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The skeleton functions as an endocrine organ. Osteocytes maintenance 
of skeletal strength and energy balance by sensing mechanical stress and 
communicating with surrounding cells. They are currently considered key 
regulators of bone remodeling, mineral metabolism, and systemic homeostasis. 
Osteocytes originate from osteoblasts and are embedded in the lacunar-
tubular network. They express proteins such as DMP1, sclerostin, and 
FGF23, and influence Wnt signaling, the RANKL/OPG axis, and phosphate 
metabolism. We review the latest studies in the field of osteocyte biology, 
focusing on their mechanotransduction through Piezo1 and integrins, regulation 
of osteoclastogenesis and osteogenesis, and their interactions with the 
bone marrow microenvironment, including immune and vascular cells. In 
osteoporosis, osteocyte dysfunction is manifested by apoptosis, ferroptosis, 
and pyroptosis. These changes, together with altered secretion, lead to 
uncoupled remodeling, disruption of the lacuno-canalicular network and 
metabolic imbalances that are intertwined with inflammation and bone marrow 
fat deposition. Osteocytes play an important role in fracture healing and adaptive 
remodeling under mechanical stimulation, promoting angiogenesis and stem 
cell recruitment. A growing number of emerging approaches, including stem 
cell therapy, CRISPR editing, and AI-driven multi-omics for precision medicine, 
are accelerating osteocyte-related research and the development of therapeutic 
strategies. These studies reveal the clinical potential of osteocyte-targeted 
therapies to prevent osteoporosis, improve bone strength, and enhance 
regeneration. By integrating molecular, cellular, and systems knowledge, we 
highlight osteocytes as a key therapeutic target to combat bone diseases and 
promote bone regeneration.
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 1 Introduction

Bone is far more than just a rigid support for the body. In reality, it is an active 
and adaptable tissue—functioning as an endocrine organ, a mineral ion reservoir, and
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a site of ongoing renewal that responds to mechanical forces, 
hormones, and changing metabolic needs (Szeliga et al., 2024). This 
constant process of turnover—where bone is built, broken down, 
and maintained—preserves skeletal strength and also helps regulate 
broader physiological systems, such as calcium and phosphate 
homeostasis and even aspects of energy balance (Zhou et al., 
2021). When the balance between these processes is disturbed, 
serious disorders can result. Osteoporosis, for example, is marked 
by weak, fracture-prone bones and affects millions of people 
worldwide. In recent years, researchers have started to view the bone 
microenvironment as a highly interactive system, one that brings 
together a variety of cell types and complex signaling networks, 
opening up new possibilities for therapy (Zaidi et al., 2018).

There is great diversity in cells and signals in bone. Regions 
interact. Rather than existing as isolated compartments, regions 
like the endosteum, periosteum, marrow stroma, and the 
vascular network are in constant interaction, each contributing 
distinct cellular residents: hematopoietic stem cells, various 
mesenchymal and immune cells (including macrophages and T 
cells), endothelial cells, and adipocytes, all within an extracellular 
matrix rich in collagen and growth factors (Busch et al., 
2024). In recent years, spatial transcriptomics and imaging 
have helped researchers pick apart these niches. For example, 
endosteal zones are generally linked to hematopoietic stem cell 
quiescence (with CXCL12+ stromal cells), while areas around 
blood vessels appear to foster osteoprogenitor differentiation 
through angiocrine factors (Dalle Carbonare et al., 2025). 
But osteocytes—so often underappreciated—seem to interact 
with nearly all of these other players, using gap junctions 
or secreted vesicles to influence both inflammation and 
stem cell fate. It is worth mentioning that, especially with 
age or in certain diseases, osteocytes can enter a senescent 
state, pumping out more pro-inflammatory cytokines and in 
turn tilting the immune environment and driving osteoclast 
activity (Chen S. et al., 2024). Emerging insights from recent 
studies highlight microbial influences, where gut-derived 
metabolites shape bone cell diversity, linking the microbiome to 
skeletal health (Dalle Carbonare et al., 2025). This multifaceted 
microenvironment not only sustains bone remodeling but also 
contributes to pathologies like osteoporosis, where dysregulated 
cell interactions exacerbate bone loss.

In this review, we synthesize recent advances in our 
understanding of osteocyte biology, with a particular focus 
on their roles in bone metabolism, osteoporosis, and skeletal 
remodeling. We begin by summarizing the developmental 
origins and molecular features of osteocytes, followed by 
an exploration of their central regulatory functions and 
signaling networks. We then highlight mechanisms of osteocyte 
dysfunction in osteoporosis and their contributions to 
pathological bone loss. Finally, we discuss the involvement 
of osteocytes in bone regeneration and remodeling, emerging 
regulatory pathways, and the translational potential of targeting 
osteocyte signaling in therapeutic strategies for metabolic bone 
diseases. We aim to provide a comprehensive perspective on 
osteocytes as master regulators of bone health and disease, 
and highlight osteocytes are key therapeutic targets that can 
help treat bone diseases and promote bone regeneration 
(Lu et al., 2025; Wu M. et al., 2024). 

