
 

TYPE Original Research
PUBLISHED 07 October 2025
DOI 10.3389/fcell.2025.1672521

OPEN ACCESS

EDITED BY

Venkaiah Betapudi,
United States Department of Health and 
Human Services, United States

REVIEWED BY

Royana Singh,
Banaras Hindu University, India
Tao Zhang,
Shaoxing Maternity and Child HealthCare 
Center, China

*CORRESPONDENCE

Xin Zhou,
 drzhouxin@163.com

†These authors have contributed equally 

to this work

RECEIVED 24 July 2025
ACCEPTED 16 September 2025
PUBLISHED 07 October 2025

CITATION

Li J, Hu X, Pan C, Liu Q, Zhang S, Zhang C and 
Zhou X (2025) Identification and validation of 
lactate-related gene signatures in 
endometriosis for clinical evaluation and 
immune characterization by WGCNA and 
machine learning.
Front. Cell Dev. Biol. 13:1672521.
doi: 10.3389/fcell.2025.1672521

COPYRIGHT

© 2025 Li, Hu, Pan, Liu, Zhang, Zhang and 
Zhou. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

Identification and validation of 
lactate-related gene signatures 
in endometriosis for clinical 
evaluation and immune 
characterization by WGCNA and 
machine learning

Jixin Li† , Xinya Hu† , Caiyi Pan, Qing Liu, Siyang Zhang, 
Chiyuan Zhang and Xin Zhou*

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 
Liaoning, China

Background: Endometriosis is a common benign gynecologic disease in women 
of reproductive age, and its manifestations remarkably decrease quality of 
life. Lactate, as a metabolite, exerts prominent effects across a wide range of 
biological processes. The objective of this research is to explore the clinical 
value and immune features of lactate-related genes in endometriosis and 
contribute novel strategies for guiding the clinical management of patients with 
endometriosis.
Methods: We first conducted a differential expression analysis to identify the 
differentially expressed genes (DEGs) in the training set. By integrating the 
critical module genes from weighted gene co-expression network analysis 
(WGCNA) and lactate-related genes (LRGs), we preliminarily screened lactate-
related differentially expressed genes (LR-DEGs). Machine learning algorithms, 
single-cell datasets, and clinical samples were used to further identify and 
validate core LR-DEGs. Subsequently, we evaluated the diagnostic value of the 
model constructed from core LR-DEGs for endometriosis and explored the 
biological functions of these genes. Additionally, we conducted immune-related 
analysis in endometriosis and identified small molecule compounds targeting 
core LR-DEGs.
Results: In this study, 22 candidate genes were identified by intersecting 
2,318 DEGs and 2,177 key module genes with 357 LRGs. This list was 
further refined using three machine learning algorithms, resulting in three 
primary lactate-related biomarkers: BPGM, DHFR, and SLC25A13. A nomogram 
model constructed from core LR-DEGs demonstrated outstanding diagnostic 
performance in identifying patients with endometriosis. Immune-related 
analysis revealed significant associations between hub LR-DEGs and cellular 
immune dysregulation in endometriosis. Additionally, a gene–small molecule 
compound regulatory network was established to guide potential treatment 
strategies.
Conclusion: Taken together, our study established a robust relationship between 
lactate metabolism-related genes and endometriosis, with the model promising 
to enable the early diagnosis of endometriosis, contribute to the excavation of
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the immune molecular mechanisms of endometriosis, and support the discovery 
of potential targets for therapy in the metabolism of endometriosis.

KEYWORDS

endometriosis, lactate-related gene, diagnostic model, immune diversity, clinical 
management 

1 Introduction

Endometriosis is a common chronic inflammatory 
gynecological disease affecting approximately 5%–10% of all 
reproductive women worldwide and is characterized by the 
development of endometrial-like tissue outside of the uterus, which 
can induce symptoms such as chronic pelvic pain, dysmenorrhea, 
dyspareunia, and infertility in patients (Taylor et al., 2021; 
Zondervan et al., 2020). Currently, in the absence of clinical 
diagnostic markers capable of detecting or excluding endometriosis, 
laparoscopy, an invasive procedure, remains the gold standard for its 
identification. This limitation often leads to frequent misdiagnosis 
and substantially delayed diagnosis, sometimes by several years 
(Allaire et al., 2023; Becker et al., 2022). In addition, the lateness 
of such clinical diagnoses turns the practical management of 
endometriosis patients into the most challenging stage of medical 
advancement. In the present phase, the treatment of endometriosis 
is primarily focused on hormonal pharmacotherapy and operative 
therapies; although medication can partially alleviate patients’ pain, 
the duration of relief is limited, and the unavoidable side effects of 
drug administration make it intolerable for some patients. Surgery 
can also mitigate symptoms to some extent; however, it may alter the 
normal pelvic anatomical structure and promote pelvic adhesions, 
which have a certain impact on patients’ reproductive outcomes 
(Zondervan et al., 2020; Allaire et al., 2023; Marquardt et al., 2023). 
Moreover, approximately 50% of endometriosis patients will have 
a recurrence of the condition within 5 years, irrespective of the 
management options (Becker et al., 2017).

It is a fundamental characteristic of a cell that practically all 
biological activities necessitate the adjustment of its metabolic 
requirements in response to the alterations in the microenvironment 
(Lu et al., 2023). Glucose metabolism is the primary pathway 
for cellular energy production, comprising two major processes: 
glycolysis and oxidative phosphorylation. The Warburg effect refers 
to reprogramming of glycolytic metabolism, in which a cell, despite 
the availability of adequate oxygen, prefers the generation of lactate 
rather than utilizing the oxidative phosphorylation of glucose in 
the mitochondria to meet its energy requirements(Mao et al., 
2022; Pavlova and Thompson, 2016). It has been demonstrated 
that this metabolic reprogramming procedure exists in patients 
with endometriosis in general, among whom such increased levels 
of glycolysis are closely associated with the development and 
advancement of endometriosis (Kasvandik et al., 2016; Lu et al., 
2022). Concomitantly, there is a remarkable accumulation of lactate 
as a by-product of glycolysis in the peritoneal fluid of individuals 
with endometriosis, whereby it constitutes an environment that 
stimulates the migration and invasion of ectopic endometrial cells 
into the peritoneum and assists in the immunological escape 
that culminates in the formation of the endometriotic lesion 
(Young et al., 2014; Horne et al., 2019; Lefebvre et al., 2024). 

