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Ischemia-reperfusion injury (IRI) represents a common pathophysiological 
condition and serves as a shared mechanism underlying diverse critical 
diseases, including acute kidney injury, myocardial infarction, and stroke. T 
cells are increasingly recognized as central mediators of immune responses 
during IRI; however, the mechanisms governing their proliferation remain 
poorly characterized. Herein, an integrative analysis of bulk and single-cell 
transcriptomic datasets across multiple organ models was performed to 
investigate the role of T cell proliferation–related genes in IRI. We identified
ANXA1 and ARG2 as key IRI-associated genes, both of which exhibited consistent 
upregulation during the early stages of injury. Immune infiltration analysis 
demonstrated that ANXA1 expression correlated most strongly with central 
memory CD4+ T cell infiltration, whereas ARG2 was linked to T helper 17 
cell infiltration. Drug prediction and molecular dynamics simulation further 
identified Hydrocortamate and NS6180 as potential therapeutic agents targeting 
T cell proliferation. Single-cell RNA sequencing not only confirmed the active 
involvement of T cells in IRI progression but also highlighted ANXA1 as a 
particularly prominent regulator. A renal IRI model was also used to further 
confirm altered T cell activity and differential expression of these key genes in 
vivo. Collectively, these findings elucidate the molecular mechanisms driving 
T cell proliferation in IRI, positioning ANXA1 and ARG2 as promising pan-
organ IRI biomarkers and therapeutic targets for mitigating tissue damage and 
promoting repair.
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 1 Introduction

Ischemia-reperfusion injury (IRI) represents a vital pathophysiological mechanism 
that paradoxically intensifies tissue damage and organ dysfunction once blood flow 
is reestablished after periods of ischemia or hypoxia (Zhang M. et al., 2024). As a 
shared mechanism among various severe conditions, including acute kidney injury
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(AKI), myocardial infarction, and ischemic stroke, IRI substantially 
contributes to the global healthcare burden (Hoste et al., 2018; 
Saini et al., 2021; Heusch, 2024). Renal ischemia-reperfusion injury 
(RIRI), a primary driver of AKI, frequently occurs in clinical 
scenarios including kidney transplantation, cardiac surgery, trauma, 
and partial nephrectomy (Zhang et al., 2020). Specifically, RIRI is 
an unavoidable outcome of kidney transplantation and is highly 
associated with delayed graft function, acute rejection, and loss 
of the graft (Zhang et al., 2024a). Despite extensive research 
into the mechanisms and treatments of IRI, effective therapeutic 
strategies remain limited (Zhang M. et al., 2024). Elucidating the 
key mechanisms of IRI, identifying specific druggable targets, and 
developing specific interventions to mitigate IRI progression are 
critical for improving organ function across various pathological 
conditions.

IRI is characterized by robust inflammation in injured 
tissues, marked by extensive immune cell infiltration and 
inflammation-mediated tissue damage, creating a complex 
immune microenvironment (Zhang M. et al., 2024). Although 
IRI is predominantly derived by innate immunity in the early 
immune response (Zheng et al., 2021; Zhang et al., 2024c), 
recent findings underscore the crucial role of T cells, which 
are key elements of adaptive immunity and flexible regulators 
in immune responses. (Sun et al., 2023), in exacerbating tissue 
injury (Huang et al., 2007; Göcze et al., 2018; Lee and Jang, 
2022). Rapid T cell infiltration and proliferation occur early, 
and T cell depletion has been shown to attenuate damage and 
enhance functional recovery (Dellepiane et al., 2020). However, 
the mechanisms underlying rapid T cell activation remain 
poorly understood, despite their growing recognition as pivotal 
contributors to IRI progression.

Clarifying the regulatory mechanisms of T cell proliferation in 
IRI and identifying potential intervention targets may provide new 
directions for diagnosis and therapy. Emerging omics approaches 
enable the identification of gene sets associated with specific 
functional phenotypes (Jeon et al., 2024), offering new avenues to 
elucidate T cell activity in IRI. Although T cell proliferation-related 
genes (TRGs) had been well defined in several studies (Huang et al., 
2022; Legut et al., 2022; Cui et al., 2023; Hai et al., 2024), their 
specific roles in IRI remain undefined. Bulk RNA sequencing reveals 
tissue-specific gene expression changes in diseased states, while 
single-cell RNA (ScRNA) sequencing captures gene expression at 
the single-cell level, revealing cellular heterogeneity and intercellular 
interactions (Li and Wang, 2021). Integrative bioinformatics 

Abbreviations: AKI, acute kidney injury; BIRI, brain ischemia-reperfusion 
injury; BUN, blood urea nitrogen; CC, cellular components; DEGs, 
differentially expressed genes; DGIdb, Drug-Gene Interaction Database; 
GO, Gene Ontology; GSEA, gene set enrichment analysis; H&E, 
Hematoxylin and Eosin; HIRI, heart ischemia-reperfusion injury; HVGs, 
highly variable genes; IRI, ischemia-reperfusion injury; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; log2FC, log2 fold change; 
MDS, molecular dynamics simulation; MF, molecular functions; MVB, 
multivesicular body; NES, absolute normalized enrichment score; NKT cell, 
natural killer T cell; PAS, Periodic Acid-Schiff; PCA, principal component 
analysis; RIRI, renal ischemia-reperfusion injury; RMSD, root-mean-square 
deviation; RMSF, root-mean-square fluctuation; sCr, serum creatinine; 
ScRNA, Single-cell RNA; TRGs, T cell proliferation–related genes; UMAP, 
uniform manifold approximation and projection.

approaches linking TRGs to IRI could provide novel insights for 
diagnosis and treatment.

