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Left-right symmetry breaking: 
learning from the chicken

Tobias Karl Pieper and  Nikoloz Tsikolia*

Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany

Morphological left-right asymmetry of visceral organs in most cases reveals 
a typical arrangement. This implies directed symmetry breaking which is 
suggested to be based on the existence of structural chirality. At early 
developmental stages many vertebrate model organisms display so-called 
leftward flow of extracellular fluid which is based on the unidirectional rotation of 
chiral cilia. Cytoskeletal chirality has been shown to contribute to the left-right 
asymmetry of invertebrates including Caenorhabditis elegans and Drosophila 
melanogaster. The mechanisms of left-right symmetry breaking in vertebrates 
without ciliary flow remain mysterious. Here, we present our perspective on left-
right patterning and symmetry breaking in the chick within a broader context.
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Meeting point nodal

Left-right asymmetry of viscera is a fundamental anatomical feature of vertebrates 
and many invertebrates (Blum and Ott, 2018). Morphological asymmetry is manifested 
both in bilateral asymmetry or handedness of organs and their asymmetric position and 
was shown to be preceded by asymmetric gene expression and asymmetrical molecular 
signaling (referred to here as left-right patterning). Expression of TGF-beta member Nodal 
in the left lateral plate mesoderm is a common denominator of early left-right molecular 
patterning in studied vertebrates (Duboc and Lepage, 2008; Grande and Patel, 2009). Well-
studied effector of asymmetric Nodal activity is the transcription factor Pitx2, which has 
been shown to be directly involved in asymmetric morphogenesis of the heart and the 
gut (Campione et al., 1999; Lin et al., 1999). Interestingly, the lateral plate mesoderm is 
involved in the morphogenesis of asymmetrical organs contributing to heart and connective 
tissues of the gut. Nodal-Pitx2 module was also reported to be involved in asymmetrical 
development of amphioxus, snails and sea urchins. Asymmetrical gene expression, however, 
is preceded by a symmetrical state, displaying either bilateral absence or bilateral presence of 
gene expression or molecular activity. Assuming original bilateral symmetry of a developing 
embryo, asymmetric gene expression is preceded by a process described as initial symmetry 
breaking which is a transition to a state with higher symmetry.

The (chiral) form is the cause

The original idea proposed by Pierre Curie suggested that the symmetry elements 
in the cause must be found in their effects and asymmetries in the effect are derived 
from asymmetries in the causes (Curie, 1894). Further development of the symmetry 
breaking concept led to distinction between explicit symmetry breaking, which follows 
the above described definition and spontaneous symmetry breaking (Earman, 2004) where
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the outcomes are distributed equally (outcomes are randomized). 
An important feature of animal left-right symmetry breaking, 
however, is its directionality: the resulted sidedness after the 
symmetry breaking is not random. Hence, the initial animal left-
right symmetry breaking cannot be described as spontaneous. This 
suggests underlying structural molecular asymmetry which may 
be based on chirality as known in chemistry. Wolpert and Brown 
(Brown and Wolpert, 1990) proposed the existence of a chiral 
molecular determinant denominated as F-molecule which generates 
initial asymmetry subsequently translated at cellular and organismal 
level. Afzelius reported a correlation between disturbed laterality 
and abnormal cilia (Afzelius, 1976): ultrastructural examination of 
immotile sperm in 4 patients with impaired mucociliary transport 
and associated recurrent bronchitis revealed the absence of dynein 
arms in the cilia with three out of four patients also showing 
situs inversus totalis. The association of bronchiectasis accompanied 
by sinusitis with situs inversus was already described by Manes 
Kartagener (Kartagener and Stucki, 1962). Afzelius proposed that 
the cilia motility in embryonic tissues critically contributes to 
the right-left asymmetries of adult organisms (Afzelius, 1976). 
As cilia reveal structural chirality they fulfill requirements of the 
hypothetic F-molecule. Indeed, shortly after the proposed role of 
the hypothetical F-molecule, motile cilia were shown to be present 
in early mouse embryos during gastrula and early somitogenesis: 
the ventral surface of epithelialized midline cells assigned to the 
notochord and node possess long motile monocilia (Sulik et al., 
1994). Based on results of Afzelius and observation that the 
comparable developmental stage in rat embryos is critical for 
the establishment of right-left asymmetry (Fujinaga and Baden, 
1991), Sulik and co-workers suggested a causal contribution of 
motile monocilia to left-right symmetry breaking (Sulik et al., 
1994). Screening of mouse strains with complete inverted viscera 
revealed mutations in cilia-associated axonemal heavy-chain dynein 
(Supp et al., 1997). Similarly, it was shown that mice depleted 
for kinesin KIF3B do not form monocilia and reveal randomized 
left-right asymmetry (Nonaka et al., 1998). Furthermore, in WT 
embryos corresponding cilia undergo rotation accompanied by 
leftward fluid flow as shown by video microscopy of ventral surface 
of embryos cultured in a medium with fluorescent beads. The 
experimental reversal of flow direction led to the formation of 
situs inversus while an artificially generated flow in embryos with 
defective cilia “rescued” the phenotype (Nonaka et al., 2002).

