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As global populations age, testicular aging has become a key contributor
to the gradual decline in male fertility, characterized by lower sperm count,
poorer sperm quality, and reduced reproductive potential. While the testis is
traditionally viewed as an immune-privileged site, growing evidence shows
that this immune protection weakens over time—a process now known as
testicular immunosenescence. This review provides a comprehensive overview
of age-related changes in the testicular immune landscape. These include the
depletion of CD4+ and CD8+ T cells, dysfunction of regulatory T cells (Tregs),
abnormal polarization of macrophages, and the breakdown of the blood–testis
barrier (BTB). Together, these changes lead to chronic low-grade inflammation
and disrupt the delicate environment required for healthy sperm production.
In addition, we explore how immune aging is closely linked to metabolic
changes, especially within Sertoli and Leydig cells. These intertwined processes
form a feedback loop—an “immune–metabolic axis”—that accelerates germ
cell death and impairs spermatogenesis. We also discuss emerging treatment
strategies, such as anti-inflammatory therapies, mitochondrial support, and
NAD+ precursor supplementation, which may help preserve testicular function
and male fertility with age. By framing testicular immunosenescence as both a
driving mechanism and a potential therapeutic target, this review opens up new
directions for tackling age-related male reproductive decline.
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testicular immunosenescence, aging, spermatogenic dysfunction, immune-metabolic
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1 Introduction

As the global population ages, the decline in testicular function associated with aging
has become an urgent concern in reproductive medicine. Men experience a gradual
reduction in spermatogenic capacity with advancing age,marked by decreased sperm count,
diminished sperm quality, and impaired fertility (Martins da Silva and Anderson, 2022).
This reproductive aging process carries profound implications for men’s overall health,
fertility preservation, and the well-being of their offspring.

Traditionally regarded as an “immune-privileged” organ, the testis sustains a
unique immunological microenvironment. This immune tolerance is maintained
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by the blood–testis barrier (BTB), Sertoli cells, and localized
immunosuppressive mechanisms, collectively protecting germ
cells from autoimmune attack (Zhao et al., 2014). However,
recent research reveals that this immune privilege gradually
erodes with age. Changes in immune cell populations, increased
chronic local inflammation, and impaired immune surveillance
collectively define a process now recognized as “testicular
immunosenescence” (Kaltsas, 2025; Jiang et al., 2025). Key
features of testicular immunosenescence include T cell exhaustion,
dysfunction of regulatory T cells (Tregs), abnormal macrophage
polarization, and increased permeability of the BTB. These
alterations disrupt the fragile immune-spermatogenic balance,
promoting germ cell apoptosis and impairing spermatogenesis
(Gong et al., 2020; Bhushan et al., 2020). Compared to other
organs, the aging trajectory of the testicular immune system
remains insufficiently understood—particularly regarding how
immune dysregulation intersects with other aging hallmarks such
as metabolic imbalance.

This review aims to provide a thorough synthesis of current
knowledge on testicular immunosenescence, clarify its central role
in age-related spermatogenic decline, and examine its interplay
withmetabolic reprogramming. By highlighting potentialmolecular
targets and therapeutic avenues, we seek to establish a novel
framework for intervention and advance strategies to mitigate male
reproductive aging.