2 Osteocyte biology: origin, 
morphology, and molecular 
characteristics

Our understanding of osteocytes has changed a lot over time. 
Early on, these cells were largely regarded as quiet, “buried” 
components of bone, with little thought given to any active role 
they might play. This view was based on early histological studies 
from the 19th century, which described osteocytes as little more than 
passive managers of local mineral exchange. In truth, osteocytes 
are the most long-lived cells found in bone. They originate from 
osteoblasts as bones are laid down, eventually becoming encased 
within the mineralized matrix. At the same time, they develop 
an extensive network of dendritic processes, forming the lacuno-
canalicular network (LCN) that reaches throughout the bone tissue 
(Dallas et al., 2013). Based on this network, osteocytes can sense 
mechanical changes, transport nutrients, and send paracrine signals. 
They are also sensitive to microdamage, variations in fluid flow, 
and hormonal signals. Research breakthroughs in the 1990s—driven 
by advances in genetic manipulation and imaging—demonstrated 
that osteocytes actively secrete regulatory molecules such as 
sclerostin (which inhibits Wnt signaling) and RANKL (which 
promotes osteoclast formation), confirming their central role in 
bone regulation (Bonewald, 2011; Delgado-Calle and Bellido, 2022). 
Single-cell omics and in vivo lineage tracing studies reveal the central 
role of osteocytes in processes ranging from periosteum remodeling 
to immune regulation (Tresguerres et al., 2020; Creecy et al., 2020).

Originating from osteoblasts, once situated within their lacunae, 
osteocytes take on a variety of responsibilities—such as sensing 
mechanical forces, managing mineral metabolism, and maintaining 
communication with other cells—all of which are vital for bone 
health. For a long time, osteocytes were considered passive 
“bystanders” in the skeleton. However, with the development of 
technologies such as single-cell omics and high-resolution imaging, 
researchers have gradually revealed the central role of osteocytes in 
bone biology (Palumbo and Ferretti, 2021). 

2.1 Osteocyte developmental lineage and 
differentiation

Mesenchymal stem cells (MSCs) differentiate into the 
osteoblast lineage and drive maturation under the influence 
of key transcription factors such as Runx2 and Osterix (Sp7) 
(Zhu S. et al., 2024; Ponzetti and Rucci, 2021). During bone 
formation, osteoblasts secrete extracellular matrix (ECM), and 
some of these cells eventually become osteocytes as they undergo 
both morphological and functional changes. The transition from 
osteoblasts to osteocytes is characterized by a significant decrease 
in anabolic activity, the growth of dendritic processes, and the 
gradual encapsulation of the cells into pits formed in the mineralized 
matrix (Dallas and Bonewald, 2010; Mullen et al., 2013). This 
embedding is further shaped by perilacunar remodeling—a process 
in which osteocytes themselves take on an active role, modifying 
the surrounding matrix by means of osteocytic osteolysis, enabling 
localized bone resorption and remodeling, and also altering lacunar 
morphology, thereby influencing both mineral balance and the 
fine structure of bone (Franz-Odenda et al., 2006). Notably, this 
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transition is coupled with changes in cellular metabolism. Glycolysis 
is especially important in the early stages of differentiation. Mature 
osteocytes, however, become more versatile in the types of fuel 
they use, which helps them survive in the relatively low-oxygen 
conditions found within the bone matrix (Prideaux et al., 2025).

Osteocytes gain biomarkers as they mature. Each biomarker 
links to a specific function. In differentiation, dentin matrix 
protein 1 (DMP1) takes on a central role in maintaining phosphate 
balance and facilitating matrix mineralization. It is well established 
that mutations in DMP1 can result in hypophosphatemic rickets 
as well as defects in osteocyte function (Dussold et al., 2019; 
Li et al., 2022). As osteocytes reach maturity, they begin to express 
sclerostin—known to inhibit the Wnt signaling pathway and 
thus limit bone formation—as well as fibroblast growth factor 
23 (FGF23), which acts as a hormone regulating phosphate and 
vitamin D metabolism (Knowles et al., 2023; Ratsma et al., 2023; 
Ratsma et al., 2024). The synthesis of FGF23 in osteocytes is 
affected by local phosphate levels and FGFR1-mediated signaling, 
and studies involving targeted deletions in osteocytes have 
highlighted the importance of this pathway in guarding against 
hyperphosphatemia (Courbon et al., 2023; Xiao et al., 2014). 
Additionally, molecules such as Phex and Mepe serve to further 
characterize osteocyte identity, and their co-expression in mature 
osteocytes has been confirmed through single cell approaches 
(Prideaux et al., 2016; Hanai et al., 2023). These biomarkers do 
more than identify cells. For example, anti-sclerostin antibodies 
can increase bone mass in osteoporosis models. Other key 
markers include E11/gp38, which serves as an early osteocyte 
marker and helps with dendrite formation (Prideaux et al., 2012; 
Zhang et al., 2006). MT1-MMP aids in canaliculi formation during 
osteocyte development (Holmbeck et al., 2005; Kul et al., 2012; 
Karsdal et al., 2004). CapG and destrin regulate the cytoskeleton 
and control cytoplasmic processes in dendrites (Delgado-Calle 
and Bellido, 2015). Osteocytes are also richer in molecules like 
PHEX that control phosphate homeostasis compared to osteoblasts 
(Donmez et al., 2022; Rowe, 2012).