To investigate the involvement of T cells in IRI, this study 
integrates multiple transcriptomic approaches to systematically 
characterize the dynamic expression landscape of TRGs, identify 
key regulatory genes, and explore their underlying mechanisms and 
therapeutic potential in RIRI. Following key gene identification, 
their expressions were validated in independent datasets derived 
from heart IRI (HIRI) and brain IRI (BIRI) model to assess 
their pan-organ consistency. Finally, in vivo experiments based on 
RIRI model were conducted to confirm the biological relevance 
of candidate genes. This study offers novel insights into T cell-
mediated immune responses in IRI and provides a basis for the 
discovery of new therapeutic targets for IRI-induced tissue injury
and repair. 

2 Materials and methods

2.1 Data collection

All datasets were obtained from the Gene Expression 
Omnibus (GEO) database. (https://www.ncbi.nlm.nih.gov/geo/). 
The GSE98622 dataset (Liu et al., 2017), as the exploration set, 
consists of six samples in sham group, including three samples at 
4 and 24 h respectively, and 24 kidney RIRI samples at different 
time points after ischemia-reperfusion, including three samples at 
2 h, 4 h, 24 h, 48 h, 72 h, 7 days, 14 days, 28 days, and 12 months 
respectively. The GSE267650 dataset (Heruye et al., 2024), an 
external renal validation set, consists of five control kidney 
tissue samples in sham group and 36 kidney tissue samples at 
different time points after ischemia-reperfusion, including five 
samples at 20 min, 4 h, 16 h, 24 h, 36 h, 48 h respectively, and 
six samples at 72 h, in RIRI group. The GSE131193 dataset was 
used as validation of BIRI (Kestner et al., 2020), consisting of 12 
control brain tissue samples at different time points after sham 
surgery, including six samples at 1 and 7 days respectively, 12 
brain tissue samples at different time points after IRI, including 
six samples at 1 and 7 days respectively in BIRI group. The 
GSE160516 dataset was used as validation of HIRI (Zhang and 
Li, 2020), consisting of four control heart tissue samples and 12 
heart tissue samples at different time points after IRI, including four 
samples at 6 h, 24 h, and 72 h. The GSE139506 dataset (Rudman-
Melnick et al., 2020), a single-cell dataset, consisted of one 
control kidney tissue sample and nine kidney tissue samples at 
different time points after ischemia-reperfusion, including one 
sample at 1 day, 2 days, and 4 days, and two samples at 7 days, 
11 days, and 14 days. Replicate samples at 7 days, 11 days, and 
14 days were merged, with each time point consolidated into a 
single dataset.

A total of 216 mouse genes related to T cell proliferation were 
obtained. Specifically, gene sets related to T cell proliferation were 
first integrated from previous studies (Huang et al., 2022; Legut et al., 
2022; Cui et al., 2023; Hai et al., 2024). After deduplication, 211 TRGs 
were identified. Subsequently, human gene symbols were converted 
to mouse gene symbols using gProfiler (https://biit.cs.ut.ee/
gprofiler/gost), with gene aliases retained for consistency. Finally, a 
total of 216 TRGs were obtained (Supplementary Table S1). 
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2.2 Temporal expression analysis and 
identification of candidate genes

The Mfuzz algorithm in the “ClusterGVis” (v 0.1.2) (https://
github.com/junjunlab/ClusterGVis) was used for clustering analysis 
of expression patterns in the transcriptome data at different time 
points of the training set, to identify potential time-series expression 
profiles. The Mfuzz method is based on Fuzzy C-Means Clustering 
(FCM). The expected number of clusters was set to 10, and genes 
with similar expression patterns across 10 time-series groups (Sham 
samples and IRI samples at 2 h, 4 h, 24 h, 48 h, 72 h, 7 days, 14 days, 
28 days, and 12 months) were clustered.

To identify genes involved in RIRI pathogenesis, the “limma” 
(v 3.56.2) was employed for differential expression analysis between 
the RIRI and Sham groups of the exploration dataset (Ritchie et al., 
2015), with the criteria of both p < 0.05 and |log2 Fold Change 
(FC)| >1. Volcano plots and heatmaps were generated to visualize the 
up- and downregulated genes, ranked by |log2FC| from highest to 
lowest, using “ggplot2” (v 3.5.1) and “ComplexHeatmap” (v 2.16.0) 
(Gu et al., 2016; Wickham, 2016).

In this study, we focus on the early T cell reaction in IRI, so 
gene clusters showing upregulated expression trends in the early 
stage were selected as important genes for subsequent analysis. 
The intersection of differentially expressed genes (DEGs) in RIRI 
and upregulated TRGs was then identified using “ggvenn” (v 
0.1.10) (https://github.com/yanlinlin82/ggvenn), and these genes 
were designated as candidate genes.

Enrichment analysis included the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO). GO covers 
biological processes (BP), molecular functions (MF), and cellular 
components (CC). These analyses were performed on candidate 
genes using “clusterProfiler” (v 4.8.3) (Xu et al., 2024; Yu, 2024). 
Visualization was done for the top 5 GO terms and the top 10 
KEGG pathways. 

2.3 Identification and validation of key 
genes

To identify key genes among the candidate genes, 
protein–protein interaction (PPI) network of the candidate genes 
coded proteins was constructed by the STRING database (https://
string-db.org/) with the confidence score threshold set at >0.15. 
Then the network was further analyzed by CytoHubba, a plug-
in in Cytoscape, to evaluate node centrality and identify hub 
genes (Shannon et al., 2003; Cline et al., 2007; Chin et al., 2014). 
Five independent algorithms, including MNC, DMNC, Degree, 
EcCentricity, and Radiality, were employed to rank nodes to ensure 
the robustness of hub gene selection. The top five ranked genes 
were identified for each algorithm, and the intersection of these 
five gene sets was defined as the final set of core genes used for 
subsequent analyses.