2 Testicular immunosenescence:
features and mechanisms

2.1 Age-related changes in the testicular
immune system

As the body ages, the testicular immune system undergoes
significant changes characterized by increased inflammation, loss of
anti-inflammatory cell types, and shifts in immune cell populations.
Macrophages, the most abundant immune cells in the testis,
show an age-related shift in polarization. Studies in aged mice
and humans reveal a tendency for testicular macrophages to
polarize toward the pro-inflammatory M1 phenotype, releasing
cytokines such as interleukin-6 (IL-6) and TNF-α, which impair
the steroidogenic function of Leydig cells in the interstitial tissue
(Becker et al., 2018). This reflects a broader pattern of macrophage
dysfunction observed during systemic aging. In aged mice, T
cells within the testis not only decline in number but also show
functional exhaustion. Specifically, testicular CD4+ and CD8+ T
cells from older individuals exhibit increased PD-1 expression
and reduced interleukin-2 (IL-2) secretion, classic markers of T
cell senescence observed throughout the body (Amodio et al.,
2025). At the same time, regulatory Tregs—critical for maintaining
immune tolerance—decrease in both quantity and suppressive
function. Given the testis’s status as an immune-privileged site, the
decline in Tregs likely contributes to chronic local inflammation
and damage to spermatogonial cells (Hashimoto et al., 2022).
Emerging evidence supports the concept of “inflammaging,” a
chronic, low-grade inflammatory state associated with aging. In
the testis, this is reflected by elevated pro-inflammatory cytokines
and diminished anti-inflammatory immune cell populations. This

persistent inflammatory environment accelerates tissue damage
and functional decline (Li et al., 2023). The combined effect of
immune cell imbalance, impaired immune function, and increased
inflammatory mediators sets the stage for T cell exhaustion, BTB
breakdown, and disrupted spermatogenesis.

2.2 Senescent phenotypes of key immune
cells

T cells, Tregs, and macrophages are key players in maintaining
immune homeostasis within the testicular microenvironment.
Aging drives functional decline in these cells, weakening
immune surveillance and promoting chronic inflammation that
hastens reproductive decline. T cell exhaustion is a hallmark of
immunosenescence. Both CD4+ and CD8+ T cells in the aging
testis adopt an exhausted phenotype, characterized by reduced
secretion of cytokines such as IL-2 and IFN-γ. This decline
compromises defense against pathogens and disrupts local immune
tolerance, potentially allowing germ cells to escape immune
surveillance and fostering chronic inflammation (Baessler and
Vignali, 2024). Tregs play an essential immunosuppressive role
in the testis. With age, both their number and suppressive capacity
diminish, evident through decreased FoxP3 expression and reduced
secretion of interleukin-10 (IL-10) and TGF-β. This loss likely
undermines immune tolerance, exposing spermatogenic cells
to immune attack and exacerbating spermatogenic dysfunction
(Islam et al., 2024; Yang et al., 2024).

Macrophage polarization also shifts with age, moving from
the anti-inflammatory M2 phenotype to the pro-inflammatory
M1 state. M1 macrophages secrete cytokines including IL-6,
TNF-α, and interleukin-1β (IL-1β), which impair Leydig cell
steroidogenesis—leading to lower testosterone production—and
sustain chronic local inflammation, further damaging the
spermatogenic niche (Chi et al., 2024). Collectively, the
senescence and dysfunction of these immune cells contribute
to an inflammatory milieu closely tied to aging and impaired
testicular function.

2.3 Decline of blood–testis barrier integrity
and immune imbalance

BTB is fundamental to the testis’s immune privilege, maintained
by tight and gap junction proteins that preserve its specialized
immune environment. Aging disrupts BTB integrity: the expression
of these junctional proteins declines significantly, permitting
immune cells and inflammatory factors to infiltrate the testis and
upset immune homeostasis (Cui et al., 2025; Wang et al., 2025).

In aged mice, expression of key tight junction proteins such as
claudin-11 and occludin is markedly reduced (Martins da Silva
and Anderson, 2022; Mruk and Cheng, 2010), increasing BTB
permeability. This allows blood-derived cytokines, immune
cells, and inflammatory mediators to enter the testicular tissue
and interact with germ cells and Sertoli cells. Consequently,
macrophages and T cells infiltrate the testis, initiating localized
immune activation and sustained inflammation. Such immune
cell invasion undermines the immune tolerance that normally
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protects spermatogenesis. Accumulated cytokines promote
germ cell apoptosis and impair sperm production, accelerating
reproductive aging (Dutta et al., 2021). Thus, BTB breakdown both
facilitates immune infiltration and drives inflammation-induced
damage to the spermatogenic environment, marking it as a key
mechanism in testicular immunosenescence.