The concept of lactylation was first introduced in an article in 
the journal Nature, in which the term describes an epigenetic 
modification of lysine residues in histone proteins derived from 
lactate, which can directly participate in chromatin regulation for 
gene transcription (Zhang et al., 2019). Afterward, several studies 
have continuously expanded the understanding of lactylation and 
gradually unraveled its underlying mechanisms, demonstrating that 
lactylation not only regulates gene transcription by modifying 
histone proteins but also affects non-histone proteins, thereby 
governing a wide range of cellular processes, encompassing 
gene transcription, enzyme activity, protein stability, subcellular 
localization, protein interactions, and other post-translational 
modifications (Xu et al., 2025).

In light of the characteristics of endometriosis, especially its 
diagnostic challenges, treatment difficulties, and high recurrence 
rate, and considering the role of lactylation in cellular processes, 
we comprehensively explore the potential of lactate-related genes 
(LRGs) as biomarkers for endometriosis. We are committed to 
establishing a lactate-related gene diagnostic model to assist in the 
early diagnosis of endometriosis, while striving to elucidate the novel 
mechanisms of the disease from an immune microenvironment 
perspective and laying the foundation for achieving precision-
targeted therapy for endometriosis. 

2 Materials and methods

2.1 Data acquisition and processing

From the Gene Expression Omnibus database (GEO database, 
http://www.ncbi.nlm.nih.gov/geo/, accessed on 3 January 2025), 
clinical information and RNA expression data were retrieved from 
the endometriosis dataset GSE51981 (platform GPL570), which 
includes 77 clinical cases and 71 controls, and it was utilized as a 
training set due to its large sample size, which can present a robust 
substrate for model construction. Meanwhile, we searched two 
additional datasets for validation, namely, GSE7305 and GSE7307 
(both from the platform GPL570), where the GSE7305 dataset 
consists of 10 endometriosis samples and 10 negative controls, 
while the GSE7307 dataset comprises 18 individual patients and 23 
control cases. We merged and corrected the two aforementioned 
datasets using the “SVA” software package in an effort to create 
a unified dataset for the subsequent validation. Apart from that, 
the single-cell dataset GSE 213216 was screened for validation 
at the single-cell level, and two normal specimens and five 
ectopic endometrial samples from this dataset were selected for 
the subsequent analysis. From the Molecular Signatures Database 
(http://www.gsea-msigdb.org/gsea/index.jsp, accessed on 2 January 
2025), we acquired a total of eight lactate-related gene sets and 
identified a total of 357 LRGs by eliminating duplicates. 
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2.2 Analysis of differentially expressed 
genes

To acquire differentially expressed genes (DEGs) 
between endometriosis and negative controls, we performed 
differential expression analysis using the “limma” R package 
(version 3.60.6) (Ritchie et al., 2015). The significance thresholds 
were set as adjusted p-value <0.05 and |log2 fold change (FC)| ≥ 
0.5. The volcano plots plotted by the R package “ggplot2” (version 
3.5.1) were utilized to visualize the results of the difference analysis. 
Afterward, boxplots were generated using the R package described 
above to visually represent the top 10 highly expressed genes and 
the least expressed genes. 

2.3 Weighted gene co-expression network 
analysis

Weighted gene co-expression network analysis (WGCNA) is 
a systems biology approach used to identify co-expressed gene 
modules of high biological significance and examine correlations 
between gene networks and clinical features using the package 
“WGCNA” (version 1.73) (Langfelder and Horvath, 2008). The 
WGCNA package was used to analyze the training set based on 
disease severity characteristics. First, the top 25% of genes with 
the greatest variance were separated, and the Pearson correlation 
coefficients were computed to establish the adjacency matrix. This 
matrix employed a soft threshold power of 10 to ensure connection 
strengths aligned with the characteristics of a scale-free network. 
Then, the matrix was transferred into a topological overlap matrix 
(TOM) for a more comprehensive measure of similarity between 
the two genes, followed by the dynamic tree-cutting method to 
classify the modules, each of which contained a minimum of 30 
genes, and the dynamic hybrid merging process to integrate the 
similar modules with a threshold of 0.25. Subsequently, modules 
were associated with clinical features by calculating gene significance 
(GS) and module correlation (MM), and ultimately, Pearson 
correlation coefficients were measured between combined modules 
and endometriosis, with the most strongly correlated module being 
considered the critical module to be selected for follow-up analysis. 

2.4 Acquisition of lactate-related 
differentially expressed genes

To identify lactate-related differentially expressed genes (LR-
DEGs) involved in endometriosis, we intersected the key module 
genes from WGCNA, DEGs, and LRGs. The results are visualized 
as a Venn diagram using the “ggvenn” package. 

2.5 Functional enrichment analysis

Gene Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis are 
extensively available bioinformatics approaches, which are designed 
to systematically delineate the biological functions and pathways of 
genes. GO analysis annotates genes in terms of biological processes 

(BPs), cellular components (CCs), and molecular functions (MFs). 
Furthermore, KEGG pathway enrichment analysis is crucial for 
deriving the biological significance of transcriptome data. GO 
enrichment and KEGG pathway analyses of the target gene clusters 
were performed using the “clusterProfiler” toolkit (version 4.12.6), 
with statistical significance at p. adjust <0.05, and the appropriate 
R packages were utilized to visualize the meaningful results of GO 
and KEGG. Subsequently, the online website GeneMANIA (https://
genemania.org) was used to demonstrate the protein interaction 
network of the core lactate-related genes and to construct a co-
expression interaction network of these proteins. 

2.6 Screening hub biomarkers using 
machine learning

To further optimize the identification of hub biomarkers, three 
machine learning algorithms were implemented for selecting the 
most representative and relevant target genes from the candidate 
genes. The least absolute shrinkage and selection operator (LASSO) 
logistic regression analysis was performed using the “glmnet” 
package, and non-essential genes were removed from the model 
by applying L1 regularization, which compresses the weights of 
unimportant genes to 0 (Simon et al., 2011). The support vector 
machine recursive feature elimination (SVM-RFE) is based on the 
SVM model for feature selection, and the significance of the features 
is ranked using the RFE model in an iterative manner (Sanz et al., 
2018). The unimportant features are recursively eliminated to find 
the optimal subset of features using the “e1071” software package. 
In addition, the two aforementioned algorithms underwent 5-fold 
cross-validation, a resampling procedure (randomly dividing the 
data into five similar sizes, training with four subsets, validating with 
one subset, and repeating the process five times), and were used to 
evaluate the machine learning models for ensuring the stability and 
accuracy of the selected genes in different data groupings (Yang et al., 
2023; Jiao et al., 2024). The random forest (RF) is a randomization 
algorithm that integrates multiple decision trees to significantly 
improve prediction performance, and the “randomForest” package 
was used to construct a random forest model, where the importance 
of each variable was evaluated to further select the top 10 
variables (Degenhardt et al., 2019). Subsequently, the Venn diagram 
defined the key genes based on the overlap of the three machine 
learning results. 