The direction (of flow) decides where 
it becomes the left side

Leftward flow was observed in frog Xenopus laevis, zebrafish 
and mouse while morphological signs of a ciliated organizer were 
reported for many further but not for all studied vertebrates 
(Schroder et al., 2016; Blum et al., 2007). Successful symmetry 
breaking requires a temporary formation of a specific “organ”: the 
ciliary leftward flow is located at the ventral surface of specialized 
structure called left-right organizer (LRO, cf. Figure 1). Crucially, 
symmetry breaking by leftward flow is followed by subsequent 
activation of nodal signaling at the left-side (Schweickert et al., 2010; 
Oki et al., 2009). Two mechanisms were proposed to explain how 
leftward flow caused left-right patterning. Initial proposal suggested 

leftward transport of morphogens (Nonaka et al., 1998) while later 
studies suggested existence of sensory immotile cilia (McGrath et al., 
2003; Tabin and Vogan, 2003). Indeed, recent studies in mouse 
and zebrafish embryo strongly support the view that deflection of 
immotile cilia by flow which lead to polycystin-2 (Pkd2) channel 
mediated activation of intraciliary Calcium transients (Katoh et al., 
2023; Djenoune et al., 2023). How asymmetrical Calcium transients 
influence left-right patterning is to be investigated in more detail 
(Mizuno et al., 2020). Particularly, it has been suggested that 
Calcium transients activate RNA binding protein Bicc1 which in 
turn suppresses the translation of nodal antagonist dand5 mRNA 
(Maerker et al., 2021). The LRO is formed by axial and (in Xenopus) 
paraxial mesoderm progenitors which form the gastrocoel roof plate 
in amphibian (Shook et al., 2004; Blum et al., 2009), the posterior 
notochord in mouse and rabbit (Schroder et al., 2016; Blum et al., 
2007) or the Kupffer’s vesicle in zebrafish embryos (Essner et al., 
2005). Function of LRO requires the correct domain architecture 
and differentiation. The effectively directed flow was suggested to be 
caused by posterior position and structural features of the motile 
cilia (Nonaka et al., 2005). Hence, the correct position of cilia 
is a function of established planar cell polarity along anterior-
posterior axis (Antic et al., 2010; Hashimoto and Hamada, 2010; 
Hashimoto et al., 2010; Song et al., 2010; May-Simera et al., 2010; 
Borovina et al., 2010). In Xenopus and mouse embryo LRO includes 
spatially segregated domains characterized by gene expression and 
types of cilia (Schweickert et al., 2010; Blum et al., 2009; Petri et al., 
2024). Particularly, lateral domains which form at both sides 
immotile cilia bilaterally express nodal, its antagonist dand5 and in 
Xenopus somitic marker myoD (Schweickert et al., 2010; Petri et al., 
2024; Tingler et al., 2022). Importantly, to create the appropriate 
flow and detect it, ciliated cells should be transiently faced towards 
a cavity of the LRO whereas after the symmetry breaking event, the 
surface is covered by endodermal cells. Abnormal development of 
LRO with a LRO covered by endoderm prevents correct symmetry 
breaking in Xenopus (Schneider et al., 2019; Petri et al., 2022). 
Recent observations indicate involvement of morphogen transport 
in left-right symmetry breaking (Ott et al., 2025; Lee et al., 2024) 
suggesting a complex and possibly double-secured mechanism. 
Flow-mediated transport of PKD to the left of the mouse LRO has 
been suggested to contribute to left-right symmetry breaking in the 
mouse embryo (Tanaka et al., 2023). It must be mentioned that 
further, earlier asymmetries have been observed in Xenopus and 
mechanisms based on these have been discussed (Onjiko et al., 2021; 
Onjiko et al., 2016; Vandenberg and Levin, 2013), which still have to 
be integrated into the existing models.