2.4 Disruption of the immune environment
and its impact on spermatogenesis

Disruption of the testicular immune environment is central
to destabilizing the spermatogenic niche. As immunosenescence
progresses, declining immune cell function and BTB deterioration
permit increased infiltration of pro-inflammatory factors and
immune cells. This chronic inflammation not only directly harms
spermatogonia but also impairs the supportive roles of Sertoli and
Leydig cells, further destabilizing the local microenvironment.

Recent studies highlight lysosomal dysfunction in Sertoli
cells during aging and in late-onset hypogonadism (LOH). Aged
Sertoli cells exhibit impaired lysosomal acidification, lipid droplet
accumulation, and increased pro-inflammatory cytokine secretion,
defining a “phago/auto-lysosomal dysregulated” (PALD) phenotype
recognized as a hallmark of testicular aging (Tysoe, 2024; Deng et al.,
2024). Small molecules that restore lysosomal function have shown
promise in reducing lipid accumulation and improving Sertoli
cell performance in LOH mouse models. Meanwhile, Leydig cells
show reduced steroidogenic capacity, lowering testosterone levels
and further compromising spermatogenesis and male reproductive
health (Martins da Silva and Anderson, 2022; Matzkin et al., 2021).
Altogether, the disrupted immune environment—via direct damage
to germ cells and indirect injury to supporting cells—drives
the progressive collapse of the spermatogenic niche (Baessler
and Vignali, 2024). To illustrate the complex roles of immune
cell dysfunction in testicular aging and fertility decline, Table 1
summarizes the key cellular mechanisms underlying testicular
immunosenescence.

2.5 Germ cell apoptosis and
spermatogenic impairment

As the testis ages, its once carefully balanced immune
environment begins to unravel. The resulting immunosenescence
disrupts the delicate cellular ecosystem required for healthy
sperm production, ultimately impairing spermatogenesis and
accelerating germ cell death, as illustrated in Figure 1. A key
feature of this process is chronic, low-grade inflammation, which
gradually sets in as part of immune aging. In this inflammatory
state, levels of pro-inflammatory cytokines remain persistently
elevated in the testicular microenvironment (Matzkin et al.,
2021; Dai et al., 2024; Zakariah et al., 2022). These cytokines can
activate cell death pathways—such as FasL/Fas and TNF receptor
signaling—prompting the premature apoptosis of spermatogonia,
the precursors of mature sperm cells. Animal models of
experimental autoimmune orchitis (EAO) offer a closer look at these
mechanisms. In these models, macrophages infiltrate the testis and
release TNF-α, which binds to TNFR1 receptors on spermatogonia,

triggering the caspase-8–dependent apoptosis cascade. This process
leads to a sharp rise in TUNEL-positive apoptotic cells within the
seminiferous tubules. Importantly, neutralizing TNF-α with specific
antibodies has been shown to blunt this response, underscoring
the destructive potential of pro-inflammatory signaling under
chronic immune stress (Matzkin et al., 2021; Zakariah et al., 2022;
Ghanem et al., 2011). Aging also brings with it a build-up of reactive
oxygen species (ROS), further compounding cellular stress. These
free radicals inflict damage on germ cell DNA and cell membranes,
pushing already vulnerable cells toward apoptosis. Indeed, studies
have documented a marked rise in germ cell death in older testes,
along with increased expression of apoptosis-related proteins
(Matzkin et al., 2021). At the tissue level, these changes translate
into a stark decline in reproductive capacity. Widespread germ
cell loss, coupled with damage to the supporting Sertoli cell niche,
gives rise to disorganized and inefficient spermatogenesis. Aged
testicular tissue often exhibits a characteristic “mosaic” appearance:
some seminiferous tubules maintain partial spermatogenic activity,
while others are completely depleted of germ cells and show
signs of fibrosis (Johnson, 1989). Most aged testes display
varying degrees of dysfunction, typically beginning in the later
stages of sperm development and gradually extending back
to earlier stages. In severe cases, tubules are arrested at the
spermatogonial stage—or even emptied entirely, leaving only Sertoli
cells behind.