2.7 Evaluation and validation of essential 
genes

To evaluate the diagnostic efficacy of core targets and the 
nomogram, we utilized the “pROC” software package to calculate 
the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curves, where values >0.6 indicate superior 
diagnostic performance. To assess the completeness of the validation 
dataset, the packages “FactoMineR” and “factoextra” were utilized to 
perform principal component analysis (PCA), and PCA plots were 
drawn to visualize the batch results. Subsequently, the expression 
levels of candidate genes in both the control and disease groups of 
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the verification set were also determined and compared using a t-
test between the two groups (p < 0.05) and illustrated in boxplots 
utilizing the “ggplot2” software package. 

2.8 Single-cell database and gene 
expression analysis

To identify the expression patterns of core genes and the cell-
communication landscape at the cellular level, we analyzed the 
single-cell dataset GSE 213216. The Seurat R package (version 
4.3.0) was used for single-cell analysis. After performing quality 
control, we used the NormalizeData function to normalize the gene 
expression matrix. The Harmony method was applied to integrate 
data from different samples and mitigate batch effects. Based on 
the marker genes, all cells in the seven samples were classified into 
seven cell types. The DimPlot function was used to visualize the 
cells according to their cell types in the t-distributed stochastic 
neighbor embedding (tSNE) space, and the VlnPlot function was 
used to display the expression patterns of genes across different cell 
types. The CellChat R package (version 1.6.1) was used to infer 
cell communication roles and establish communication patterns 
between the cells. 

2.9 Construction of the predictive 
nomogram

A nomogram is a widely used data visualization tool in medical 
research for predicting the occurrence of clinical events on an 
individual basis. To forecast the risk of endometriosis, a nomogram 
comprising specific key genes was derived and mapped using the 
“rms” package, where each variable is attributed a respective score 
in a nomogram scoring system, and the aggregate of the individual 
scores for all the genes per patient represents the total score, 
which is computed to estimate the endometriosis risk for patients. 
Moreover, decision curve analysis (DCA) was utilized to evaluate the 
clinical utility of the nomogram model, along with the generation of 
calibration profiles and ROC curves to assess the predictive accuracy 
of the model (Ngiam and Khor, 2019). 

2.10 Gene correlation analysis

Gene correlation analysis is a critical bioinformatics technique 
for estimating the correlation of gene expression patterns, 
which reveals the underlying functional linkages or regulatory 
relationships among the genes. In order to detect the expression 
connections among the three critical genes, the Pearson correlation 
analysis was carried out using the “correlation” R package, followed 
by visualization using the “ggplot2” R package. 

2.11 Gene set enrichment analysis

To explore the regulatory pathways and biological attributes 
in which the hub genes were likely to be implicated, a single 
gene set enrichment analysis of the shortlisted key genes subjected 

to different expression conditions was carried out using the 
“clusterProfiler” package (version 4.12.6), setting the threshold 
at p. adjust <0.05 (Mootha et al., 2003). Subsequently, the first 
five significantly enriched KEGG pathways were selected for 
visualization. 

2.12 Consensus clustering analysis

Consensus clustering is an integrated method of identifying 
stable and credible aggregates from multiple clustering outputs 
(Zhang and Dai, 2024). To determine stable molecular subtypes 
and evaluate the robustness of the clusters, a consensus clustering 
analysis was carried out on the clinical samples within the training 
set using the R package ConsensusClusterPlus (version 1.68.0). For 
stability and reliability of the clustering results, 1,000 iterations were 
executed to produce a massive sub-dataset, and each of them was 
clustered using the “k-means” algorithm in accordance with the 
80% resampling ratio to constitute a consensus matrix (Wilkerson 
and Hayes, 2010). Finally, the optimum clustering number was set 
to K = 2, in accordance with the cumulative distribution function 
(CDF) curve of the matrix, and the outcomes were presented using 
heatmaps, CDF plots, and incremental area plots. 

2.13 Immune cell and immune function 
analysis

CIBERSORT (https://cibersort.stanford.edu/) is a pioneering 
bioinformatics tool for predicting the comparative abundance of 
various immune cell types among samples based on the gene 
expression data using a deconvolution algorithm (Newman et al., 
2015). Using “CIBERSORT” (version 0.1.0), samples from both 
sub-clusters were subjected to immune infiltration analysis, which 
quantified the relevant abundance of 22 immune cell types in 
the context of endometriosis. This was followed by a comparison 
of immune cell infiltration levels between the two sub-clusters, 
with the results visualized graphically using boxplots generated 
by “ggplot2.” Subsequently, the “estimation” package was utilized 
to summarize, calculate, and compare the immune, stromal, and 
ESTIMATE scores between the two subgroups, and the respective 
boxplots were generated to present the outcomes more clearly 
(Yoshihara et al., 2013). The single-sample gene set enrichment 
analysis (ssGSEA) algorithm was used to parse 13 immune 
functions for immune correlation analysis, while related boxplots 
and heatmaps were produced using the “ggplot2” and “pheatmap” 
packages, respectively, to demonstrate the infiltration differences 
of the immune functions (Bindea et al., 2013). Simultaneously, 
28 immune cells and three signature genes were subjected to 
Pearson correlation analysis to elucidate their relationships using the 
abovementioned package, and the outcomes were visualized using 
the mapping package (Jiang et al., 2021). 

2.14 Organizing the core gene regulatory 
networks

NetworkAnalyst (https://www.networkanalyst.ca/Network
Analyst/) is a comprehensive biological network analysis and 
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visualization platform containing a large number of databases for 
analyzing and understanding bionetworks (Lei et al., 2025). Data on 
miRNAs and transcription factor regulators were extracted from 
the online websites for the upstream prediction of core DEGs. 
Afterward, the candidate gene regulatory networks were optimally 
visualized within Cytoscape software. To discover potential 
therapeutic targets for endometriosis, CTD (http://ctdbase.org/) 
was used to predict small-molecule drugs directed against candidate 
genes, based on which a network of gene–drugs was developed for 
treatment applications. 

2.15 RNA isolation and quantitative reverse 
transcriptase PCR

The methodology for this section was as described in our 
previous article; in brief, total tissue and cellular RNA were extracted 
from the control and endometriosis groups, followed by cDNA 
synthesis and qRT-PCR analysis in accordance with the provided 
instructions (Li et al., 2023). Likewise, actin was selected as the 
internal reference gene, and the data were analyzed utilizing the 
2−ΔΔCt method. The primer sequences of the related genes are 
presented in Supplementary Table S1. 