There is another way

Leftward flow has been suggested to be required for directed 
LR symmetry breaking in many vertebrate models (Blum and 
Ott, 2018; Hamada, 2020; Blum et al., 2014) and is one of the 
most fascinating observations in developmental biology. However, 
structural elements required for leftward flow are absent in several 
model organisms. Structural units required for ciliary flow were not 
detected in chick and pig embryos where the ventral surface of axial 
mesoderm was shown to be covered by endoderm and subchordal 
mesoderm (Manner, 2001; Gros et al., 2009) while analysed
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FIGURE 1
Left-Right-Organizer and Symmetry breaking in Xenopus (A) and Mouse (B). (A,B) morphology, (C) important steps of two-cilia model, (D) proposed 
transport of morphogens. Clockwise rotation of monocilia in the midline of gastrocoel roof plate (A) or posterior notochord (B) creates leftward flow 
which causes deflection of sensory cilia formed by superficial somitic progenitor cells. Deflection mediates Calcium transients (red stars) and further 
processes leading to left-sided nodal activation in the paraxial and later in the lateral plate mesoderm (C). Yellow: endoderm, grey: ectoderm, red: axial 
mesoderm, dark blue: superficial somitic mesoderm, blue: deep somitic mesoderm, LPM: lateral plate mesoderm. PKD localization (green) in the 
medial (dorsal) segment in mouse immotile cilia (B) ensures left-sided activation despite the deflection of the right-sided sensory cilia to the left 
(dashed arrows at the right side of the LRO). 

non-avian reptilian do not form motile cilia (Kajikawa et al., 2020; 
Shylo et al., 2023). Furthermore, in the chick, the first signs of 
left-right asymmetry occur at late gastrula stage and include the 
morphological asymmetry of the node and asymmetric leftward cell 
movements around the node (Dathe et al., 2002; Cui et al., 2009). 
These observations also match the asymmetric gene expression in 
the chick node prior to asymmetry of nodal expression in the lateral 
plate mesoderm: sonic hedgehog morphogen (shh) was shown to 
be expressed asymmetrically in the node of notochord stage (stage 
5) chick embryo (Levin et al., 1995; Pagan-Westphal and Tabin, 
1998) while this asymmetry was suggested to cause left-sided nodal
expression at somitogenesis stages. Further analysis of chicken node 
suggested asymmetrical morphology of the node itself prior to 
asymmetric gene expression (Dathe et al., 2002).

We suggest that the chick primitive node plays the role 
of the LRO. In the following we explain the corresponding 
developmental context.

