.

TABLE 1 Recall, Precision, F1-Score, AUC and Accuracy of different types of cataract.

Precision (%) Recall (%) F1 (%) AUC (%) Accuracy (%)
NO

84.56 98.24 95.30 96.68 92.28
NC 99.48 96.45 97.94 99.55 97.19
C 100.00 100.00 100.00 100.00 100.00
P 96.88 100.00 98.41 100.00 98.26

In this paper, we use the method of minimum circumcircle to
segment the original images to remove the information of dark
features. Figure 4b shows the ideal result of interception, which can
accurately extract the eyeball region.

However, there are often several bright spots in the real cataract
eyeball images due to the existence of flash during the photographing
process, and the image often exist uneven light and dark distribution
because of the three-dimensional shape of the eyeball, which will
lead to inaccurate positioning results of some images using the above
method, as shown in Figure 4c.

Therefore, in order to solve the above inaccurate results, we first
use bright spot filling technology to remove noise, and then locate
the part of the eyeball.

Frontiers in Cell and Developmental Biology

07

2.3.1.2 Image bright spot filling technology based on
color multivariate cluster analysis

Due to local uneven illumination and reflection of eyes, the
quality of original images are impacted, which may hinder the
detection and grading of cataract precisely. Therefore, we adopt color
filling to make the RGB values approximately consistent between
bright spot area and the surrounding pixels to eliminate the effect
of bright spots.

We use the idea of averaging to select the required fill color.
The algorithm first classifies the image pixels in the circular domain
using the idea of clustering, which can be roughly divided into
three categories: yellow, white and black. Then, the algorithm
calculates the mean value of the RGB values of all pixels in the
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ROC Curve of the cataract grading system.

yellow classification. Finally, the algorithm fills the bright spot
area with the color corresponding to the mean value, as shown in
Figure 4e. The specific implementation process of the algorithm is

as follows (Algorithm 2).
After the above processing, we can restore the image color and

retain the image information of the bright area of the image. The
preprocessing results of cortical or posterior subcapsular images
after multiple adjustments is shown in Figure 4f.

2.3.1.3 Image circular contour detection technology

based on Hough transform
In this section, we conduct more precise eyeball localization

on the image after removing the bright spots. We first convert the
colored eye image into a grayscale image, then set a suitable fixed
threshold to remove some noise, and finally use Hough transform to
detect the circular contour of the eyeball image.

2.3.2 Cortical and posterior subcapsular cataract
diagnosis and grading neural network
2.3.2.1 Feature extraction

In order to preserve the images feature of the lesion in the
eyeball, we use an adaptive threshold method to process the images.
We first convert the color image obtained after removing the bright
spots into a grayscale image Grey, and then use a fixed threshold
method to obtain a binary image with the largest circular contour,
which contains complete lesion information. Finally, we adopt an
adaptive binarization method to process the grayscale image Grey
combining the above circular contour to obtain binarized images
that preserve the lesion information, as shown in Figures 5b,c.

There are differences feature information in binary images
of cortical and posterior subcapsular cataract. It is necessary to
adopt other feature extraction methods to obtain more accurate
feature information in binary images. We use Hough transform
to detect line information in binary images, including the length,
position, and distance between the line and the center of the
circle, which are used as feature information of cortical cataract,
as shown in Figure 5d. Subsequently, we extracted the lesion
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contour information from the binary image, including the area ratio,
perimeter ratio, and contour centroid of the contour to the circular
contour of the eyeball, which are used as feature information of
posterior subcapsular cataract, as shown in Figure 5Se.

2.3.2.2 Cortical and posterior subcapsular cataract

diagnosis and grading method based on neural network
The input of the neural network is the feature information

obtained from the cortical and posterior subcapsular cataract
images in the previous section. The input data set is divided
into training set and test set according to the ratio of 7:3. The
output layer of the neural network is a point, representing
the classification of the cortical and posterior subcapsular
cataract. After the above processing, we have obtained a
complete cortical and posterior subcapsular cataract diagnosis and
classification model.