2.16 Isolation, culture, and characterization 
of endometrial stromal cells

As previously reported in our study, fresh tissues were obtained 
from the operating room, transferred to the laboratory as soon as 
possible, washed with PBS, digested with type IV collagenase, and 
sieved to obtain normal endometrial stromal cells (NESCs) and 
ectopic endometrial stromal cells (EESCs), which were subsequently 
cultured in an incubator at 37 °C and 5% CO2. The cells were then 
identified by immunofluorescence, with vimentin used as a positive 
marker for stromal cells and E-cadherin serving as a negative control 
for epithelial cells. 

2.17 Statistical analysis

Statistical analyses in this study were primarily performed using 
R software(version 4.3.1) and the associated R packages, and p-
values <0.05 were considered statistically significant, with the degree 
of significance indicated as follows: ∗ if p < 0.05, ∗∗ if p < 0.01, 
and ∗∗∗ if p < 0.001. 

3 Results

3.1 Screening of common DEGs and 
analysis of functional roles

A flow diagram of the entire research is shown in Figure 1. 
Initially, as per the adjusted p-value <0.05 and |log2 fold change (FC)|
≥0.5, a total of 2,318 DEGs between the endometriosis group and the 
control group were identified from the dataset GSE51981, wherein 
591 were upregulated genes and 1,727 were downregulated genes, 

as displayed in volcano plots (Figure 2A). Subsequently, boxplots 
illustrated the expression profiles of the top 10 up- and downregulated 
genes (Figures 2B, C). After that, these DEGs were subjected to GO 
and KEGG enrichment analyses to further investigate their associated 
biological functions and pathways. The GO analyses revealed that a 
high percentage of genes were involved in the biological processes 
of “RNA splicing,” “establishment of protein localization to organelle,” 
“ncRNA processing,” and “proteasome-mediated ubiquitin-dependent 
protein catabolic process.” With respect to the cellular component, 
such genes were mostly associated with the “nuclear envelope,” 
“early endosome,” and “nuclear speck.” The molecular functions in 
which DEGs were significantly enriched included “ubiquitin-like 
protein transferase activity,” “GTPase binding,” and “DNA-dependent 
catalytic activity” (Figure 2D). It was observed in KEGG analysis 
that a significant enrichment of the genes under research was 
found in several enrichment pathways, namely, “Alzheimer’s disease,” 
“endocytosis,” and “nucleocytoplasmic transport” (Figure 2E). These 
findings indicated that the DEGs in individuals with endometriosis are 
mainly involved in gene expression processes, transport procedures, 
and energy metabolism-related activities. 

3.2 Implementation of WGCNA to acquire 
essential module genes

In an effort to further recognize the gene modules most 
associated with the clinical characterization of endometriosis, 
WGCNA was executed on the dataset GSE51981. The sample 
clustering was revealed to be solid, which implies that no outlier 
cases were excluded in the subsequent analysis (Figure 3A). Then, 
the outcomes of the scale-free connectivity index and average 
connectivity analysis show that when the soft threshold β = 10, 
the unscaled fit index increases, with the signed R2 approaching 
the crucial level of 0.9, and the average connectivity tapers to 0, 
at which point the network approximates a scale-free distribution 
(Figures 3B, C). Based on the optimal soft threshold, the correlation 
matrix was converted to an adjacency matrix, followed by the TOM 
to detect the gene modules relevant to the severity of endometriosis 
for subsequent module delineation. After that, the dynamic tree-
cutting method was applied to categorize the modules and merge 
the similar ones, resulting in 12 different modules (Figure 3D). 
Out of these, the turquoise-colored module exhibited the most 
significant correlation with endometriosis severity (r = 0.72, p = 
1e-18) (Figure 3E). Accordingly, 2,177 genes in the module were 
identified as critical module genes for further analysis (Figure 3F). 
Taken together, these findings provide valuable insights into gene 
expression changes associated with endometriosis and highlight 
the relevance of the ME turquoise-colored module with respect to 
disease severity.

3.3 Identification and functional 
enrichment analysis of lactate-related 
DEGs

Overlapping the 2,318 common DEGs, 2,177 key module 
genes, and 357 lactate-related genes in endometriosis mentioned 
above, 22 lactate-related differentially expressed genes were obtained 
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FIGURE 1
Flowchart of the elaborative study.

(Figure 4A). To explore the functional effects of these 22 LR-DEGs 
in the context of the studied condition, they were subjected to 
further GO and KEGG enrichment analyses. The findings of the 

GO analysis revealed that these LR-DEGs were mainly engaged 
in the ribose phosphate metabolic process, purine ribonucleotide 
metabolic process, and ribonucleotide metabolic process, and they 
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FIGURE 2
Identification and profiling of DEGs in endometriosis. (A) Volcano diagram of differentially expressed genes in GSE51981. (B, C) Boxplots illustrating the 
expression of the top 10 up- and downregulated genes in GSE51981. (D) Bubble plots of the first 10 BPs, CCs, and MFs in GO enrichment analysis. (E)
Results of KEGG analysis for DEGs in the bar plot (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001).

were apparently localized in the mitochondrial matrix (Figure 4B). 
Nucleotide metabolism, purine metabolism, and biosynthesis of 
cofactors were the significantly enriched pathways with important 
roles, as detected through KEGG analysis (Figure 4C). Additionally, 
the protein–protein interaction relationships of such LR-DEGs 
indicated that they can share “CLPX,” “IMMT,” and “LRPPRC” with 
more comprehensive protein interactions, which may be critical 
in biological processes (Figure 4D). All of the aforementioned 
results suggested that the LR-DEGs were intimately associated 
with energy metabolism activities and, remarkably, highlighted 

the influence of lactate-related elements on the progression of
endometriosis.