The consequences are clear: reduced production and efficiency
of functional sperm (Dong et al., 2022). Human data echo these
findings. Even in healthy men, advancing age is associated with
declines in semen volume, sperm motility, and the proportion
of morphologically normal sperm. Total sperm counts also
tend to fall, suggesting that testicular immune aging directly
undermines male reproductive potential (Kleshchev et al.,
2023). In essence, testicular immunosenescence derails the finely
tuned process of spermatogenesis, chiefly by fostering germ
cell apoptosis and disrupting the intricate balance required for
sperm production.

3 Immune-related metabolic changes
in aging and their reciprocal influence

3.1 The interplay between
immunosenescence and metabolic
reprogramming

Testicular aging is driven in part by a reciprocal cycle of immune
dysfunction and metabolic decline. As men age, immune cells
in the testes deteriorate in both number and function. T cells
adopt an exhausted phenotype, marked by increased expression
of inhibitory receptors such as PD-1 and TIM-3 (Wherry and
Kurachi, 2015), alongside a drop in cytokine secretion like IL-2
and IFN-γ (Nikolich-Žugich, 2018). Macrophages shift toward a
pro-inflammatory M1 state, secreting high levels of cytokines such
as TNF-α and IL-6 (Franceschi et al., 2018). At the same time,
regulatory Tregs decrease in both quantity and effectiveness, eroding
local immune tolerance (Lages et al., 2008). These immunological
shifts in turn reshape cellular metabolism. Exhausted T cells shift
from oxidative phosphorylation to glycolysis, resulting in lactic
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TABLE 1 Mechanistic summary of testicular immunosenescence.

Immune cell
type

Age-related
functional
alterations

Key factors Phenotypic
outcomes

Impact on
testicular
function

References

Macrophages Age-associated
polarization shift from
anti-inflammatory M2 to
pro-inflammatory M1
phenotype

IL-6, TNF-α, IL-1β Increased secretion of
pro-inflammatory
cytokines; reduced
secretion of
anti-inflammatory
cytokines

Promotes a
pro-inflammatory
milieu; disrupts
homeostasis; impairs
testosterone synthesis

(Gong et al., 2020),
(Becker et al., 2018),
(Chi et al., 2024)

T cells Functional exhaustion of
CD4+ and CD8+ T cells

PD-1 (upregulated);
IL-2, IFN-γ (reduced
secretion)

Decline in cytokine
production and effector
function

Weakened immune
surveillance; facilitates
chronic inflammation

(Amodio et al., 2025),
(Hashimoto et al., 2022),
(Baessler and Vignali,
2024)

Treg cells Decline in cell number
and suppressive function

FoxP3 (downregulated);
IL-10, TGF-β (reduced
secretion)

Impaired
immunosuppressive
capacity; compromised
maintenance of immune
tolerance

Breakdown of immune
tolerance; increased risk
of autoimmune damage

(Hashimoto et al., 2022),
(Islam et al., 2024),
Yang et al. (2024)

BTB Structural and
functional disruption

Claudin-11, Occludin
(downregulated
expression)

Reduced expression of
tight junction proteins;
increased barrier
permeability

Loss of immune
privilege; infiltration of
immune cells and
inflammatory mediators

(Wang et al., 2025),
(Mruk and Cheng,
2010), (Dutta et al.,
2021)

Immune-Metabolic
Crosstalk

Immune dysfunction
drives metabolic
reprogramming, which
in turn exacerbates
immune imbalance (the
“immune–metabolic
axis”)

Lactate accumulation (↑
glycolysis); lipid
deposition; NAD+

depletion; ROS ↑;
cGAS–STING and
NLRP3 inflammasome
activation; SIRT1/NF-κB
activation