This is the way (of the chicken)

Gastrulation in the chick starts with the formation of the 
primitive streak in the posterior area of circle-shaped bilayered 

embryonic disc (stage 1). Cell intercalation in the posterior 
epiblast has been suggested as a cellular mechanism of primitive 
streak formation. Intercalation was shown to be PCP-dependent 
(Voiculescu et al., 2007) and/or be based on Myosin-II based 
contractions of epiblast cell groups (Rozbicki et al., 2015). Cell 
division in the anterior pole of the embryo accounts for the 
tissue fluidity that is necessary for primitive streak formation 
(Firmino et al., 2016) while the tensile ring at the margin of 
the area pellucida is required for tissue flow during primitive 
streak formation (Saadaoui et al., 2020). Primitive streak undergoes 
elongation which is accompanied by bilateral flow of cells of 
dorsal (epiblast) layer towards the streak. The node which gives 
rise to the axial mesoderm emerges at the anterior tip of the 
streak and starts to form the prechordal mesoderm (Stern and 
Stern, 2004). The maximum of elongation of the primitive streak is 
followed by the beginning of notochord formation and concomitant 
shortening of the streak also referred to as streak regression. 
Global cell movements towards the emerging streak reveal left-right 
asymmetry, even if the functional significance of this asymmetry 
remains to be tested (Asai et al., 2025). The first morphological 
asymmetry arises in the node at the beginning of notochord 
formation: dorsal views reveal that the right edge of the node 
is thicker than the left edge while sections demonstrate that this 

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1672263
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Pieper and Tsikolia 10.3389/fcell.2025.1672263

FIGURE 2
(A–C) model of molecular left-right patterning of early axial asymmetry in the chick (stage 5-). (A,B) dorsal views embryos prior (stage 4) and after the 
beginning (stage 5-) of notochord formation. (C,D) schematic sections through anterior and posterior notochord. (E) succession of events. 
Yellow–endoderm/hypoblast, pink–notochord, grey–epiblast, green–prospective floor plate with shh domain, dark blue–parachordal nodal domain, 
blue–parachordal mesoderm, rose–primitive streak with primitive groove, violet–subchordal mesoderm, dashed arrow–node translocation during 
regression, continuous arrow–nodal induction.

difference is due to mesodermal density at the right side below 
the epithelial epiblast (Tsikolia et al., 2012). Asymmetric position 
of density is already detectable prior to the emergence of the 
notochord. Emergence of the asymmetric notochord is preceded 
by asymmetrical counterclockwise cell movements within the node 
(cf. Supplementary Figure). It was suggested that the progressive 
asymmetry of sonic hedgehog expression is due to displacement of 
shh domain to the left-side while pharmacological evidence indicates 
that node rotation requires actomyosin contractility and activity 
of ATP4a proton pump (Gros et al., 2009). Moreover, N-Cadherin 
is involved in termination of node rotation (Mendes et al., 2014). 
Further analysis however, revealed, that paraxial asymmetrical 
expression of nodal is initiated at the beginning of notochord 
formation while shh is still expressed at both sides of the node 
(Tsikolia et al., 2012) hence indicating that nodal asymmetry is 
not a direct effect of node and shh domain rotation. Asymmetry 
of the node and asymmetric shh expression increase concomitant 
with node regression during stages 5 and 6. Surprisingly shh-
expression at these stages is confined to the epiblast of the left 
node shoulder, to the floor plate, to the prechordal mesoderm 
but not to the posterior notochord (Kremnyov et al., 2018) 
challenging the widely assumed induction of floor plate by the 
notochord.