Subsequent analysis involved assessing the differential 
expression of significant genes between the RIRI and Sham 
groups using the Wilcoxon test (p < 0.05) in the exploration and 
validation datasets. Genes exhibiting consistent expression trends 
and significant differences in both datasets were confirmed as key 
genes. Using the ‘ggplot2’ package (v3.5.1) in R, line graphs were 

produced to visualize temporal expression dynamics, displaying 
key gene expression across eight time intervals (Sham, 20 min, 
4 h, 16 h, 24 h, 36 h, 48 h, and 72 h post-IRI) in the validation 
dataset. To evaluate the consistency of key gene expression across 
different organs in IRI, their expression levels and dynamics were 
also validated in HIRI and BIRI datasets. 

2.4 Gene set enrichment analysis (GSEA)

Key genes in the exploration dataset were analyzed using GSEA 
to understand their biological functions in the development of 
RIRI, utilizing the ‘c2.cp.kegg.symbols.gmt’ reference gene set from 
the Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb) was used. Correlation coefficients between key genes 
and other gene datasets were calculated using the “psych” package 
(v2.4.6.26; Revelle, 2024), with genes ranked in descending order 
of correlation. GSEA was then conducted using the “clusterProfiler” 
package (v4.8.3) with significance thresholds of p.adjust <0.05 and 
q-value <0.25 (Xu et al., 2024; Yu, 2024). Using the ‘enrichplot’ 
package (v1.20.3), the top five pathways enriched for each key gene 
were visualized, sorted by the absolute normalized enrichment score 
(|NES|) (https://github.com/YuLab-SMU/enrichplot). 

2.5 Immunoinfiltration analysis

The “GSVA” package (v1.53.28) was used to evaluate the 
infiltration levels of 28 immune cell types across all samples in 
the exploration dataset (Hänzelmann et al., 2013). A heatmap 
visualizing these infiltration levels was generated using the 
“pheatmap” package (v1.0.12, https://github.com/raivokolde/
pheatmap). Differences in infiltration levels of the 28 immune cell 
types between the RIRI and Sham groups were assessed using the 
Wilcoxon test. A box plot illustrating these differences was created 
using the “ggplot2” package (v3.5.1). Immune cell types showing 
significant differences were designated as differential immune cells. 
Relationships among differential immune cells and between these 
cells and key genes were analyzed with correlations considered 
significant at |correlation coefficient| >0.3 and p < 0.05. Correlation 
heatmaps were visualized using the “ggcorrplot” package (v0.1.4.1). 

2.6 Drug prediction and molecular docking

To explore the relationships between key genes and potential 
therapeutic drugs in IRI, drug-gene interactions were retrieved 
from the Drug-Gene Interaction Database (DGIdb; https://
www.dgidb.org/) and visualized using Cytoscape (v3.10.3). For 
each significant gene, a small-molecule drug known to inhibit 
cell proliferation was selected for molecular docking analysis. The 
Protein Data Bank was used to acquire the protein structures of 
the essential genes. (https://www.rcsb.org/), and the corresponding 
drug structures were retrieved in SDF format from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/). Molecular docking 
was performed by uploading protein and drug structures to the 
CB-Dock2 online platform (https://cadd.labshare.cn/cb-dock/php/
blinddock.php), where binding free energies were calculated to 
assess interaction affinities. 
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2.7 Molecular dynamics simulation (MDS)

To investigate the interaction strength and stability between 
drugs and receptor proteins corresponding to key genes in RIRI, 
MDS were performed using GROMACS software (v2024.4) with the 
AMBER99SB-ILDN force field (Pronk et al., 2013). The simulation 
system utilized the TIP3P water model within a cubic simulation 
box, maintaining a 1 nm distance between the protein and box edges. 
Ions were added to ensure electrical neutrality. Energy minimization 
was conducted using the steepest descent algorithm, followed by 
NVT (constant number of particles, volume, and temperature) and 
NPT (constant number of particles, pressure, and temperature) 
ensemble simulations. Temperature coupling was accomplished 
using the V-rescale technique at 300 K, employing a 2 fs time step 
and lasting 100 ps for the NVT and NPT phases. MDS was then 
run for 20 ns. Key metrics, including root-mean-square deviation 
(RMSD), root-mean-square fluctuation (RMSF), total energy, and 
hydrogen bond counts, were analyzed. Lower RMSD and RMSF 
fluctuations, reduced total energy, and a higher number of hydrogen 
bonds indicated stronger and more stable drug-protein binding 
interactions. 

2.8 The ScRNA sequencing data processing

The GSE139506 dataset’s ScRNA sequencing data were 
combined using the ‘CreateSeuratObject’ function from the ‘Seurat’ 
package (version 5.1.0) (Hao et al., 2024). Data were processed 
and filtered to retain: (1) genes expressed in >3 cells; (2) cells with 
200–4,000 expressed genes; (3) cells with <15% mitochondrial 
gene content; and (4) cells with total gene expression counts 
between 200 and 10,000. Normalized data were obtained using the 
“LogNormalize” method via the “NormalizeData” function. The ‘vst’ 
method of the ‘FindVariableFeatures’ function was used to identify 
highly variable genes (HVGs). The data was then scaled using 
the ‘ScaleData’ function, and principal component analysis (PCA) 
was performed. The “ElbowPlot” function determined significant 
principal components up to the inflection point for downstream 
analysis. Using the ‘IntegrateLayers’ function, batch effects were 
adjusted with the ‘Harmony’ algorithm. Unsupervised clustering 
was performed using the “FindNeighbors” and “FindClusters” 
functions (resolution = 1), with cell clusters visualized via 
uniform manifold approximation and projection (UMAP) using 
the “RunUMAP” function. Cluster-specific marker genes were 
identified using the “FindAllMarkers” function (logfc.threshold = 
0.25, min. pct = 0.25, test. use = “auc”). Cell types were annotated by 
comparing cluster-specific genes with literature-reported marker 
genes (Rudman-Melnick et al., 2020) and using the “SingleR” 
package (v2.2.0) (Aran et al., 2019). Marker gene expression 
intensities were visualized in a bubble plot. 