3 Results and analysis

The diagnosis and grading results of cataract was evaluated
using a confusion matrix. To comprehensively assess the diagnostic
and grading performance of the neural network, the following
metrics were employed: Precision, Recall, Fl-score, Accuracy,
Receiver Operating Characteristic (ROC) curves and the Area
Under the Curve (AUC). Precision, recall, and Fl-score were
primarily utilized to evaluate the classification effectiveness of
various categories within the system, while Accuracy and AUC
were employed to assess the overall performance of system.
A total of 1,003 original images were marked, with 715 slit-
lamp images used to differentiate between NO and NC, and
an additional 288 retro-illumination images used to differentiate
between C and P. In this study, we set level zero, NOO is
the transparent lens nucleus, NCO is the normal color of lens
nuclear, CO and PO is the transparent area of lens cortex and
posterior subcapsular.

As shown in Table 1, the metrics for C and P outperform
those for NO and NC. which can achieve 96.88% classification
Precision, 98.41% Fl-score and 98.26%Accuracy, with all other
metrics at 100%. It can be seen that the overall accuracy of
the Neural Network for diagnosing is above 92.28%, and the
accuracy for C is the highest, which is 100%. The AUC is
99.96% (shown in Figure 6). These results indicate that the
proposed algorithm performs well in the classification of various
cataract types.

3.1 Result of NO grade

In this study, a neural network was utilized to categorize anterior
segment images captured by slit-lamp photography into seven
levels ranging from NOO/Normal to NO6. The overall accuracy
exceeded 90.88%, with an AUC of 96.68% (shown in Figure 7). As
illustrated in Table 2, concerning the NO classification outcomes of
the neural network, the recall for NO1, NO2, and NO4 all exceeded
91.46%, indicating satisfactory performance of the system in these
NO classifications. While the model demonstrated high sensitivity
for early nuclear opacity (NOI, 95.24%), its performance was more
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FIGURE 7
ROC Curves of the NO, NC, C, and P grading.

limited for normal lenses (NOO, 68.97%). This suggests inherent
challenges in detecting subtle features of normal lenses from static
images compared to clinical dynamic evaluation.

3.2 Result of NC grade

As shown in Table 2, for the classification ranging from NCO to
NC6, the overall accuracy surpassed 93.68%, with an AUC reaching
99.55% (as illustrated in Figure 7). Specifically, the classification
recall for NCO-NC4 all exceeded 95.23%. These results indicate
excellent performance of the proposed neural network in the task
of NC classification.

3.3 Result of C grade

The proposed algorithm subdivides anterior segment images
under red reflex into levels ranging from CO0/Normal to C5. The
overall grading accuracy exceeds 98.26%, with an AUC value of
99.98%. As demonstrated in Table 2, the recall for levels CO to
C4 all remain above 91.67%, while precision exceeds 95.24%. This
algorithm exhibits significant advantages in distinguishing non-
severe cortical cataract.
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3.4 Result of P grade

The overall accuracy for the six grades PO to P5 reached
98.26%, according to Table2, with an AUC of 100% (as
illustrated in Figure 7). The recall in the P classification exceeded
91.30%. These results demonstrate a significant advantage of the
algorithm in P classification.

4 Discussion

In this paper, we propose a novel paradigm for automatic
cataract detection. This study first expanded the dataset and divided
it in a 7:3 ratio. Subsequently, several image preprocessing methods
were proposed, including a lens localization algorithm for nuclear
cataract images and a bright spot filling algorithm for cortical and
subcapsular cataract images (Son et al., 2022). The processed images
were then diagnosed and graded using deep learning algorithms. In
terms of diagnostic results, the neural network achieved accuracies
of 92.28%, 97.19%, 100%, and 98.26% for the NO, NC, C, and P
classifications. respectively, demonstrating good image recognition
performance under retro-illumination conditions. Regarding
grading, the algorithm achieved accuracies exceeding 92.28% for
NO grading, over 97.19% for NC grading, and above 100%,98.26%
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TABLE 2 Recall, precision and F1-Score of NO, NC, C, and P.