3.4 Characterization of core 
lactate-related DEGs by machine learning

Aiming to further identify key genes with greater clinical 
significance, 22 LR-DEGs were assessed and analyzed utilizing three 
machine learning algorithms, namely, LASSO, SVM-RFE, and RF. At 
first, they were screened using the SVM algorithm, which revealed 
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FIGURE 3
WGCNA for the critical modules associated with endometriosis. (A) Dendrogram and heatmap displaying the hierarchical clustering results of 148 
samples. (B, C) Scale-free connectivity index and average connectivity analysis outcomes under different soft thresholds. (D) Gene cluster dendrogram 
and network heatmap for endometriosis by dynamic tree-cut algorithm. (E) Heatmap illustrating the correlation between modules and clinical traits, 
where the turquoise-colored module was strongly correlated with endometriosis severity (p < 0.05). (F) The scatterplot for the turquoise-colored 
module displays the relationship between module membership and gene significance (p < 0.05).

that the root mean square error (RMSE) reached the lowest value 
when collecting a total of 13 genes, which were maintained as the 
critical genes (Figures 5A, B). Later on, using the RF model, the first 
10 genes on the importance scale were prioritized (Figures 5C, D). In 
addition, with the application of the fivefold cross-validated LASSO 
regression algorithm, the top 10 characterized genes were appraised 
(Figures 5E, F). Eventually, by crossing over the results of these three 
algorithms, four core LR-DEGs were determined, which are BPGM, 
DHFR, SLC25A13, and FASTKD2 (Figure 5G).

3.5 Evaluation and verification of crucial 
LR-DEGs in the relevant data

To further evaluate the diagnostic precision of BPGM, DHFR, 
SLC25A13, and FASTKD2, the four candidate genes were subjected 
to ROC analysis, and the results indicated that BPGM (AUC = 
0.678), DHFR (AUC = 0.737), and SLC25A13 (AUC = 0.721) 
demonstrated satisfactory diagnostic performances (Figures 6A–C). 
On account of the poor diagnostic accuracy of FASTKD2 (AUC 
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FIGURE 4
Characterization and functional analysis of LR-DEGs related to endometriosis. (A) Venn diagram revealing intersected DEGs, key modular genes, and 
LRGs to obtain 22 LR-DEGs. (B) Bar graphs for GO analysis of LR-DEGs (p.adjust <0.05). (C) Bubble plots showing the results of KEGG analysis of 
LR-DEGs (p.adjust <0.05). (D) PPI network of mutual interactions across 22 LR-DEGs.
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FIGURE 5
Machine learning for screening of lactate-related biomarkers in endometriosis. (A, B) Curve of change in the predicted accuracy and error value in the 
SVM-RFE algorithm (p < 0.05). (C) Correlation between the total number of trees and the error rate based on the random forest algorithm (p < 0.05). (D)
Top 10 genes in ranking the relative importance scores in RF. (E, F) LASSO regression algorithm to extract key LR-DEGs (p < 0.05). (G) Venn diagram 
showing the four key LR-DEGs identified by the intersection of the three machine learning algorithms.

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1672521
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1672521

FIGURE 6
Value and verification of crucial LR-DEGs in the external databases. (A–C) ROC curves for BPGM, DHFR, and SLC25A13 in GSE51981. (D–F) ROC 
analysis results of three biomarkers in the validation set. (G, H) Differences of expression levels for BPGM, DHFR, and SLC25A13 between the control 
and disease groups in the training and validation sets (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001).

<0.6) (Supplementary Figure S1), it was not considered for follow-
up examinations. Following this, we also assessed the efficacy of 
these three core genes in the identification of endometriosis in the 
validation set, and the outcomes were rigorously validated, with the 
respective AUC values of BPGM, DHFR, and SLC25A13 all being 
above 0.7, among which the maximum value of 0.854 was achieved 
for DHFR (Figures 6D–F). Afterward, the expression levels of 
the three key LR-DEGs derived from filtering in the training 
set were assayed between the endometriosis and control groups. 
In the results, BPGM, DHFR, and SLC25A13 were remarkably 
lower expressed in the disease group, with statistically significant 
differences (Figure 6G). Similarly, the expression profiles of these 
genes in the validation datasets GSE7305 and GSE7307 after 
eliminating the batch effect yielded an identical result with the same 
trend (Supplementary Figure S2; Figure 6H).

To fully confirm the accuracy of our findings, we also 
measured the expression of these three genes in terms of clinical 
samples, which, as expected, showed the aforementioned tendency 
(Figure 7A). Then, we proceeded further with the validation in 
the single-cell dataset, which was categorized into seven cell 
clusters based on the cellular classical markers, and it revealed 
that these three genes were mainly expressed in the stromal cells’ 
group; therefore, we carried out verification again at the cellular 
level (Figures 7B, C). In addition to analyzing gene expression 
profiles, we utilized the advantages of single-cell datasets to further 
evaluate interactions between cells. As shown in Figure 7D, the 
stromal cells exhibited the highest number of interactions with 
endothelial cells, while the strength of interactions between stromal 
and mast cells was the most pronounced. Subsequently, primary 
endometrial stromal cells were extracted and characterized, and 
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FIGURE 7
Validation of three hub LR-DEGs in the clinical samples. (A) Expression levels of BPGM, DHFR, and SLC25A13 validated in clinical tissues. (B)
Visualization of the different cell clusters in the UMAP. (C) Violin plot displaying the expression of three key core genes in the different cell groups. (D)
Circular diagram representing cell–cell communication, indicating the number and strength of the seven cell types interacting with each other in 
endometriosis. (E) Verification of the expression levels of BPGM, DHFR, and SLC25A13 at the cellular level (∗p < 0.05 and ∗∗p < 0.01).
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the mRNA expression of three hub genes was evaluated, showing 
that their expression trend was identical to that of the training set 
(Supplementary Figure S3; Figure 7E). Therefore, the lactate-related 
biomarkers BPGM, DHFR, and SLC25A13 were differentially 
expressed in endometriosis, and we clarified the primary cell 
types where these genes were located and the potential cell-
to-cell interactions through which these core genes function in 
endometriosis. 

3.6 GSEA and correlation analysis of hub 
genes

In an attempt to decipher the underlying biological mechanisms 
of BPGM, DHFR, and SLC25A13 in the development of 
endometriosis, the three aforementioned biomarkers were analyzed 
in single-gene GSEA. According to the GSEA assay, it was found 
that BPGM was actively involved in some biological processes, 
and the top five most significantly enriched results are shown in 
Figure 8A. They were “PROTEIN_EXPORT,” “PROTEASOME,” 
“NUCLEOTIDE_EXCISION_REPAIR,” “MISMATCH_REPAIR,” 
and “RNA_DEGRADATION.” For both DHFR and SLC25A13, 
the top five features they were enriched for were completely 
consistent, namely, MISMATCH_REPAIR, DNA_REPLICATION, 
PROTEIN_EXPORT, NUCLEOTIDE_EXCISION_REPAIR, and 
PROPANOATE_METABOLISM (Figures 8B, C). The foregoing 
findings indicated that these three biomarkers contribute to 
endometriosis progression through gene expression regulation, 
protein translocation, and propanoate metabolism. To explore the 
association of expression patterns between BPGM, DHFR, and 
SLC25A13, the correlation among them was analyzed. The results 
of gene correlation analysis demonstrated that there were high 
associations between BPGM and SLC25A13 (R = 0.77) and DHFR 
and SLC25A13 (R = 0.75), with a relatively lesser but still positive 
correlation between BPGM and DHFR (R = 0.53) (Figure 8D). It 
disclosed the synergistic roles of the three aforementioned core 
genes in cellular metabolism, proliferation, and disease genesis.