Epigenetics guide osteocyte development and function. In the 
context of bone, changes such as histone modification and DNA 
methylation are widely accepted as important drivers of lineage 
commitment (Park-Min, 2017; Dashti et al., 2024). The transition 
from osteoblasts to osteocytes is largely dependent on chromatin 
remodeling; enzymes such as histone deacetylases (HDACs) and 
the methyltransferase EZH2 (which modifies H3K27) repress 
genes involved in proliferation while regulating the expression 
of genes associated with bone formation (Zhu S. et al., 2024; 
Husain and Jeffries, 2017; Zhang et al., 2024). Furthermore, 
methylation of CpG sites within the SOST promoter has been 
associated with reduced sclerostin production following mechanical 
stimulation (Delgado-Calle et al., 2012). In osteocytes, miR-
29b-3p responds to mechanical strain and regulates osteoblast 
differentiation by controlling IGF-1 secretion (Zeng et al., 2019). 
The non-coding RNA miR-218 expressed in osteocytes inhibits 
osteoblast differentiation and regulates its function through the 
Wnt pathway (Hassan et al., 2012). Meanwhile, technological 
advances like single-cell RNA sequencing (scRNA-seq) and spatial 
transcriptomics have dramatically expanded our perspective on 
osteocyte heterogeneity (Wang et al., 2025; Agoro et al., 2023; 
Feng et al., 2023). ScRNA-seq has revealed previously unrecognized, 

transcriptionally distinct subpopulations within the broader bone 
cell milieu—including not only osteocytes, but also mesenchymal 
stem cells, osteoblasts, chondrocytes, fibroblasts, osteoclasts, and 
vascular cells (Chai, 2022). Spatial transcriptomics, by mapping gene 
expression within intact tissue, helps clarify how these cell types 
interact within their microenvironments (Matsushita et al., 2023; 
Mathavan et al., 2025). Key transcription factors like ATF4 and 
HIF-1α integrate signaling pathways, with senescence-associated 
epigenetic changes in driving age-related dysfunction (Nusrat et al., 
2025). These omics methods show the diversity of osteocytes. They 
help in better treatments for bone diseases. 

2.2 Osteocyte ultrastructure and network 
architecture

Osteocytes are characterized by their stellate shape and extend 
numerous cytoplasmic processes (dendrites), which together form 
a complex LCN (Tiede-Lewis and Dallas, 2019; Moriishi and 
Komori, 2022). Within the LCN, the lacunae accommodate the 
osteocyte cell bodies, while the canaliculi—narrow, branching 
channels—permeate the mineralized matrix, thus permitting the 
exchange of nutrients and waste as well as fluid movement required 
for mechanotransduction (van Tol et al., 2020; Schemenz et al., 
2020). Modern imaging methods, notably synchrotron X-ray 
tomography, have made it possible to appreciate how the LCN 
varies: for example, denser canalicular networks are generally 
observed in cortical bone, while the trabecular regions are less 
interconnected. Notably, age-related changes, such as occlusion of 
canaliculi, are linked with increased bone fragility (Moriishi and 
Komori, 2022). Shear stress generated by fluid movement within 
these channels can activate integrins and specific ion channels 
like Piezo1, leading to calcium influx and subsequent activation of 
pathways such as Wnt/β-catenin (Qin et al., 2020). Communication 
between osteocytes relies heavily on gap junctions formed by 
connexin 43 (Cx43), which assemble into hemichannels that permit 
the passage of small molecules, including ATP, prostaglandins, 
and cyclic nucleotides (Zhang et al., 2025). When osteocytes are 
subjected to mechanical loading, Cx43 hemichannels facilitate 
the release of prostaglandin E2 (PGE2), which can modulate the 
activity of nearby osteoblasts. In addition to these classic structures, 
extracellular vesicles and tunneling nanotubes also play a part, 
allowing for communication over longer distances (Delgado-Calle 
and Bellido, 2022). Loss of LCN connectivity—whether due to 
age or disease—tends to impair mechanosensation and promote 
cellular senescence, further emphasizing the significance of this 
system in preserving bone strength and integrity (Tiede-Lewis and 
Dallas, 2019). 

3 Osteocyte as the master regulator of 
bone metabolism

Osteocytes are found deep within the bone matrix, where they 
play a vital role in keeping the skeleton balanced. These cells 
constantly process a mix of signals—mechanical loads, biochemical 
fluctuations, and hormonal inputs—allowing them to coordinate the 
complex process of bone metabolism. They are sensitive to changes 
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in their local environment and can release various factors that act 
on osteoblasts and osteoclasts, ensuring that bone tissue can adjust 
to different physiological demands as needed (Qin et al., 2020; 
Choi et al., 2024). If osteocyte communication goes awry, issues 
like abnormal phosphate levels or a breakdown in the coupling of 
bone formation and resorption may develop, highlighting why these 
cells have become promising therapeutic targets in diseases such as 
osteoporosis (Michigami, 2022; Han et al., 2018). 