Enhanced glycolysis in T
cells; lipid metabolism
disruption in
macrophages;
mitochondrial
dysfunction; oxidative
stress; activation of
pro-inflammatory
signaling pathways

Vicious cycle accelerates
global functional decline
of testicular cells

(Buck et al., 2017),
(West et al., 2015), (Imai
and Guarente, 2014),
(Zhang et al., 2019),
(Aitken and Roman,
2008)

acid accumulation (Buck et al., 2017). M1 macrophages exhibit
impaired fatty acid oxidation, leading to lipid build-up (O'Neill
and Pearce, 2016), while Treg dysfunction disrupts glutamine
metabolism and weakens antioxidant capacity (Angela et al., 2016).
Meanwhile, metabolic abnormalities further aggravate immune
dysfunction: mitochondrial damage releases mitochondrial DNA,
which activates the cGAS–STING pathway and, subsequently,
the NLRP3 inflammasome—driving the production of IL-1β
(West et al., 2015). Aged-related declines in NAD+ weaken SIRT1-
mediated inhibition of NF-κB (Imai and Guarente, 2014), while
lactate-rich conditions suppress histone deacetylases (HDACs),
upregulating pro-inflammatory gene transcription (Zhang et al.,
2019). This mutually reinforcing relationship—referred to as the
“immune-metabolic axis”—forms a key mechanistic underpinning
of chronic testicular inflammation and age-related decline in sperm
production (Baessler and Vignali, 2024).

3.2 Metabolic decline in leydig cells

Leydig cells, the endocrine engines of the testis responsible
for testosterone synthesis, suffer significant metabolic decline
with age—especially in mitochondrial function and cellular
energy regulation (Zirkin and Papadopoulos, 2018). In a tissue

as energy-intensive as the testis, mitochondrial integrity is
vital for maintaining homeostasis (Natarajan et al., 2020).
Aging disrupts this balance: mitochondrial damage in Leydig
cells hampers cholesterol transport via the StAR protein and
impairs respiratory Complex I, leading to insufficient substrate
supply for testosterone synthesis and decreased ATP production
(Miller, 2013). At the same time, increased ROS suppress key
enzymes like 3β-HSD (Aitken et al., 2014) and activate TLR4 in
macrophages, triggering further TNF-α release and amplifying local
inflammation. Germ cells, unable to meet their energy demands
during late-stage meiosis through compensatory glycolysis,
experience developmental arrest. As the testis’s antioxidant
defenses collapse, sperm DNA becomes vulnerable to oxidative
fragmentation, further compromising reproductive function
(Aitken and Roman, 2008).

Crucially, testosterone deficiency resulting from Leydig
cell metabolic decline also undermines systemic Treg activity
(Fijak et al., 2011). Meanwhile, lactate accumulation in germ
cells fuels further M1 macrophage polarization, deepening the
link between metabolic dysfunction and immune aging. In
this context, Leydig cell failure is not an isolated event but a
central contributor to a broader, self-reinforcing pro-inflammatory
cascade involving immune cells such as macrophages and T cells
(Hedger, 2011).
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FIGURE 1
Schematic illustration of testicular immunosenescence and its consequences. The figure summarizes age-associated T cell exhaustion, blood-testis
barrier disruption, pro-inflammatory cytokine–induced germ cell apoptosis, and disordered spermatogenesis as key features of testicular aging.

3.3 The metabolic role of sertoli cells in
shaping immune dynamics

Long considered passive “nurse cells” to developing germ cells,
Sertoli cells in fact serve as pivotal regulators of both the metabolic
and immunological environment of the testis (Xiao et al., 2025).
With age, they exhibit classic signs of metabolic dysfunction,
including impaired mitochondrial respiration, reduced autophagy,
and disrupted energy metabolism (Tysoe, 2024; Zhou et al., 2021).
These changes weaken Sertoli cells’ ability to support germ cell
development and disrupt their immunoregulatory functions. Aging
Sertoli cells produce less energy via oxidative phosphorylation and
exhibit diminished autophagic capacity, rendering them less able
to maintain the spermatogenic niche (Carrageta et al., 2024). They
also begin secreting elevated levels of pro-inflammatory chemokines
such as CCL2, which attract immune cells—including macrophages
and T cells—into the testicular interstitium (Washburn et al.,
2023). Under metabolic stress, Sertoli cells actively promote the
polarization of macrophages toward the pro-inflammatory M1
phenotype, further intensifying immune activation.