2.9 Identification of key cells

As the study focused on T cell changes during RIRI occurrence, 
T cells were selected as the key cells for subsequent analysis. First, 
in all samples from the GSE139506 dataset, the “DimPlot” function 
from “Seurat” (v 5.1.0) was employed to generate UMAP plots 

to display the distribution of T cells across different time points. 
Subsequently, the distribution maps showing the expression of key 
genes in T cells across various time points were created using the 
“FeaturePlot” function. 

2.10 Cell communication and pseudotime 
analysis

The ‘CellChat’ package (v1.6.1) was used to analyze intercellular 
communication networks among annotated cell types in the 
GSE139506 dataset (Jin et al., 2021). Ligand-receptor (LR) pairing 
patterns were examined to infer potential intercellular interactions, 
with significance thresholds set at p < 0.05 and log2mean (Molecules 
1 and 2) ≥ 0.1. Communication patterns between T cells and other 
cell types were compared between RIRI and Sham samples. To 
investigate dynamic expression patterns and temporal trajectories of 
key genes in T cell subtypes during RIRI, secondary dimensionality 
reduction and clustering utilized T cell subtype marker genes from 
mouse kidney tissue as recorded in the CellMarker database (http://
www.bio-bigdata.center/index.html). Re-clustered T cells were 
annotated into distinct subpopulations. Using UMAP with default 
settings in the ‘monocle3’ package (v1.3.1), these subpopulations 
were mapped into a low-dimensional space (Cao et al., 2019). 
A root node was selected to order T cell subpopulations and 
visualize their developmental temporal sequence. Changes in T cell 
subtypes across different time points were further visualized with 
“monocle3” (v1.3.1). 

2.11 Experimental animals and IRI-induced 
model

Subsequent experiments utilized male C57BL/6 mice aged 
6–8 weeks, with all procedures conducted following China’s animal 
welfare guidelines (Laboratory Animal Guidelines for Ethical 
Review of Animal Welfare, GB/T 35892-2018) and approved 
(KY-Z-2022-026-02) by the Animal Care and Use Committee of 
Guangdong Province People’s Hospital (Guangdong, China). Mice 
were randomly allocated either to the IRI or Sham group (n = 5 
per group). And the IRI was induced in mice based on previously 
reported methods (Zheng et al., 2021). The bilateral IRI model was 
created by clamping both renal pedicles for 26 min, while keeping 
the body temperature stable between 36.5 ° C and 37 ° C in the IRI 
group. The mice were euthanized 24 h after reperfusion. Samples 
from the kidneys and blood were obtained for later examination. 

2.12 Measurement of renal function and 
renal histology

Blood samples underwent centrifugation at 2,000 × g for 
10 min at 4 ° C, and subsequently at 8,000 × g for 10 min at 4 ° C. The 
serum was extracted and kept frozen at −80 ° C until it was required. 
An automatic biochemistry analyzer (7020; Hitachi, Tokyo, Japan) 
was used to measure creatine (Cr) and blood urea nitrogen (BUN) 
levels. Renal tissues were collected without perfusion and preserved 
in 4% paraformaldehyde. Sections of kidney paraffin, measuring 
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4 μm, were stained with Hematoxylin and Eosin (H&E) and Periodic 
Acid-Schiff (PAS) to evaluate kidney damage. 

2.13 Flow cytometry

The proliferation of T cells was analyzed by flow cytometry. Anti-
Mouse CD16/CD32 (553141; RRID: AB_394656, clone 2.4G2; BD 
Biosciences, San Jose, CA, United States) was used for nonspecific 
Fc block. BV421 anti-mouse CD45 (30-F11; RRID: AB_2562559; 
BioLegend, San Diego, CA, United States), PC/Cyanine7 anti-
mouse CD3 (17A2; RRID: AB_2242784; BioLegend, San Diego, 
CA, United States), FITC anti-mouse CD4 (H129.19, RRID: AB_
1279237; BioLegend, San Diego, CA, United States), and APC anti-
mouse CD8a (53-6.7; RRID: AB_312751; BioLegend, San Diego, 
CA, United States) were used for flow cytometry. A FACS Calibur 
cytometer by Becton Dickinson (BD) in Bedford, MA, United States, 
was used to gather data, which was then analyzed with FlowJo 
software from Tree Star in Ashland, OR, United States. 

2.14 Real-time quantitative PCR

According to the manufacturer’s guidelines, fresh tissues were 
homogenized, and total RNA was isolated using the RNAeasy™ 
Animal RNA Isolation Kit with Spin Column (R0024; Beyotime, 
Shanghai, China). To calculate mean fold changes, the average of 
three duplicate measurements was normalized to Gapdh, utilizing 
the 2−△△CT method. The sequences for the primer pairs are 
provided in Supplementary Table S2. 

3 Results

3.1 Temporal dynamics of TRG expression 
and candidate genes identification

To elucidate the expression dynamics of TRGs RIRI, a time-
series analysis was conducted (Figure 1A). Early upregulated gene 
sets were prioritized for further investigation, which correlated with 
the rapid T cell proliferation response in RIRI. From clusters C1, 
C3, C5, C8, C9, and C10, 102 genes with an early upregulated 
tendency were identified. Then, a total of 784 DEGs were identified 
between the RIRI and Sham groups. The top 10 upregulated 
genes (e.g., HAVCR1, LCN2, KRT20) and downregulated genes 
(e.g., MEP1B, CYP2D9, CYP7B1) were visualized in volcano plots 
and heatmaps (Figures 1B,C; Supplementary Table S3). Through 
intersection analysis of DEGs and the 102 key genes, candidate genes 
were identified (Figure 1D).