3.1 Mechanosensation in osteocytes

Osteocytes sense mechanical loading and convert it into 
biochemical signals (Qin et al., 2020; Choi et al., 2021). Fluid 
shear stress stimulate mechanosensitive pathways. Among these, 
Piezo1 acts as a cation channel that drives calcium entry 
when the membrane is deformed (Li et al., 2019; Wang et al., 
2023; Sun et al., 2019). Piezo1 activation in osteocytes triggers 
a downstream cascade, including Wnt/β-catenin signaling, 
which enhances osteogenesis and inhibits bone resorption, as 
evidenced by impaired bone formation and increased osteoclast 
activity in conditional knockout models (Li X. et al., 2025; 
Nottmeier et al., 2023). Integrins mediate mechanotransduction 
by linking cytoskeletal tension to focal adhesions, facilitating force 
transmission to the nucleus (Qin et al., 2022; Qin et al., 2023). 
YAP/TAZ, co-activators shuttled to the nucleus under mechanical 
cues, amplify this process by transcribing genes for matrix 
remodeling, promote perilacunar resorption to adapt to loading
(Qin et al., 2020).

The osteocyte mechanosensory network is critical for adapting 
bone structure to mechanical load (Figure 1). Cyclic loading of 
the skeleton triggers changes in osteocyte function, including 
cortical bone thickening, whereas cyclical reduction in bone use 
often leads to bone loss (Iandolo et al., 2021; Ma et al., 2023). 
In microgravity or immobilization, diminished mechanosignaling 
exacerbates bone loss, underscoring osteocytes’ role in Wolff ’s 
law—bone adapts to the loads it endures (Ma et al., 2023). Recent 
studies in single-cell analysis have identified diverse osteocyte 
subpopulations (Youlten et al., 2021). Notably, some subpopulations 
display high expression genes linked to neuronal network assembly. 
This finding broadens current insight into how bone responds to 
shifts in its local environment.

3.2 Regulation of bone remodeling signals

Osteocytes govern remodeling through a sophisticated 
secretome, balancing formation and resorption (Bolamperti et al., 
2022). SOST, a Wnt antagonist, is downregulated by mechanical 
loading to permit osteoblast activation, while its upregulation in 
unloading inhibits bone accrual; anti-sclerostin therapies exploit 
this for anabolic effects (Knowles et al., 2023). RANKL, secreted 
by osteocytes, drives osteoclastogenesis by binding RANK on 
precursors, with OPG acting as a decoy receptor to temper 
this; the RANKL/OPG ratio thus fine-tunes resorption, as seen 
in osteocyte-specific RANKL deletions attenuating bone loss 
(Udagawa et al., 2021; Yoshimoto et al., 2022). FGF23, an endocrine 
regulator, maintains phosphate homeostasis by suppressing renal 

reabsorption and vitamin D activation, linking skeletal metabolism 
to systemic mineral balance (Michigami, 2022; Han et al., 2018). 
These molecules help coordinate the activities of osteoblasts 
and osteoclasts, making sure that areas of bone resorption are 
properly restored. Signals released from osteocytes keep this 
process synchronized by means of paracrine feedback loops. If 
these regulatory loops are disturbed, either with aging or under 
disease conditions, bone remodeling can become abnormal (Ru and 
Wang, 2020) (Figure 1). 

3.3 Osteocyte interactions with the bone 
marrow microenvironment

Osteocytes extend beyond the matrix, engaging in “crosstalk” 
with immune, and stromal elements in the marrow niche 
(Elango et al., 2018; Cao H. et al., 2020). Perivascular osteoblasts 
secrete angiogenic factors, such as VEGF, which affect endothelial 
cells to maintain nutrient supply or cancer metastasis (Chen et al., 
2017; Mulcrone et al., 2020). Through MYD88-dependent signaling 
in response to PAMPs, these cells are able to attract macrophages 
and T cells, which can intensify inflammation during infection 
or in arthritis (Yoshimoto et al., 2022). Their engagement with 
the surrounding matrix includes perilacunar remodeling; in this 
process, osteocytes use enzymes like MMP13 to break down the local 
extracellular matrix, allowing them to adjust to metabolic changes 
(Mazur et al., 2019). Mitochondrial transfer from osteolineage cells 
to myeloid populations further regulates immune-mediated bone 
turnover (Ding et al., 2024). Transfer of osteocyte mitochondria to 
transcortical vascular endothelial cells accelerates angiogenesis and 
promotes the repair of cortical bone defects (Liao et al., 2024). 
Mechanically strained osteocyte-derived exosomes containing 
miR-3110-5p and miR-3058-3p were transported to osteoblasts, 
accompanied by increased PGE2, IGF-1 and NOS activities, 
thereby promoting the osteoblastic differentiation (Zhu Y. et al., 
2024). Exosomes secreted by osteocytes under mechanical stress 
disrupt chondrocyte mitochondrial autophagy through miR-23b-
3p, promote cartilage breakdown and inhibit synthesis, thereby 
accelerating the progression of osteoarthritis (Liu et al., 2025). 
Downregulation of miR-494-3p in extracellular vesicles derived 
from senescent osteocytes inhibits osteogenic differentiation 
and accelerates age-related bone loss via the PTEN/PI3K/AKT 
pathway (Yao et al., 2024). These interactions highlight the role of 
osteocytes in microenvironmental homeostasis (Figure 2) and have 
important implications for therapies targeting microenvironmental 
dysregulation in osteoporosis or metastasis.