This metabolism-to-immunity feedback loop may underlie the
persistent deterioration of the testicular immune environment.

In turn, chronic immune activation feeds back negatively on
Sertoli cell metabolism through prolonged cytokine exposure.
The result is a self-perpetuating cycle—“metabolism, immunity,
and damage”—that steadily erodes testicular function. These
insights reposition Sertoli cells as active participants, not just
passive supporters, in the aging testis. Their central role in
regulating immune-metabolic dynamics makes them a promising
therapeutic target for interventions aimed at mitigating testicular
immunosenescence and preserving male fertility. To provide a
visual overview, Figure 2 summarizes the interplay between immune
dysfunction, metabolic decline, and the resulting impairment of
spermatogenesis during testicular aging. The diagram highlights
T-cell exhaustion, pro-inflammatory macrophage polarization,
metabolic dysfunction in Leydig and Sertoli cells, and their
combined impact on sperm production.

4 Therapeutic targets and potential
treatments

As scientists learn more about how the immune system in the
testes ages, they’re discovering a range of possible treatment options.
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FIGURE 2
Schematic illustration of testicular immunosenescence and its consequences. The figure summarizes age-associated T-cell exhaustion,
pro-inflammatory macrophage polarization, metabolic dysfunction in Leydig and Sertoli cells, and their combined impact on testosterone synthesis
and spermatogenesis.

These new approaches do not just aim to boost metabolism—they
also work to calm chronic inflammation, restore immune balance,
and repair damaged cells (Meyer andMeyer-Ficca, 2021). Promising
strategies include anti-inflammatory drugs, compounds that protect
mitochondria (the cell’s energy centers), and supplements that
replenish NAD+, a molecule essential for cell health (Hacioglu et al.,
2021; Wu et al., 2024; Meyer-Ficca et al., 2022) ̥

4.1 Anti-inflammatory therapies

Chronic, low-grade inflammation—often called
“inflammaging”—is a hallmark of aging, including in the testes.This
ongoing inflammation wears down immune cells and contributes
to the decline in testicular function. One key player is IL-6, a
pro-inflammatory molecule that becomes overactive with age.
High levels of IL-6 have been linked to immune imbalance in the
testes, disrupted hormone production, and reduced sperm quality
(Bhushan et al., 2020; Zhang et al., 2014; Rival et al., 2006). Drugs
like Tocilizumab, which block IL-6, show potential as a way to
curb inflammation, rebalance the immune system, and improve
reproductive health. In addition to reducing inflammation, IL-6

inhibitors may also help restore testosterone levels (Matzkin et al.,
2021; Rival et al., 2006; Potashnik et al., 2005). These therapies could
1 day offer new hope for older men facing fertility issues tied to
immune system aging.

4.2 Boosting NAD+ levels

NAD+ is a coenzyme found in every cell, playing a critical role
in energy production, DNA repair, and cellular communication.
But as we age, NAD+ levels drop, which weakens mitochondrial
function, reduces the body’s ability to fight oxidative stress, and
accelerates immune aging. One solution? Supplementing with
NAD+ precursors—molecules that help the body make more NAD+