To characterize the biological roles of candidate genes in 
RIRI, GO enrichment analysis identified 762 terms, including 
697 BPs, 18 CCs, and 47 MFs (Supplementary Table S4). The top 
five BP terms included “T cell proliferation” and “regulation 
of leukocyte proliferation,” while CC terms featured “cornified 
envelope,” “protein kinase complex,” and “motile cilium.” For MFs, 
“Hsp70 protein binding” and “cytokine binding” were among the top 
terms (Figure 1E). Additionally, 10 KEGG pathways were enriched, 
including “efferocytosis,” “arginine biosynthesis,” and “amoebiasis” 

(Figure 1F; Supplementary Table S4). The insights gained from these 
findings are crucial for understanding the biological functions of 
genes related to RIRI advancement. 

3.2 Identification of ANXA1 and ARG2 as 
key TRGs in IRI

To study the interactions among proteins encoded by candidate 
genes, a PPI network was created. Lgals3 displayed the highest 
connectivity, interacting with multiple genes, including ANXA1, 
ARG2, and CDK1 (Figure 2A). ANXA1 and ARG2 were identified 
as key candidate genes through intersection analysis of the top 
five genes ranked by multiple algorithms (Figure 2B). Both genes 
exhibited consistent expression trends in the exploration and 
validation datasets for RIRI, with significant differences between the 
RIRI and Sham groups (Figures 2C,D). Consequently, ANXA1 and 
ARG2 were designated as key genes, showing upregulated expression 
in the early stages of RIRI in the validation dataset (Figure 2E). 
In HIRI and BIRI validation datasets, ANXA1 expression was 
significantly different between groups, consistent with its trend 
in the exploration datasets. In contrast, ARG2 showed significant 
intergroup differences only in BIRI (validation set 2), aligning with 
its trend in the training set, but not in the HIRI (validation set 3) 
(Figures 2F,G). Notably, ANXA1 expression exhibited a consistent 
upward trend across all validation samples, whereas ARG2
expression increased initially and then declined (Figures 2H,I). 
These findings highlight the complex pathogenesis of IRI and 
provide a clear foundation for further mechanistic studies and 
potential clinical translation.

3.3 The potential processes of key genes

GSEA identified 148 and 117 pathways associated with ANXA1
and ARG2, respectively (Supplementary Table S5). Enrichment 
score plots highlighted the top five enriched pathways for each gene, 
with “valine, leucine, and isoleucine degradation” ranking highest 
for both ANXA1 and ARG2 (Figures 3A,B). Notably, four of the 
top five pathways were co-enriched for both genes (Figures 3A,B), 
including oxidative phosphorylation, propanoate metabolism, 
peroxisome, and valine, leucine, and isoleucine degradation. This 
evidence provides a significant starting point for further clarifying 
the pathogenesis of IRI.

3.4 Immune cells infiltration and 
correlation with key genes

Analysis of immune cell infiltration identified 23 immune cell 
types with significant differences between RIRI and Sham groups, 
including monocytes, central memory CD8 T cells, and mast cells 
(Figures 4A,B; Supplementary Table S6). Analysis of correlations 
indicated a strong positive link between activated dendritic cells and 
macrophages, and no significant negative correlations were detected 
among various immune cells (Figure 4C; Supplementary Table S6). 
Notably, ANXA1 exhibited significant positive correlations with 
regulatory T cells, central memory CD4 T cells, and macrophages. 
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FIGURE 1
TRGs expression temporal dynamics in RIRI and identification of candidate genes. (A) Time-series clustering of TRGs in RIRI from 10 expression 
clusters. (B,C) A total of 784 DEGs were identified between RIRI and control samples. The top upregulated and downregulated genes were visualized in 
a volcano plot and heatmap. (D) Venn diagram showing 12 intersecting genes selected as candidate genes for further analysis. (E,F) Enrichment analysis 
of candidate genes.

And ARG2 showed significant positive correlations with T 
helper 17 cells, plasmacytoid dendritic cells, and neutrophils 
(Figure 4D; Supplementary Table S5). These findings indicate that 

ANXA1 and ARG2 may drive RIRI pathogenesis by regulating 
specific immune cell populations, enhancing understanding of the 
underlying pathogenic mechanisms.
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FIGURE 2
Identification and validation of key genes of TRGs in IRI. (A) PPI network analysis showed the connection of 12 candidate genes. (B) ANXA1 and ARG2
were selected as candidate key genes by intersecting the top five genes of five independent algorithms selection. (C,D) Both ANXA1 and ARG2 showed 
consistent and significantly upregulated expression in exploration and independent validation dataset. (E) Time-series expression showed both key 
genes exhibited early-stage upregulation in renal validation dataset. (F,G) In BIRI and HIRI validation datasets, ANXA1 showed consistent upregulation;
ARG2 was only significant in BIRI. (H,I) Time trends confirmed ANXA1 and ARG2 elevation in BIRI and HIRI. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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FIGURE 3
Functional annotation of ANXA1 and ARG2 in RIRI. GSEA identified 148 and 117 significantly enriched pathways for ANXA1 and ARG2, respectively. (A)
The top five pathways of ANXA1 are shown based on the |NES|. (B) The top five pathways of ARG2 are shown in RIRI. |NES|: absolute normalized 
enrichment score.