3.7 Clinical diagnostic potency of the 
lactate-related genes model

Striving to further research the relationship between the 
candidate biomarkers and the occurrence risk of endometriosis, the 
predictive nomogram containing BPGM, DHFR, and SLC25A13 
was developed based on the above results, where each gene could 
be scored individually and summed up to acquire a total predictive 
score for the possibility of endometriosis (Figure 9A). Then, we 
have applied the calibration curve and DCA to evaluate the clinical 
efficacy of the nomogram, and the calibration curve in this study 
was close to the ideal curve, indicating that the diagnostic potency 
of the model was favorable, and similarly, the DCA reached 
the same conclusion (Figures 9B, C). In addition, ROC analysis 
of three critical genes along with the prediction model in the 
training set exhibited that the AUC values of BPGM, DHFR, and 
SLC25A13 were 0.737, 0.678, and 0.721, respectively, whereas the 
nomogram model achieved the best classification property, with an 
AUC of 0.748 (Figure 9D). All these results signified that the model 

possessed superior performance in anticipating endometriosis risk, 
which can provide a valuable reference for making clinical decisions.

3.8 Establishment of lactate-related 
subtypes and differentiation of the immune 
microenvironment

To investigate the relationship between the three precious 
biomarkers and endometriosis subtypes, a consensus clustering 
analysis was carried out for all endometriosis patients. Based on 
the consensus matrix and the CDF curves, it was evident that 
the maximum internal consistency and the minimum external 
consistency between clusters were attained when k = 2 (Figure 10A; 
Supplementary Figure S4). Consequently, the total endometriosis 
samples were categorized into two subtypes, designated as model 
1 and model 2. Taking into account that immunological factors 
play crucial roles in the development of endometriosis, the immune 
landscape of endometriosis patients was further analyzed. Twenty-
two immune cell infiltrations in the two subsets were assessed 
using the CIBERSORT algorithm. The bar diagram overviewed the 
distribution of immune cells for each sample, and a subsequent 
comparative analysis of immune cell distribution between the 
two clusters revealed significant discrepancies in the proportional 
representation of various cell types between models 1 and 2 
(Figure 10B). In particular, the naive B cells, memory B cells, 
resting memory CD4+ T cells, follicular helper T cells, activated 
NK cells, M1 macrophages, M2 macrophages, activated dendritic 
cells, eosinophils, and neutrophils exhibited notably greater ratios 
in model 1 than in model 2, while in model 2 there were 
considerably increased percentages of CD8+ T cells, naive CD4+ T 
cells, activated memory CD4+ T cells, monocytes, and resting 
dendritic cells (Figure 10C). Afterward, for exploring the cellular 
interactions, the correlations between the immune cells were 
investigated, which indicated that monocytes and neutrophils had 
the strongest positive association, with activated NK cells displaying 
a prominent negative correlation with both M0 macrophages and 
regulatory T cells (Figure 10D).

In addition, the estimate algorithm was applied to evaluate 
the stromal, immune, and estimation scores for both subtypes, 
and it was observed that model 2 had higher ratings in all 
cases, while these three scores were negatively correlated with 
DHFR and SLC25A13 and positively associated with BPGM 
(Supplementary Figure S5). To further probe the differences across 
immune-related function allocation in diverse groupings, the 
ssGSEA algorithm was performed on model 1 and model 2. 
The results of immune function analysis revealed that APC co-
inhibition, HLA, MHC class I, para-inflammation, T-cell co-
inhibition, and type I IFN response were statistically distinct 
between both cohorts (Figure 11A). Furthermore, the relevance was 
investigated among various immuno-functional categories. Of these, 
the most pronounced positive correlation existed between APC co-
stimulation and CCR; meanwhile, APC co-stimulation showed the 
most negative association with T-cell co-inhibition (Figure 11B). 
Additionally, gene-function correlation analysis identified that type 
I IFN response, CCR, HLA, and APC co-stimulation were positively 
correlated with the three core biomarkers (Figure 11C). All of 
these findings suggested that the three lactate-related genes could 
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FIGURE 8
Biological function and correlation analysis of LR-DEGs. (A–C) ssGSEA analysis of the three hub genes (BPGM, DHFR, and SLC25A13) (p.adjust <0.05).
(D) Heatmap of correlations between the three biomarkers (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

contribute to the development of endometriosis through immune 
mechanisms.

3.9 Construction of regulatory networks 
and prediction for drugs targeting key 
genes

Transcription factors, miRNAs, and mRNAs interact with each 
other in sophisticated gene regulatory networks, which affect the 
biological functions of cells. Consequently, an miRNA–mRNA–TF 
regulatory network for BPGM, DHFR, and SLC25A13 was 
constructed to comprehend the mechanism of expression 
modulation and their functions in disease onset and progression. 
Notably, SP1 and HNF4A could mediate DHFR and SLC25A13 
simultaneously, with GABPA acting on both BPGM and DHFR; in 
parallel, hsa-miR-192 and hsa-miR-455-5p appeared to influence 
cell metabolism by regulating DHFR and SLC25A13 (Figure 12A). 
The linkages between drugs and core genes were further analyzed 
to recognize potential drug targets for treating endometriosis. 
Through the CTD database, this study determined three medicines 
aiming at BPGM, 11 drugs affiliated with DHFR, and two small-
molecule agents acting on SLC25A1, which involved multiple 
biological processes (Figure 12B). One of them, folic acid, a common 

form of vitamin B, potentially contributes by influencing nutrient 
metabolism.