Classification Recall (%)

Precision (%)

10.3389/fcell.2025.1669696

Fl-score (%)

Accuracy (%)

NOO/Normal 68.97 99.91 78.43 92.44
NO1 95.24 62.50 75.47 95.44
NO2 91.46 90.36 90.91 94.74
NO NO3 83.58 78.87 81.16 90.88
NO4 92.86 61.90 74.29 93.33
NO5 82.14 92.00 86.79 97.54
NO6 66.67 90.91 76.92 97.89
NCO0/Normal 98.86 92.55 95.60 97.19
NC1 100.00 72.73 84.21 97.89
NC2 98.61 95.90 97.26 98.60
NC NC3 95.23 93.75 94.49 97.54
NC4 100.00 61.54 76.19 98.25
NC5 57.14 80.00 66.67 98.60
NCe6 41.94 100.00 59.09 93.68
CO0/Normal 100.00 100.00 100.00 100.00
C1 100.00 100.00 100.00 100.00
C2 95.24 95.24 95.24 98.26
C
C3 100.00 96.00 97.96 99.13
C4 91.67 100.00 95.65 99.13
C5 75.00 75.00 75.00 98.26
P0/Normal 96.23 100.00 98.08 100.00
P1 100.00 100.00 100.00 98.26
P2 100.00 86.67 92.86 98.26
P
P3 100.00 60.00 75.00 98.26
P4 100.00 100.00 100.00 100.00
P5 91.30 100.00 95.45 98.26

for C, P grading, particularly excelling in C and P grading. To
further contextualize our findings, we compare our results with
recent state-of-the-art approaches in automatic cataract detection
(Table 3). While previous studies predominantly focused on specific
cataract types (e.g., Wu et al., 2019 on mixed cases or Shimizu et al.,
2023 on nuclear cataracts), our method achieves both high
accuracy (up to 100% for C grading) and broad generalization
across NO, NC, C, and P categories. Our model consistently
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outperforms these benchmarks while maintaining strong sensitivity
and specificity.

After systematic analysis of diagnostic error causes, three
primary biases were identified: Firstly, inconsistencies in exposure
intensity impair feature extraction efficacy, particularly in
underexposed regions. Secondly, unilateral illumination in slit-
lamp systems induces image shadows that mimic pathological
lesions, significantly complicating accurate lesion identification
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TABLE 3 Comparative performance analysis of Al models in automatic cataract detection.

Authors Samples Typle of Al Accuracy (%) Sensitivity Specificity
(images) cataract algorithms (%) (%)
Wu et al. (2019) 37,638 normal lens, ResNet 95.96% 88.79% 92.00% 83.85%
cataract or
postoperative eye
Wu et al. (2022) 16,200 cataract and CNN >91% >84% >71% >89%
noncataract
Acharya et al. 140 normal lens, ANN - 93.3% 98% 100%
(2010) cataract or
postoperative eye
Gan et al. (2023) 647 cortical cataract FCNResnet50 >90% - - -
Shimizu et al. 38,320 nuclear cataracts Grad-CAM 93.4% 94.2% 96.2% 93.1%
(2023)

Input: Binary image src to be detected (x;, y;)
w; and h;
Output: Position coordinates (x,, y,), width w,
and height h, of lens
Begin
Input binary image src;
While The ellipse area that meets the following
conditions is the largest:
Traverse all rectangles rect within the width w,
and height h; range;
Obtain the inscribed ellipses ellipse of the
rectangles rect;
If all points within the ellipse are white:
Calculate the elliptical area that meets the
condition;
Obtain the outer bounding rectangle
corresponding to the ellipse with the
maximum area;
Output The coordinates of the top-left corner
(X5, ¥,), width w,, and height h, of the rectangle.
End

Algorithm 1. Eye lens location algorithm based on maximum ellipse search.

in shadowed areas. Thirdly, dataset limitations critically constrain
artificial intelligence performance: recognition accuracy exhibits
strong dependence on both training data volume and feature
diversity, adhering to the scaling laws demonstrated in ophthalmic
Al studies (Zhao et al., 2023).