3.5 Drug prediction and target-drug 
interaction analysis for key genes in IRI

A total of 44 ANXA1-related drugs (e.g., methylprednisolone, 
bibp3226, rimexolone) and 21 ARG2-related drugs (e.g., ebio, 
nitrendipine, ska-121) were identified (Figure 5A). Molecular 
docking analysis revealed that ANXA1 bound to hydrocortamate 
with a binding energy of −3.96 kcal/mol, while ARG2 exhibited a 
lower binding energy of −4.74 kcal/mol with NS6180 (Figures 5B,C; 
Supplementary Table S7). MDS was performed to further assess 
binding stability. The ARG2-NS6180 complex displayed smaller 
RMSD fluctuations compared to the ANXA1-hydrocortamate 
complex, indicating greater binding stability for ARG2-NS6180 
(Figures 5D,E). Energy values differed significantly between the 
ANXA1-hydrocortamate and ARG2-NS6180 complexes throughout 
the simulation, with ANXA1-hydrocortamate showing tighter 
binding (Figure 5F). Additionally, the ANXA1-hydrocortamate 
complex exhibited the highest hydrogen bond density and 
intensity, reflecting stronger binding interactions (Figure 5G). 
These findings elucidate the interaction profiles of drugs with 
key gene receptor proteins, providing quantitative evidence and 
theoretical support for understanding drug-protein interaction 
mechanisms, predicting gene functions, and optimizing molecular 
models in RIRI.

3.6 Annotation of cell types in single-cell 
data

Upon completing quality checks on the ScRNA sequencing 
data from the GSE139506 dataset, 21,780 genes across 33,337 
cells were retained. The number of cells in the Sham, 1 day, 
2 days, 4 days, 7 days, 11 days, and 14 days samples was 1,195, 
1,834, 2,729, 5,204, 8,166, 9,211, and 4,998, respectively 
(Supplementary Figures S1–S2). Additionally, genes with high 

coefficients of variation across cells were extracted, and the top 
3,000 HVGs were selected (Figure 6A). Using the top 30 principal 
components, samples were clustered into 29 distinct cell clusters 
(Figures 6B,C). Based on annotation methods, these clusters 
were classified into 12 major cell types: collecting duct principal 
cells, cell cycle proximal tubule cells, endothelial cells, injured 
proximal tubule cells, loop of Henle cells, macrophages, mixed 
identity cells, podocytes, stromal cells, collecting duct intercalated 
cells, distal tubule cells, and T cells (Figures 6D,E). These results 
provided a crucial theoretical basis for revealing the cellular 
pathogenic mechanism of RIRI, exploring potential genes and 
therapeutic targets.

3.7 T cell dynamics and cell 
communication in RIRI

Time-course analysis of T cell alterations in RIRI revealed 
a trajectory of gradual increase followed by a decrease across 
various time points (Figure 7A). Notably, ANXA1 exhibited more 
pronounced expression levels and distribution patterns in T 
cells compared to ARG2, with the lowest ANXA1 expression 
observed at 7 days post-RIRI (Figure 7B). In the RIRI group, 
stromal cells showed robust interactions with multiple cell 
types, including loop of Henle cells and distal tubule cells, 
with T cell–stromal cell interactions being particularly strong 
(Figures 7C,D; Supplementary Figure S3). While in the Sham 
group, podocytes displayed significant interactions with endothelial 
cells, while T cells interacted only with endothelial and stromal 
cells (Figures 7E,F; Supplementary Figure S4). Ligand-receptor 
analysis in the RIRI group identified Spp1-(Itga8+Itgb1) as the 
strongest interaction when T cells acted as signal receivers 
from stromal cells, and Ptn-Ncl as the strongest when T cells 
were signal senders to stromal cells. In the Sham group, 
Gzma-F2r was the dominant interaction for T cells as signal 
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FIGURE 4
Immune infiltration and gene correlation analysis in RIRI. (A,B) A total of 23 immune cell types showed significant differences including 11 T cell 
subsets. The different cells were visualized in a heatmap and box plot. (C) Correlation analysis of different cell type (D) ANXA1 strongly correlated with 
regulatory and central memory CD4+ T cells; ARG2 correlated with Th17 and other T cell subsets, suggesting gene-specific T cell associations in IRI. ∗P 
< 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

receivers, while Ptn-Ncl remained the strongest for T cells 
as signal senders (Supplementary Figures S5–S6). T cells were 
further classified into three subtypes: CD4+ T cells, CD8+ T 
cells, and natural killer T (NKT) cells (Figure 7G). CD4+ T 
cells predominated in the mid-early stage, CD8+ T cells in 
the late stage, and NKT cells in the early and middle stages 
(Figures 7H,I). Initially, CD8+ T cells and NKT cells were widely 
distributed in the Sham group, but in RIRI, they became more 
concentrated, notably at the 7-day mark (Figure 7J). These 
findings provide a mechanistic basis for understanding RIRI 
pathophysiology and highlight potential therapeutic targets for 
intervention.

3.8 Validation of T cell proliferation and 
expression of ANXA1 and ARG2 in RIRI

To validate the T cell activities and the expression of key 
genes, we constructed the bilateral RIRI mice as previously 
described. Compared to the sham group, the RIRI group 
exhibited notable tubular injury as revealed by H&E and PAS 
histological staining (Figure 8A). Serum creatinine and blood 
urea nitrogen levels were significantly elevated, confirming renal 
dysfunction (Figure 8B). Flow cytometric analysis showed a 
marked increase in lymphocyte infiltration, with significantly 
higher proportions of CD45+ leukocytes and CD3+ T cells in 
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FIGURE 5
Drug prediction and target-drug interaction analysis for key genes in IRI. (A) 44 drugs targeting ANXA1 and 21 targeting ARG2 were predicted. (B,C)
Molecular docking showed favorable binding energies for ANXA1-hydrocortamate (−3.96 kcal/mol) and ARG2-NS6180 (−4.74 kcal/mol). (D,E) Binding 
stability for ANXA1-hydrocortamate and ARG2-NS6180 analysis based on RMSD and RMSF fluctuations. (F) Energy analysis showed binding of ANXA1 to 
hydrocortamate and ARG2 to NS6180. (G) Hydrogen bond analysis confirmed the interactions target-drug complex.

IRI kidneys (Figures 8C–E). Among CD3+ T cells, CD4+ subsets 
were predominant, accompanied by a relative increase in CD8+ T 
cells. qPCR analysis further demonstrated significant upregulation 

of ANXA1 and ARG2 expression in the RIRI group (Figure 8F), 
supporting their involvement in early T cell–mediated immune
responses.