4 Discussion

Although endometriosis is a common benign inflammatory 
gynecologic disease, it has biological properties comparable to 
those of cancer, such as invasiveness and migration, advancement of 
limited and remote lesions, and resistance to apoptosis (Zhang et al., 
2022). Up to this point, no pathogenesis has been proposed 
that can completely elaborate on the full pathological features 
of endometriosis, which has compelled several researchers to 
constantly strive to unearth the underlying mechanisms of 
endometriosis and achieve early diagnosis and curative treatment 
by addressing its root cause. Lactate acts as the intermediate of 
glycolysis, which can participate throughout the entire system 
in metabolic regulation by functioning as a signaling molecule, 
and it is an indispensable substance for a variety of physiological 
cellular functions, exerting pivotal effects in diverse aspects 
of energy metabolism and signal transduction; meanwhile, in 
pathological situations, the acid accumulation of lactate in 
tissue microenvironments represents a characteristic feature of 
inflammatory diseases and cancers (Certo et al., 2021; Li et al., 
2022; Li et al., 2025). Lactylation constitutes an imperative element 

Frontiers in Cell and Developmental Biology 14 frontiersin.org

https://doi.org/10.3389/fcell.2025.1672521
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1672521

FIGURE 9
Diagnostic performance analysis for the lactate-related genes model. (A) Constructing the nomogram incorporating BPGM, DHFR, and SLC25A13. (B, 
C) Calibration curve and DCA curves for assessing the feasibility of the nomogram model. (D) ROC analysis of the nomogram model.

of lactate function and is involved in tumor proliferation, neural 
excitability, inflammation, and other biological processes (Li et al., 
2022). However, few available research studies have concentrated on 
endometriosis, the inflammatory disease, and lactate metabolism 
relevant to it; therefore, we have focused on these two fields, 
construing the link between them and striving to investigate the 
pathological features and biological behaviors of endometriosis 
from the viewpoint of lactate metabolism.

To start with, we screened the RNA expression datasets of 
endometriosis from the GEO public databases that were appropriate 
for follow-up analyses; then, we strictly filtered those datasets 
by layers through the contemporary bioinformatics analytical 
techniques, and, in combination with the machine learning 
approaches, we ultimately developed a diagnostic model constructed 
by BPGM, DHFR, and SLC25A13. BPGM is originally recognized as 
being uniquely expressed in erythrocytes, where it facilitates oxygen 
delivery to tissues via lowering the affinity of oxygen in hemoglobin 
in response to the action of 2,3-bisphosphoglycerate (Oslund et al., 
2017; Kulow et al., 2025). With advancing investigations, it has 
been discovered that one of the detected biological functions of 
BPGM is its ability to govern the intermediate levels of glycolysis, 
which in turn regulates the biosynthetic flux of serine (Oslund et al., 
2017). Furthermore, BPGM plays a pivotal role in maintaining 

glucose metabolism in distant kidney units, whose deficiency is 
associated with metabolic disequilibrium, enhanced oxidative stress, 
inflammation, and, eventually, renal impairment (Kulow et al., 
2025). Hence, we deduced that differentially expressed BPGM in 
endometriosis promoted metabolic reprogramming by influencing 
glycolysis levels in ectopic lesions, thus enabling their survival in 
new environments and subsequent proliferation to develop ectopic 
foci. DHFR has emerged as a critical enzyme in the metabolism 
of folate, where inhibition induces deficiencies in active folate, 
which in turn disrupts nucleotide biosynthesis and subsequently 
contributes to cell death, thereby constituting an effective target for 
disease treatment (Sehrawat et al., 2024; Wang et al., 2024). Although 
there are currently available technological methods that enable 
DHFR inhibitors in the treatment of diseases, including rheumatoid 
arthritis, tuberculosis, malaria, toxoplasmosis, and tumors, neither 
the effect nor the function of DHFR in endometriosis has yet 
been demonstrated in the literature (Aftab et al., 2024). Serving 
as the largest solute transporter family in humans, the SLC25 
mitochondrial carrier family bridges cytoplasmic and mitochondrial 
metabolic pathways to underpin cellular and mitochondrial growing 
and sustaining activities (Cimadamore-Werthein et al., 2024). The 
protein encoded by SLC25A13, a member of this family, is a calcium-
binding aspartate–glutamate carrier protein, alternatively known as 
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FIGURE 10
Consensus clustering analysis and immune cell infiltration analysis. (A) The clustering heatmap indicated that the clustering results were most stable at 
K = 2, dividing all endometriosis patients into two subtypes. (B) Bar graph representing the infiltration of 22 immune cells in all endometriosis samples.
(C) Boxplots for the difference in the infiltration abundance of 22 immune cells between models 1 and 2. (D) Heatmap displaying the correlations and 
distributions of 22 immune cells into the two clusters (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001).

citrin, and the mutation of the SLC25A13 gene is responsible for the 
deficit of citrin, triggering the development of autosomal recessive 
hereditary metabolic liver disease, which manifests predominantly 
as intrahepatic cholestasis and assorted metabolic derangements, 
and in the most serious cases, it progresses to hepatic failure 
(Inui et al., 2024; Kido et al., 2024). It is expected that our study 
has first revealed the connection between endometriosis and the 
above three genes and comprehensively unveiled the novel biological 
functions and pathological significance of BPGM, DHFR, and 
SLC25A13 from the viewpoint of lactate metabolism.

In addition to the excellent performance of these three core 
genes in terms of biological functions, they also demonstrate 
outstanding values in the diagnosis of endometriosis, and all of 
them have high AUC levels; simultaneously, the model constructed 
on their basis represents the highest AUC value of 0.748, which 
indicates that the signature manifests an incomparable role in the 

effectiveness of the endometriosis diagnosis. This model, as a means 
of early diagnosis in the clinical management of endometriosis 
patients, can assist in the timely recognition of this disease when 
the typical lesions of endometriosis have not been developed and the 
corresponding concomitant clinical manifestations have not reached 
seriousness, and it can offer therapies in the initial stage of illness, 
which will minimize the alteration of pelvic anatomical structures 
caused by endometriosis, attenuate the destructive effects of lesions 
on the ovaries, decrease the incidence of endometriosis-associated 
infertility, and contribute to the protection of the fertility in the 
individuals with endometriosis.

Following this, we performed consensus clustering analysis to 
probe the roles and values of this model in the context of the 
immunity of endometriosis and split this training dataset into two 
clusters. Through the CIBERSORT algorithm, we observed that each 
sample of the two subtypes is well-characterized by a wide range of 
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FIGURE 11
Immune function analysis between two subtypes of endometriosis. (A) Boxplots for ssGSEA analysis of immune functions within two subsets. (B)
Correlation analysis for 13 immune functions in the subgroups. (C) Heatmap of correlations between three crucial biomarkers and 13 immune 
pathways (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

immune cell types, encompassing most of them in all samples, while 
the immune cells are scattered among each individual in the different 
subgroups, which reflects that the immune cells in endometriosis are 
both generalized and heterogeneous. In addition, this observation is 
also reinforced by the research of Jae-Wook Jeong, who identified 
that the characteristic of endometriosis is the dysfunction of the 
immune system (Rahman et al., 2025). Furthermore, regarding 
the comparison of the proportion of immune cells, we have 
pointed out that both subgroups display obvious distributional 
differences in 19 out of 22 immune cells, which implies that 
we can formulate personalized endometriosis treatment programs 
tailored to specific immune cell distinctions based on the model, 
and this will improve the efficacy of treatment and mitigate the 
side effects of the conventional medicines on the normal tissues. 