4 Osteocyte dysfunction in 
osteoporosis

Osteoporosis is characterized by reduced bone mass and 
deterioration of bone microarchitecture, resulting from an 
imbalance in bone remodeling whereby bone resorption exceeds 
bone formation. Recent studies suggests that osteocyte dysfunction 
is the important link connecting cell death, signaling abnormalities, 
metabolic alterations, and systemic factors such as estrogen 
deficiency and inflammation. 
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FIGURE 1
Pathway of bone cells sensing mechanical stress. This figure outlines the signaling pathways by which osteocytes sense mechanical stress. 
Mechanotransduction pathways, such as those involving Piezo1, integrins, YAP/TAZ, and Wnt/β-catenin, as well as paracrine and endocrine signals, 
such as sclerostin, RANKL, and FGF23, are depicted. The figure also labels important regulated forms of cell death, including apoptosis, ferroptosis, and 
pyroptosis, as well as metabolic changes, such as a shift toward glycolysis and increased production of reactive oxygen species, that contribute to 
osteocyte dysfunction during osteoporosis. Arrows indicate the main signaling pathways and feedback mechanisms in these processes.

4.1 Osteocyte dysfunction in osteoporosis

In osteoporosis, several forms of regulated cell death (RCD) 
impair osteocyte survival, including apoptosis, ferroptosis, and 
pyroptosis, each of which perturbs bone homeostasis and promotes 
bone loss (Ru and Wang, 2020; Zhao et al., 2025). Dying osteocytes 
release RANKL, which stimulates osteoclast activity (Zhao et al., 
2025; Cheng et al., 2022; Sfei et al., 2022). Ferroptosis, an iron-
dependent form of cell death driven by lipid peroxidation, occurs 
more frequently in osteoporosis linked to diabetes or aging. Loss 
of glutathione peroxidase 4 (GPX4) weakens cellular antioxidant 
capacity, leaving osteocytes vulnerable to oxidative injury. GPX4 
prevents ferroptosis by enzymatically reducing lipid hydroperoxides, 
while ferrostatin-1 is a pharmacological antioxidant that mimics 
this protective effect by chemically blocking lipid peroxidation. The 
protective effect of ferrostatin-1 further supports the contribution 
of ferroptosis to bone loss (Wu X. et al., 2024; Yang et al., 

2022). Pyroptosis, inflammasome-mediated lysis via NLRP3 and 
gasdermin D, is implicated in inflammatory osteoporosis, releasing 
IL-1β to exacerbate resorption (Zhao et al., 2022). Together, these 
RCD pathways form a “death-to-resorption” axis, in which apoptotic 
bodies and DAMPs derived from ferroptotic or pyroptotic cells 
promote osteoclastogenesis (Zhao et al., 2025; Li C. et al., 2025).

Disruption of the LCN further weakens osteocyte function. 
Reduced connectivity limits mechanosensation and molecular 
transport (Tiede-Lewis and Dallas, 2019; Schurman et al., 2021). 
Aging or glucocorticoid exposure reduces canalicular density and 
connectivity, impairing fluid shear stress transmission (Yılmaz et al., 
2025; Rodriguez et al., 2025). LCN fragmentation is associated 
with lacunar mineralization and greater fracture susceptibility 
(Yu et al., 2020). Importantly, alterations in the LCN appear 
before cortical porosity develops in osteoporotic bone, underscoring 
the essential role of network integrity in skeletal adaptation 
(van Tol et al., 2020; Vahidi et al., 2021). 
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FIGURE 2
Overview of osteocyte biology and microenvironmental interactions in bone tissue. This schematic diagram shows the bone microenvironment, 
illustrating how mesenchymal stem cells (MSCs) differentiate into osteoblasts and mature into osteocytes. The image shows the widespread 
distribution of osteocyte dendritic processes. The image covers a variety of cell types, with osteocytes communicating with osteoblasts, osteoclasts, 
endothelial cells, bone marrow adipocytes, and immune cells, among others. These interactions occur through paracrine factors such as Sost, RANKL, 
and FGF23, as well as direct physical contact. Different anatomical regions are labeled, such as cortical bone, articular cartilage, and the bone marrow 
cavity. The image reveals the diversity of cell populations within the bone and the organization of the specialized microenvironment, with arrows 
marking the pathways of interaction between osteocytes and other cells.

4.2 Osteocyte-derived signaling molecules 
in osteoporosis

Osteocytes regulate bone metabolism through secreted factors, 
which show marked dysregulation in osteoporosis. Sclerostin, 
a Wnt/β-catenin inhibitor from mature osteocytes, suppresses 
osteoblast differentiation and bone formation (Zhang et al., 2023). 
Estrogen deficiency, as seen in postmenopausal osteoporosis, 
increases sclerostin expression, suppressing Wnt-driven bone 
formation and inducing osteocyte apoptosis (Reppe et al., 2015). 
Epigenetic changes, such as SOST promoter methylation, further 
reduce osteogenic transcriptional activity in postmenopausal 
osteoporosis (Shan et al., 2019). FGF23, a phosphatonin, rises in 
osteoporotic bone, disturbing phosphate balance and impairing 
mineralization (Dallas et al., 2013; Michigami, 2023). RANKL 
expression in osteocytes also escalates, driving osteoclast maturation 
and activity via the RANK/RANKL/OPG axis. These shifts are 
amplified by aging, where senescent osteocytes accumulate, 
releasing pro-inflammatory cytokines like IL-6 and TNF-α that 
further upregulate RANKL and sclerostin (Wang et al., 2019; 
Florencio-Silva et al., 2015). Inflammatory conditions and oxidative 
stress enhance this dysregulation by inducing apoptosis and 
releasing DAMPs, which sustain resorption signals (Yu et al., 2017; 
Yan et al., 2023). Endocrine imbalance, particularly low estrogen, 
also links directly to ferroptosis and bone fragility (Jiang et al., 2024). 