To this day, Artificial intelligence algorithms have been applied
to the diagnosis and grading of cataract in fundus images. Early
on, Xu etal. employed a CNN model to analyze fundus images
for cataract diagnosis and grading (Xu et al., 2020). In the early
years, in clinical practice, ophthalmologists rely more on observing
anterior segment images under a slit lamp for intuitive and
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Input: the image img of preserving the circular
target area of the eyeball

Output: Color image src after removing

bright spots

Begin

Input the image img with bright spots;

An array B is defined to indicate whether
clustering has been completed;

Array C is defined to represent the categories
of clustering;

Foreach (all pixels in the image):

Calculate the color space distance distance
between any two pixel points;

Save all distance information to the list Iist;

Traverse list to obtain the minimum distance;

Locate the two pixel points corresponding to
the minimum distance in the image and calculate
the average of the RGB values of the two points;

Update the values of arrays B and C;

Based on distance information, a simple
clustering method is used to cluster all pixel
points into three categories;

Obtain the average value Avg of all pixels
clustered into a yellow class;

Traverse the pixel points in the image, assign
the RGB value of Avg to the pixel points at the
bright spot position, and obtain a new image src.

End

Algorithm 2.Image bright spot filling technology based on color
multivariate cluster analysis.

accurate cataract diagnosis. Wu etal. utilized anterior segment
images to develop a remote cataract screening platform based on
deep learning algorithms, specifically targeting nuclear cataract
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(Wu et al, 2019). This study categorized cataract into mild,

moderate, and severe, treatment

providing
recommendations. However, it is worth noting that this study

corresponding

focused solely on nuclear cataract and did not provide precise
grading results, which somewhat limits the AI system’s ability
to follow up and assess patients’ conditions. In contrast, our
algorithm design offers several significant advantages: Firstly, we
employ the more precise LOCS III criteria for cataract diagnosis
and grading, ensuring diagnostic accuracy. Secondly, our study
explicitly delineates the current severity of cataract, providing
robust support for patient follow-up. Lastly, we not only investigate
the diagnosis and grading of nuclear cataract but also encompass
cortical and posterior subcapsular cataract, thus achieving a more
comprehensive study for cataract.

This study explores the application of artificial intelligence in the
diagnosis and grading of cataract. The application of this technology
has the potential to significantly optimize healthcare delivery for
remote areas, impoverished communities, and elderly patients,
addressing challenges such as long-distance travel and high costs,
thereby reducing the economic burden on the populace (Ting et al.,
2019). For diagnosed cataract patients, the technology provides a
relatively standardized severity index, facilitating follow-up visits
and optimizing patients management. In clinical practice, the
implementation of this system is expected to enhance the efficiency
of healthcare providers, allowing ophthalmologists to serve more
patients and increase screening rates. Furthermore, the objective
data parameters provided by the system can offer standardized
guidance for surgical operators, thereby enhancing surgical safety.
In conclusion, this study provides novel insights for future research
and underscores the significance of integrating emerging artificial
intelligence technologies into clinical practice. During the image
collection process, we encountered several challenges. (1) The
eyeball is a three-dimensional structure, while anterior segment
images are two-dimensional. When attempting to focus on a specific
point, surrounding features may appear blurred to varying degrees.
Therefore, during image acquisition, multiple adjustments of focus
were necessary to capture images at different planes, demanding
precise alignment of the focus on specific points on the lens
in clinical practice. (2) The majority of patients in the clinic
present with various types of cataracts. When patients have two
or more types of cataracts, the images obtained in practice are
often not as clear and discernible as those displayed in the LOCS
II. (3) In clinical practice, there is significant variability in the
number of images collected for each grading, and the study lacks
sufficient data support.

5 Conclusion

This study has successfully developed a novel artificial
intelligence system for identifying nuclear cataract, cortical and
posterior subcapsular cataract. Among the various types of cataracts,
the system demonstrates particularly outstanding accuracy in
identifying cortical cataract. Not only does this neural network
system possess the capability to diagnose the types of cataracts,
but it also accurately grades the severity of cataract into NO, NC,
C, and P. Particularly noteworthy is its performance in grading
between C and P, where the system excels. Furthermore, the system
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exhibits superior sensitivity in cataract grading when the opacity of
the lens is at a lower level compared to higher opacity levels. These
findings underscore the promising prospects of artificial intelligence
in cataract diagnosis and grading. Hence, continued efforts should
be directed towards the development and optimization of more
precise algorithms to facilitate its widespread application in
clinical practice.
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