In the boxplot of immune cell distribution, we found that the 
NK cells account for a higher percentage in endometriosis, and 
on comparing two groups of model 1 and model 2, we noticed 
that the proportion of activated NK cells is greater in model 1 
than in model 2, and the ratio of resting NK cells is smaller in 
model 1 than in model 2. With the role of immunosurveillance 
and the ability of exerting cytotoxicity of NK cells in endometriosis, 
the NK cells can assist in the clearance of ectopic endometrial 
lesions, and we can recognize and promote the activated state 
transformation of NK cells of model 2 based on the characteristics 
of this subtype to augment their immunoclearance effects and 
achieve the clinical treatment of endometriosis. Moreover, activated 
NK cells and Treg cells presented a strong negative correlation 
in the immune correlation heatmap, which is in accordance with 
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FIGURE 12
Regulatory network construction and small-molecule drug prediction based on three biomarkers. (A) miRNA–mRNA–TF regulatory network of BPGM, 
DHFR, and SLC25A13, where red represents mRNAs, green represents TFs, and purple denotes miRNA. (B) Small-molecule drugs targeting defined 
genes. Red represents the target genes, and orange represents the drugs.

the previous studies on immune characteristics of endometriosis, 
where Treg cells have immunosuppressive properties and, together 
with the abovementioned features of NK cells, cooperate in 
preventing the adhesion, proliferation, and invasion of ectopic 
endometriotic lesions (Ohkura and Sakaguchi, 2020).

Aside from examining the discrepancies between the two 
subgroups regarding immune cells, we have also analyzed the 
differences in immune function between models 1 and 2. Whether 
it is model 1 or 2, we can observe in the heatmap of the functional 
distribution that MHC-class 1 is widely present in endometriosis, 
and it is known to be associated with the immune escape of 
the disease, which further confirms that endometriosis is an 
immunological disease, and this result also supports the accuracy of 
our analytical strategy (Brea et al., 2016; Blanco et al., 2025). Scores 
on the evaluation of immune function in terms of APC co-inhibition 
and T-cell co-inhibition were found to be higher in model 2 than in 

model 1. CTLA4, as a molecule featured in the function of T-cell co-
inhibition, is inherently inhibitory in character and is a key immune 
regulatory member belonging to the family of type I membrane 
receptors, with evidence supporting the involvement of CTLA4-
based autoimmunity in maintaining chronic inflammation in the 
peritoneal environment of endometriosis and preclinical samples of 
evidence indicating anti-CTLA4 antibodies as a prospective novel 
therapeutic target for endometriosis (Liu et al., 2020; Mikuš et al., 
2022). PD-L1, which is a commonly involved factor in the highly 
salient functional modules of the immune function scoring in model 
2, is elevated in endometriosis, and this upregulation suppresses the 
cytotoxic activity of T and B lymphocytes, thereby reducing their 
effectiveness in eliminating ectopic endometrial tissues, leading to 
their immune evasion and bolstering the survival and proliferation 
of the ectopic lesions (Sobstyl et al., 2024; Nero et al., 2022). 
These observations propose that protocols based on this lactate-
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associated gene model subtyping targeting specific molecules of 
model 2 could be explored as new alternatives for the management 
of endometriosis.

At the end of this research, we explored the upstream regulatory 
network of the lactate-related gene model in which transcription 
factors and miRNAs, as common modulators of gene expression, are 
involved in the construction of the above network. Specifically, SP1 
was identified as a transcription factor that can govern DHFR and 
SLC25A13 in this network, and previous studies have confirmed that 
SP1 plays a central role in adjusting the expression level of DHFR, 
which mainly functions by influencing the cell-cycle progression 
(Slansky and Farnham, 1996; Blume et al., 1991). After reviewing 
substantial publications, we were not aware of established roles of 
SP1 in SLC25A13, and this study offered a compelling new direction 
for investigating the differential expression of SLC25A13. In terms of 
subsequent clinical applications, we tried to identify small-molecule 
drugs targeting this model; valproic acid, as a branched-chained 
fatty acid, is widely used for the treatment of epilepsy, and at the 
same time, it also exists as an adjuvant reagent in breast cancer 
therapy (Davis et al., 1994; French and Faught, 2009; Heers et al., 
2018). Our study may have identified an emerging benefit of 
valproic acid, and in the future, we expect to uncover and validate 
the value of valproic acid for endometriosis therapy from the 
aspects of mechanism experiments, molecular assays, and clinical
trials.

Regardless of the fundamental contribution of our lactate-
related gene signatures in predicting early diagnosis and guiding 
the treatment of endometriosis, there are some limitations to this 
research. First, although both the training and validation groups 
were available in this study, the analysis was performed based 
on the sample information in the database, and it has not been 
carried out in large-scale, multicenter, prospective cohort studies, 
nor has it been subjected to more detailed stratified analysis 
incorporating clinical phenotypic characteristics. Furthermore, 
we will proceed to explore this model with in vitro and in 
vivo experiments and molecular mechanism studies if necessary 
to find the molecular mechanisms of lactate metabolism in 
endometriosis and generate supporting data for the development 
of targeted molecular therapies. Finally, despite the fact that 
our study constructed the regulatory network of transcription 
factors and targeting drugs within the upstream of the model, 
the working potency of the networks and the specific sites 
and the safety of pharmacological action still require further
exploration. 

5 Conclusion

In general, this study has illustrated the relationship between 
lactate metabolism and endometriosis, in which we constructed 
a lactate-associated gene model comprising three genes: BPGM, 
DHFR and SLC25A13, which serve invaluable functions in 
the diagnosis of endometriosis and enable early recognition of 
the disease. Simultaneously, we also carried out the analysis 
of the immunological aspects of endometriosis on the basis 
of this model in an attempt to detect potential therapeutic 
approaches for targeting the development of endometriosis 
from the perspective of immunotherapy. Beyond that, we have 

established the crucial gene regulatory network to characterize the 
interactions of networks in a multidimensional and comprehensive 
manner to filter the innovative medical agents for the prevention 
and treatment of endometriosis from the viewpoint of small-
molecule compounds. In conclusion, our research aimed to find 
the lactate metabolism-related pathogenesis of endometriosis, 
construct an early diagnostic model, and implement accurate 
targeted prevention and clinical management for patients with
endometriosis.
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