4.3 Osteocyte metabolic abnormalities and 
interactions with bone marrow fat and 
inflammation

Beyond signaling perturbations, osteocyte metabolic 
abnormalities in osteoporosis intertwine with bone marrow adipose 
tissue (BMAT) expansion and an inflammatory microenvironment, 
fostering a vicious cycle of metabolic reprogramming, oxidative 
stress, and inflammatory factor release. Osteocytes experience 
notable changes in their metabolism, often shifting toward glycolysis 
instead of relying mainly on oxidative phosphorylation. This 
metabolic adaptation helps these cells survive in low-oxygen 
environments, but it can also result in increased production of 
ROS, which in turn impairs mitochondrial function and encourages 
cellular aging (Srivastava et al., 2022; Bertels et al., 2024). Such 
reprogramming has been associated with the buildup of BMAT; 
lipids released from adipocytes can accumulate in the marrow, 
where they inhibit the formation of new osteoblasts and stimulate 
osteoclast activity, partly through adipokines such as leptin and 
adiponectin (Xiao et al., 2024). Oxidative stress further complicates 
this relationship: higher ROS levels in osteocytes can drive lipid 
peroxidation and ferroptosis-like cell death, releasing factors that 
attract macrophages and sustain a bone-resorbing environment 
(Zhang et al., 2023). In both aging and estrogen deficiency, these 
metabolic changes in osteocytes have also been linked to systemic 
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consequences like sarcopenia, largely due to interactions between 
bone and muscle (Choi et al., 2024; He et al., 2020).

Together, these mechanisms place osteocytes at the center 
of osteoporosis development, where they integrate hormonal, 
inflammatory, and age-related cues with various metabolic 
disturbances. Malfunctioning osteocytes not only disturb bone 
remodeling locally but also exert influence on other organs through 
endocrine signaling, demonstrating their broader role in physiology. 
Nonetheless, there are still many uncertainties regarding how 
these changes unfold over time and across different bone regions, 
highlighting the need for improved experimental models to clarify 
osteocyte involvement in osteoporosis progression and guide 
targeted therapies. 

5 Osteocyte in bone remodeling and 
regeneration

Embedded in the mineralized matrix, osteocytes are central 
to skeletal homeostasis. They integrate mechanical, biochemical, 
and hormonal cues to guide remodeling and repair, ensuring 
structural integrity and adaptation. Dysregulated signaling in 
these cells contributes to disorders such as osteEmbedded 
in the mineralized matrix, osteocytes are central to skeletal
homeostasis. 

5.1 Role of osteocytes in the bone 
remodeling cycle

Bone remodeling is a continuous process maintaining skeletal 
mass and architecture, involving coordinated resorption by 
osteoclasts and formation by osteoblasts within basic multicellular 
unit (BMU). Osteocytes initiate and regulate this cycle by 
sensing microenvironmental changes and mediating coupling 
between resorption and formation phases (Bolamperti et al., 
2022; Niedźwiedzki and Filipowska, 2015). As mechanosensory, 
osteocytes detect fluid shear stress and matrix deformation via
their dendritic processes and primary cilia, transducing these 
into biochemical signals that modulate remodeling (Qin et al., 
2020; Choi et al., 2021). In the initiation phase, osteocyte 
apoptosis—triggered by microdamage, unloading, or glucocorticoid 
exposure—releases DAMPs and cytokines like IL-6, attracting 
osteoclast precursors and activating resorption (Bellido, 2014). 
Osteocytes help maintain the health of their local environment 
by releasing matrix metalloproteinases (MMPs), which play a 
part in perilacunar remodeling. Through this process, they keep 
canaliculi open and support the diffusion of nutrients (Li et al., 
2021). Coupling mechanisms ensure formation follows resorption; 
osteocytes release factors like TGF-β from resorbed matrix, 
recruiting osteoblast progenitors, while downregulating sclerostin 
to activate Wnt signaling and promote osteogenesis (Cao W. et al., 
2020). When these activities are disrupted—for example, as a 
result of aging—remodeling becomes uncoordinated, further 
demonstrating the central role osteocytes play in sustaining the 
microenvironment. Building on this foundation, osteocytes also 
direct adaptive responses to external conditions such as mechanical 
loading or unloading, further shaping skeletal integrity. 