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1673163
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zheng et al. 10.3389/fcell.2025.1673163

FIGURE 6
Single-cell transcriptomic profiling of RIRI. (A) A total of 21,780 genes from 33,337 cells across seven time points were obtained after quality control; 
the top 3,000 HVGs were selected. (B,C) Using the top 30 principal components, cells were clustered into 29 distinct groups. (D) These clusters were 
annotated into 12 major cell types. (E) Marker genes for cell type annotated.
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FIGURE 7
Stage-specific T cell dynamics and cellular interactions at single-cell transcriptomic level. (A) T cells showed a time-dependent increase followed by a 
decline post-RIRI. (B) ANXA1 expression in T cells was stronger and more dynamic than ARG2, peaking outside day 7. (C–F) IRI enhanced more active 
cell–cell interactions, forming new communication patterns. T cells showed the strongest interaction with stromal cells, alongside notably strong and 
specific communication with macrophages. (G–I) CD4+ T cells dominated early, CD8+ T cells later, and NK T cells appeared mainly in early-to-middle 
phases. (J) T cell distributions became more clustered over time.

4 Discussion

IRI remains a significant clinical challenge, with early 
immune responses contributing substantially to tissue damage 
(Zhang M. et al., 2024). Although T cells are recognized as key 
contributors to IRI pathogenesis, the mechanisms governing their 
rapid activation and proliferation remain incompletely understood. 
The heterogeneity of T cell subsets and their stage-specific 

infiltration complicate efforts to define their precise roles in IRI (Lee 
and Jang, 2022). Integrating single-cell and bulk RNA sequencing 
data, this study systematically characterized the temporal dynamics 
of T cell proliferation in RIRI. ANXA1 and ARG2 were identified 
and validated as key TRGs, with hydrocortamate and NS6180 
emerging as potential therapeutic agents targeting these genes. Early 
infiltration of diverse T cell subsets, including CD4+, CD8+, and 
NKT cells, was observed, consistent with dynamic regulation in IRI. 
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FIGURE 8
Validation of T cell proliferation and the expression of ANXA1 and ARG2 in RIRI. (A) Representative H&E and PAS staining of kidney tissues from sham 
and IRI mice showing tubular damage in the IRI group. (B) Serum creatinine and BUN levels were significantly elevated in IRI mice, indicating impaired 
renal function. (C) Analysis of immune cells in the kidney after IRI. The gating strategy identifies total leukocytes (CD45+), T cells (CD3+), and their CD4+

and CD8+ subsets. (D,E) The numbers of these cells increased in the injured kidneys. (F) Relative mRNA expression levels of ANXA1 and ARG2 in the 
kidney tissues, measured by RT-qPCR, showing significant upregulation in the IRI group. Data are presented as mean ± SD. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 
0.001. H&E, hematoxylin and eosin; PAS, periodic acid–Schiff.
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The discoveries shed light on the immune microenvironment and 
transcriptional networks linked to IRI, suggesting that targeting T 
cells could be a promising strategy for developing therapies.

TRGs exhibit distinct temporal regulation during IRI. The 
expression profiles of TPGs vary across time points, abundance 
clusters display progressively increasing tendencies in the 
different phases, indicating predominant activation and sustained 
involvement in IRI development. Early T cell proliferation correlates 
with exacerbated tissue damage, and the depletion of T cells 
attenuates tissue damage in IRI (Lai et al., 2007; Martín and Sánchez-
Madrid, 2025), while later proliferation may contribute to chronic 
pathological changes like fibrosis (Xu et al., 2022), potentially driven 
by distinct T cell subset distributions. This study focuses on T cell 
proliferation in the acute phase, so we analyzed the early upregulated 
gene cluster. Functional annotation of the candidate genes supports 
their central role in mediating T cell-driven immune responses. 
ANXA1 and ARG2 emerged as key hub genes with potential 
regulatory significance, identified through multiple independent 
computational algorithms, highlighting their robust candidacy as 
therapeutic targets.

ANXA1, traditionally recognized as an anti-inflammatory 
mediator in innate immunity (Wu et al., 2021), was identified as a 
key gene strongly associated with T cell activity, indicating a dual 
role in immune regulation. The role of ANXA1 is multifaceted 
in adaptive immunity. ANXA1 can be secreted by T cells and 
critically shapes early immune responses by promoting regulatory 
T cell differentiation, enhancing Th1 and Th17 development, 
and suppressing Th2 polarization (Gavins and Hickey, 2012). 
These effects contribute to pro-inflammatory phenotypes during 
the progression of inflammatory diseases such as rheumatoid 
arthritis and primary sclerosing cholangitis (Kelly et al., 2022; 
Zhang et al., 2023). Notably, excessive inflammatory conditions 
may reverse its regulatory influence on T cells (Gavins and 
Hickey, 2012). Emerging evidence from tumor microenvironments 
further demonstrates that ANXA1 modulates the maturation of 
dendritic cells and macrophages, leading to reduced T cell activation 
and immune evasion (Zhang et al., 2024c; Jiang et al., 2025). 
Given its diverse roles in immune regulation, the function of 
ANXA1 in IRI extends beyond mere biomarker status. The role of 
ANXA1 in early T cell proliferation expands our understanding of 
adaptive immune mechanisms in IRI and provides valuable clues 
for future mechanistic studies and potential immunomodulatory 
interventions.