Morphological analysis of the node and notochord reveals the 
continuity of the notochord with the right node shoulder. Assuming 
that notochord progenitor cells are generated within the node 
this continuity suggests an asymmetrical notochord formation. 
This proposal is supported by analysis of notochordal marker 
expression particularly noggin (Otto et al., 2014) and brachyury. 
The origin of the notochord from the right side of the node 
results in positioning of the shh expressing floor plate to the 
left of the notochord and immediately above the paraxial nodal
expressing area. This spatial proximity suggests a local induction 
of the paraxial nodal domain by hedgehog signaling activated by 
shh ligand secreted from the floor plate. Indeed, the inhibition of 

hedgehog signaling leads to an absent paraxial nodal expression 
(Otto et al., 2014) while ectopic hedgehog activation (Negretti et al., 
2022) causes bilateral nodal expression. This data strongly suggests 
that secreted hedgehog is both necessary and sufficient for paraxial 
nodal induction in the chick while the asymmetry of nodal is due 
to asymmetry of the notochord formation (Figure 2). Interestingly, 
prior to asymmetric morphogenesis the node revealed matrix-filled 
spaces which may be involved in regulation of molecular activity
(Pieper et al., 2020).

Cytoskeleton: hidden egg?

What are the mechanisms leading to the asymmetric 
morphogenesis of the avian node? Leftward rotation of the node is 
a robust morphogenetic event and indicates intrinsic tissue chirality 
which in turn has been suggested to have roots in the cytoskeletal 
organisation particularly in chiral features of the cytoskeletal 
constituents such as microtubules or actin (Wan and Vunjak-
Novakovic, 2011; Xu et al., 2007; Yamanaka and Kondo, 2015). 
Indeed, cytoskeletal asymmetries were shown to be involved in left-
right symmetry breaking during development of C. elegans which 
reveals chiral cortical flow related to contractility of actomyosin 
(Naganathan et al., 2014) and regulated by RhoA and Cyk1/Formin 
(Middelkoop et al., 2021; Pimpale et al., 2020). Chiral development 
of snails is also controlled by formins dia1 and dia2 (Abe and 
Kuroda, 2019) which regulate actin nucleation and polymerisation 
while further actin nucleator DAAM (Chougule et al., 2020) 
together with unconventional myosin ID (Myo1D) are involved 
in left-right asymmetry in Drosophila melanogaster (Coutelis et al., 
2008; Speder et al., 2006). Similar to other members of Myosin I 
family, Myosin ID was shown to link actin with membrane lipids 
(McAlpine et al., 2018) and it has been suggested that the role of 
Myosin ID as a chiral determinant is due to its chiral interaction 
with actin (Juan et al., 2018).
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What's next?

It has been proposed that cellular-scale chirality arises 
from chiral structures by interaction within “chirality modules” 
particularly between actin filaments and formin dimers, whereas 
the understanding of transition to tissue chirality remains 
challenging (Tsikolia et al., 2025).

How does the cellular chirality contribute to left-right symmetry 
breaking in the chick? At elongated streak stage only the node 
tissue displays chiral behaviour which manifests itself during a short 
period of time. This indicates that the supracellular manifestation 
of chirality is a subject of regulation. The node which is equivalent 
of Spemann’s organizer (Stern and Stern, 2004) undergoes different 
stages: it emerges in the area expressing organizer genes, contributes 
to the prechordal mesoderm, endoderm, medial paraxial and 
axial mesoderm. Node rotation takes place after migration of the 
prechordal mesoderm and clustering of axial mesoderm progenitors 
in the node mesoderm (Tsikolia et al., 2012). These events may 
stimulate activation of tissue chirality in the node area. Whether 
this activation is due to specific molecular pathway or structural 
constraint has to be investigated in the next step.
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SUPPLEMENTARY FIGURE 
Asymmetrical node morphogenesis in the chick embryo (A–C) scanning electron 
microscopy of the node prior to notochord formation (stage 4: A,B) and at the 
early notochord stage (stage 5, C,D) embryos. (B) schematic view of 
asymmetrical node (green) displacement (as reported by Gros et al., 2009 and 
Cui et al., 2009), (C)– emergence of thicker right node shoulder (rs). (D) floor 
plate (green) and notochord (red) domains indicated at the surface. A modified 
from Figure 1F (Tsikolia et al., 2012) with permission.
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