5.2 Key functions of osteocytes in adaptive 
bone remodeling

Bone adapts to mechanical demands through Wolff ’s law, with 
osteocytes as primary sensors translating physical stimuli into 
molecular responses that adjust mass and geometry (Hughes et al., 
2020; Wang et al., 2022). Under loading (e.g., exercise), fluid 
flow activates integrin-αvβ3 and Piezo1 channels, triggering 
Ca2+ influx and downstream pathways like ERK/MAPK, which 
downregulate sclerostin and upregulate Wnt ligands for enhanced 
osteogenesis (Wang et al., 2022). Concurrently, loading suppresses 
RANKL, inhibiting resorption and promoting perilacunar matrix 
mineralization via DMP1 and MEPE (Choi et al., 2021; Klein-
Nulend et al., 2012). In contrast, unloading—as in microgravity or 
bed rest—induces osteocyte senescence and apoptosis, elevating 
sclerostin and RANKL, leading to uncoupled resorption and bone 
loss (Hu et al., 2014; Man et al., 2022). Molecularly, reduced 
mechanotransduction disrupts cytoskeleton-integrin linkages, 
activating NF-κB and oxidative stress pathways, with upregulated 
FGF23 exacerbating phosphate waste (Sonawane et al., 2025). 
Spaceflight studies show that microgravity alters the LCN, impairing 
fluid and nutrient transport (Man et al., 2022). Osteocytes adapt to 
environmental change through several mechanisms (Hughes et al., 
2020): first, they participate in random (stochastic) remodeling to 
help maintain bone; second, they are involved in repairing small 
areas of damage; third, they respond to inactivity by encouraging 
bone resorption; and finally, they contribute to bone formation in 
response to mechanical loading. Osteocytes use their cytoskeleton, 
composed of actin filaments and microtubules, to integrate signals 
and maintain skeletal health. Looking ahead, new technologies 
such as organoids and in vivo imaging may help clarify how these 
processes change over time and space, which could eventually 
support the design of therapies that mimic healthy mechanical 
signaling. 

5.3 Osteocytes in fracture healing and 
bone regeneration: regulation of bone 
repair, angiogenesis, and stem cell 
recruitment

Fracture healing takes place in several phases, starting with 
inflammation, followed by soft callus formation, hard callus 
ossification, and ultimately remodeling. Osteocytes, both at the 
injury site and surrounding area, are not passive during these 
events; instead, they influence each phase by adjusting local 
inflammation, guiding the entry of new blood vessels, and affecting 
how progenitor cells behave (Choy et al., 2020). Upon fracture, 
mechanical disruption induces osteocyte apoptosis, releasing pro-
inflammatory signals, which recruit macrophages and initiate 
hematoma formation (Bahney et al., 2019). Surviving osteocytes 
upregulate hypoxia-inducible factor-1α (HIF-1α) in response to 
local hypoxia, promoting VEGF expression to drive angiogenesis 
essential for nutrient supply and progenitor influx (Bixel et al., 
2024; van Brakel et al., 2024). The connection between blood 
vessel growth and new bone formation is especially important. 
Osteocytes produce signals such as PDGF-BB and endothelin-1, 
which promote the growth and maturation of endothelial cells, while 
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type H vessels present in the callus region foster the development of 
osteoprogenitors (Grosso et al., 2017). In the later stages, as the bone 
remodels, osteocytes detect how mechanical forces shift within the 
callus. In response, they alter RANKL and OPG levels, which helps 
shape the newly formed bone and restore the cortex (Iaquinta et al., 
2019). Recently, experimental approaches using exosomes derived 
from mesenchymal stem cells to target osteocyte pathways have 
shown promise in boosting bone repair, reflecting the far-reaching, 
hormone-like roles that osteocytes take on during healing. 

6 Therapeutic targeting of osteocytes 
in osteoporosis and bone disease

Through a combination of paracrine signaling, detection of 
mechanical forces, and control of both osteoclast and osteoblast 
activity, osteocytes direct the ongoing remodeling of bone. When 
the regulatory role of osteocytes is disrupted, it leads to osteoporosis 
and other bone diseases characterized by decreased bone strength 
and increased risk of fractures. Traditionally, most treatments for 
osteoporosis have targeted osteoclasts (to reduce bone resorption) 
or osteoblasts (to enhance bone formation). However, osteocytes 
stand at the center of this balance, as they coordinate both sides 
by secreting sclerostin, RANKL, and other mediators. This places 
osteocytes not as isolated players, but as master regulators of 
the osteoblast–osteoclast axis. Progress in this field has therefore 
brought increasing attention to osteocytes as therapeutic targets, 
with new treatments focusing on blocking osteocyte-derived 
molecules, exploring tissue regeneration, and moving toward 
precision medicine. The following sections highlight representative 
clinical and preclinical advances. 

6.1 Sclerostin inhibitors and novel bone 
anabolic agents

Sclerostin, secreted by osteocytes, inhibits Wnt/β-catenin 
signaling and suppresses bone formation. Neutralizing sclerostin 
has emerged as a powerful anabolic strategy for osteoporosis 
(Ke et al., 2012). Romosozumab, a monoclonal antibody targeting 
sclerostin, promotes bone accrual by enhancing osteoblast activity 
while transiently reducing resorption. Phase 3 trials, including 
FRAME and ARCH, demonstrated significant increases in bone 
mineral density (BMD) at the spine and hip with fracture risk 
reductions for vertebral fractures over 12 months (Lewiecki, 2020). 
Recent real-world studies from 2024 to 2025 further confirmed 
its efficacy in postmenopausal women, reporting BMD increases 
of 6.58%–14.65% at lumbar spine and femoral neck after 12 
months, especially when sequenced after denosumab to prevent 
rebound bone loss (Park et al., 2025; Piasentier et al., 2025). 
Moreover, microarchitectural improvements, assessed via high-
resolution peripheral quantitative CT, reveal enhanced trabecular 
connectivity and cortical thickness (McClung et al., 2025). Beyond 
romosozumab, bispecific antibodies combining sclerostin inhibition 
with RANKL blockade are under development, aiming for dual 
anabolic–antiresorptive effects in preclinical studies (Xu et al., 2023; 
Elahmer et al., 2024). It is worth noting that other clinical-stage 
therapies, including the PTH analogs teriparatide and abaloparatide, 