ARG2 is identified in this study as an emerging regulator 
of T cell–mediated responses during IRI. Correlation analysis 
showed the strongest association with Th17 cells, indicating a 
potential role in pro-inflammatory T cell subsets. Prior studies 
have revealed that ARG2 accumulation in tubular cells during AKI 
(Zhou et al., 2023), where its overexpression promotes nitrosative 
stress and apoptosis. However, its function in T cell-mediated 
injury remains uncharacterized in IRI. ARG2 expression has also 
been associated with immune cell infiltration in inflammatory and 
autoimmune diseases, like steroid-induced osteonecrosis (Yu et al., 
2021), supporting its broader immunomodulatory relevance. 
However, the arginine metabolism presents a controversial role 
in immune regulation in different disease models, exhibiting 
both promoting and inhibitory roles in T cell activation 
(Asosingh et al., 2020; Starikova et al., 2023). ARG2 may act as a 

metabolic checkpoint in T cells and innate kidney tissue during 
RIRI, with implications for therapeutic modulation of both immune 
and non-immune responses.

Hydrocortamate and NS6180 were identified as potential 
therapeutic agents targeting T cell proliferation in IRI, through 
a comprehensive drug discovery strategy in silico based on the 
key regulatory genes. Hydrocortamate is a synthetic glucocorticoid 
with confirmed anti-inflammatory effects (Zheng et al., 2015). 
ANXA1, a known glucocorticoid-responsive gene (Patel et al., 2012), 
may mediate this effect by bridging steroid signaling and immune 
modulation in IRI, as prior studies have confirmed the efficacy of 
glucocorticoids in mitigating inflammation in IRI (Kumar et al., 
2009; Escudero et al., 2024). NS6180, a selective KCa3.1 channel 
inhibitor (Brown et al., 2018), targets T cell activation and 
proliferation with high specificity. It exhibits potent efficacy in 
restricting T cell-driven inflammation (Strøbæk et al., 2013). Along 
with a newly observed link to ARG2, NS6180 may also modulate 
T cell metabolism and enhance therapeutic potential in IRI. These 
findings position Hydrocortamate as a broad immunosuppressive 
agent with notable T cell regulatory effects, and NS6180 as a targeted 
T cell inhibitor, offering complementary therapeutic strategies for 
IRI. Additional studies, both preclinical and clinical, are needed to 
validate their safety and effectiveness in the treatment of IRI.

T cells exhibit dynamic infiltration and activation patterns in 
IRI, with their numbers rapidly increasing early in the injury process 
and subsequently declining, reflecting stage-specific regulation. 
Integrated transcriptomic analyses revealed diverse CD4+ T cell 
subsets, including central memory CD4+ T cells, Treg, Th1, Th2, 
and Th17 cells, each contributing uniquely to RIRI pathophysiology. 
Central memory CD4+ T cells, distinguished by their differentiation 
state and regenerative capacity, may contribute to sustained injury 
in RIRI (Ascon et al., 2009). Tregs mitigate acute injury and 
promote repair in early RIRI by suppressing excessive inflammation 
(Kinsey et al., 2010). Conversely, Th17 cells exacerbate kidney 
damage in the acute phase by secreting pro-inflammatory cytokines 
(Mehrotra et al., 2020), though they may contribute to repair in 
later stages. NKT cells, proliferating early, likely exert protective 
effects by attenuating regional tissue damage (Zhang et al., 2014; 
Tamura et al., 2024). CD8+ T cells, exhibiting delayed proliferation, 
may contribute to chronic kidney damage (Xu et al., 2022; Jiang et al., 
2024). ANXA1 promotes Th1 differentiation by upregulating T-bet 
and IFN-γ, whereas its effects on Th17 cells involve restricting IL-
17 in Th17-associated diseases such as uveitis, yet promoting Th17 
accumulation in other conditions like experimental autoimmune 
encephalomyelitis (Kelly et al., 2022). In IRI, ANXA1 may exert 
bidirectional effects on T cell subsets: it fosters inflammatory 
injury while preserving the potential to limit excessive Th17-driven 
responses and promote inflammation resolution. Beyond directly 
modulating functional T cell subsets such as Tregs, ARG2—which 
metabolizes arginine—may exert a more universal regulatory 
role. It not only modulates T cell activity but also influences 
other immune components like macrophages (Lowe et al., 2019; 
Zhu et al., 2025). Furthermore, T cells respond to macrophage-
derived chemokines, coordinating immune responses within the 
inflammatory microenvironment and highlighting their synergistic 
role with macrophages (Rao et al., 2014). Collectively, these findings 
underscore the multifaceted roles of T cells in mediating both 
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injury and repair in RIRI and offer new perspectives for developing 
immunomodulatory therapies targeting specific T cell subsets.

This study identified key genes associated with T cell 
proliferation in ischemia-reperfusion injury and provided initial 
insights into their potential roles, highlighting novel targets for 
early therapeutic intervention. T cells represent a highly diverse 
family with distinct roles across different stages of IRI. The 
exploration of the regulatory mechanisms driving T cell activation 
and proliferation, as well as the functional heterogeneity of specific 
T cell subsets, remains incomplete. At the same time, murine T cell 
responses may not fully mirror human IRI, limiting direct clinical 
extrapolation. Moreover, beyond the transcriptomic data, future 
studies could integrate multi-omics methods, including proteomics, 
metabolomics, and spatial transcriptomics approaches to validate 
and expand these findings, achieving a more comprehensive 
understanding of T cell-mediated immune responses in IRI. 
Subsequent research could also further explore specific T cell 
subsets (such as Th1, Th17, and Treg) or key molecular drivers 
to deepen mechanistic insights. While early T cell activation is 
evident in IRI, there is a lack of sufficient temporal resolution 
to capture the earliest regulatory events. Shifting the analytical 
focus from days to hours may provide more nuanced insights 
into immune dynamics. Overall, our findings suggest that TRGs 
contribute to the rapid T cell response in IRI, with multiple T 
cell subsets dynamically participating in early injury progression. 
ANXA1 and ARG2 emerged as representative regulatory drivers and 
potential therapeutic targets, offering new perspectives for precision 
treatment in IRI.
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