(Wu et al., 2024; Meyer-Ficca et al., 2022). Research shows that
these supplements can jump-start important cellular processes:
activating protective enzymes like SIRT1, improving energy
metabolism, reducing inflammation, and strengthening immune
function (Braidy and Liu, 2020). One standout compound, NMN
(nicotinamide mononucleotide), has shown impressive results in
improving sperm quality in pigs. It raises NAD+ levels, lowers
harmful ROS, boosts ATP (the cell’s energy currency), and supports
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FIGURE 3
Therapeutic strategies and emerging technologies targeting testicular aging. The figure highlights anti-inflammatory therapies (e.g., IL-6 inhibitors),
NAD + precursors for energy metabolism and DNA repair, mitochondrial protectors such as Elamipretide, and advanced research tools like single-cell
RNA sequencing and spatial transcriptomics.

healthy mitochondria—all without interfering with other energy
pathways. In fertility trials, sperm treated with NMN led to more
healthy piglets and fewer stillbirths (Zhang et al., 2025). Restoring
NAD+ doesn’t just help metabolism—it can also rejuvenate aging
immune cells. As a result, NAD+-boosting compounds may offer a
new path forward in treating testicular aging and improving fertility
in older men (Chini et al., 2020; Rahman et al., 2024).

4.3 Protecting the mitochondria

Mitochondria are the powerhouses of the cell—and when they
falter, so does testicular function. As men age, their mitochondria
become less efficient, which not only disrupts metabolism but
also fuels inflammation and damages sperm-producing cells
(Ham et al., 2024). One potential solution comes from Elamipretide,
a mitochondrial-targeted drug that helps restore energy production,
reduce oxidative stress, and improve overall cell health (Zhao et al.,
2019). In studies on rooster sperm, adding Elamipretide during
the freezing and thawing process significantly boosted sperm
vitality, membrane integrity, and mitochondrial function, while
lowering oxidative damage and cell death. However, researchers

caution that too high a dose may have toxic effects (Najafi et al.,
2025). By strengthening antioxidant defenses and supporting
energy metabolism, Elamipretide and similar drugs could become
valuable tools in fighting age-related infertility—especially when
poor mitochondrial function is to blame.

4.4 New tools and future directions

Thanks to cutting-edge technologies like single-cell RNA
sequencing and spatial transcriptomics, researchers can now study
aging at an unprecedented level of detail. These tools reveal how
different testicular cell types interact and change over time. Single-
cell analysis shows how immune cells shift metabolically with
age, while spatial mapping pinpoints where these changes occur
within the tissue (Chi et al., 2024; Cui et al., 2025). Looking
ahead, gene editing technologies such as CRISPR-Cas9 could
allow scientists to precisely tweak genes that control immune
responses, offering new ways to delay or even reverse testicular
aging (Li et al., 2015). These innovations not only make it
easier to build accurate disease models but could eventually
lead to personalized treatments for male infertility. Figure 3
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illustrates the therapeutic strategies and future research directions
aimed at combating testicular immunosenescence. It includes
anti-inflammatory therapies targeting IL-6, NAD+ precursors for
energy metabolism and DNA repair, mitochondrial protectors
like Elamipretide, and advanced tools such as single-cell RNA
sequencing and spatial transcriptomics.

5 Conclusion and perspectives

This review highlights how immune system aging andmetabolic
dysfunction work together to drive the decline of male reproductive
health. It introduces the idea of an “immune–metabolic axis”—a
feedback loop where inflammation weakens the BTB, rewires
immune cell metabolism, and disrupts sperm and testosterone
production. At the same time, age-related problems like poor
glucose handling, sluggish mitochondria, and imbalanced fat
metabolism make these immune issues even worse. In response,
multi-pronged treatment strategies—such as anti-inflammatories,
mitochondrial boosters, and NAD+ supplements—show real
promise. To fully understand and refine these therapies, future
research should combine advanced tools like spatial omics, CRISPR
gene editing, and lab-grown organoid models. Large-scale clinical
trials are also needed to test treatment regimens and identify
biomarkers that predict success.

Ultimately, the concept of the immune–metabolic axis opens up
new ways to understand and treat testicular aging. With continued
research, it could offer a roadmap for protecting fertility and
reproductive health in aging men.
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