as well as the anti-RANKL antibody denosumab, have already 
shown proven efficacy in reducing fracture risk and improving 
bone mass. These agents primarily act by stimulating osteoblast 
activity (teriparatide/abaloparatide) or suppressing osteoclast 
function (denosumab) (Ebina et al., 2025; Bone et al., 2017). In this 
therapeutic landscape, sclerostin inhibitors like romosozumab are 
distinctive in directly targeting osteocyte-derived signals, thereby 
complementing existing approaches and broadening options for 
individualized osteoporosis management. 

6.2 Stem cell and gene editing therapies: 
prospects for osteocyte-targeted 
regenerative medicine

Regenerative strategies focus on rebuilding osteocyte networks 
and restoring bone balance, with approaches that use stem cells 
as well as gene-editing technologies. MSCs, sourced from either 
bone marrow or fat tissue, can differentiate into osteocytes and also 
release growth factors such as BMPs, which contribute to bone repair 
(Dalle Carbonare et al., 2025; Chu et al., 2024). In some models of 
osteoporosis, MSCs engineered to produce more PDGFB have been 
shown to boost the formation of trabecular bone and increase bone 
strength, with reports of up to 45% greater bone volume (Chen et al., 
2015). Researchers have also used CRISPR-Cas9 gene editing to 
specifically alter genes expressed in osteocytes, including those 
involved in sclerostin regulation and mechanosensing pathways 
(He et al., 2017; Michalski and Williams, 2023). Some preclinical 
work has transplanted iPSCs modified by CRISPR into bone defects, 
resulting in the generation of mature, functional osteocytes that 
enhance both mineralization and blood vessel growth within the 
repaired tissue (Iaquinta et al., 2019). Delivering edited MSCs via
exosomes has also been explored as a way to strengthen paracrine 
signaling, lower inflammation, and support new bone formation 
in osteoporosis models (Chen Y. et al., 2024). One study showed 
that mesenchymal stem cells combined with strontium-containing 
scaffolds enhanced cell attachment and promoted bone growth in 
osteoporotic rats (Wu et al., 2020). In a key study, AAV gene therapy 
targeting SHN3 in bone reversed bone loss in osteoporosis models 
(Lin et al., 2024). Genetically modified stem cell therapy is a safe and 
effective method that can significantly improve BMD and BV/TV 
in animal models of osteoporosis (Huang et al., 2025). While these 
approaches are promising, they face obstacles such as immune 
rejection of transplanted cells, off-target gene editing effects, and 
scalability for human applications. 

6.3 Multi-omics, AI, and personalized 
precision therapy

Multi-omics integration—encompassing genomics, proteomics, 
and metabolomics—unveils osteocyte-driven biomarkers for 
osteoporosis. Genome-wide association studies identify variants 
in osteocyte genes like SOST, influencing BMD and fracture 
susceptibility (Li et al., 2024). Proteomic studies have identified 
higher levels of sclerostin and DKK1 as markers that may 
help predict bone health, while analyses of cellular metabolites 
have pointed to abnormal lipid patterns in aging osteocytes
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(Wang et al., 2024; Yuan et al., 2024). Recently, machine learning 
and other AI-based tools have begun to combine these biological 
datasets for risk prediction, often providing a more precise estimate 
of fracture risk than what is possible with standard DXA imaging 
(Saleem and January 2024; Mis et al., 2025). Deep learning on 
multi-modal datasets stratifies patients for personalized therapies. 

7 Perspectives and future directions

Recent studies highlight how osteocytes employ diverse 
molecular sensors—including the cytoskeleton, primary cilia, 
integrins, and ion channels such as Piezo1—to convert mechanical 
forces into biochemical signals that regulate remodeling and 
structural adaptation. This complexity explains their central role 
not only in osteoporosis but also in conditions such as osteoarthritis 
and bone metastasis, where impaired mechanotransduction 
aggravates disease. Currently, a growing number of studies are 
employing systems biology approaches to elucidate the functions 
of osteoblasts. Single-cell RNA sequencing, spatial transcriptomics, 
and artificial intelligence technologies are helping us to more 
precisely map osteoblast heterogeneity and the LCN (Tong et al., 
2024). Improvements in live imaging and organ-on-a-chip platforms 
also provide opportunities to study osteocyte–osteoblast–osteoclast 
interactions under mechanical load. There is increasing recognition 
of osteocyte-endocrine effects on muscle and kidney—which 
could open new perspectives on aging and whole-body disease. 
However, major gaps remain in human in vivo research, as most 
data are derived from animal and preclinical models. High-
resolution imaging, single-cell, and spatial omics are essential 
for characterizing osteocyte biology in the human skeleton. 
Moving forward, teamwork across disciplines, especially between 
bioengineering and pharmacology, will be essential for turning 
basic discoveries about osteocytes into tailored therapies that boost 
regeneration and bone health.
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