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CausalFormer-HMC: a hybrid 
memory-driven transformer with 
causal reasoning and 
counterfactual explainability for 
leukemia diagnosis

Fares Jammal* and  Mohamed Dahab

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz 
University, Jeddah, Saudi Arabia

Acute Lymphoblastic Leukemia (ALL) is a prevalent malignancy particularly 
among children. It poses diagnostic challenges due to its morphological 
similarities with normal cells and the limitations of conventional methods like 
bone marrow biopsies, which are invasive and resource-intensive. This study 
introduces Causal-Former-HMC, a novel hybrid AI architecture integrating 
convolutional neural networks, vision transformers, and a causal graph 
learner with counterfactual reasoning to enhance diagnostic precision and 
interpretability from peripheral blood smear (PBS) images. We utilized two 
robust datasets: the ALL Image collection, comprising 89 patients and 3,256 
PBS images (504 benign, 2,752 malignant across Pro B, Pre B, and Early Pre 
B subtypes), and C-NMC dataset, containing 15,135 segmented cell images 
from 118 patients (7,272 leukemic, 3,389 normal). To address class imbalance, 
we implemented class-aware data augmentation, standardizing image counts 
across classes and resizing to 128 × 128 pixels for compatibility with our 
model. The proposed model is evaluated via stratified 5-fold cross-validation 
with Nadam, SGD, and Radam (fractional) optimizers, Causal-Former-HMC 
achieved perfect classification accuracy (100%) and macro-averaged F1-scores 
on the ALL dataset, and up to 98.5% accuracy with 0.9975 ROC-AUC on the 
C-NMC dataset hence demonstrating superior generalization. Interpretability 
was ensured through advanced explainable AI techniques, including Grad-
CAM, LIME, Integrated Gradients, and SHAP, which consistently highlighted 
attention to clinically relevant features such as nuclear contour irregularities 
and chromatin condensation. These results underscore the potential of the 
model to deliver non-invasive, accurate and transparent diagnostics that pave 
the way for its integration into clinical hematology workflows and advancing 
AI-driven leukemia screening paradigms. Index Terms—Acute Lymphoblastic 
Leukemia (ALL); Causal-Former-HMC; Hybrid Deep Learning; Peripheral Blood 
Smear Classification; Explainable AI in Medical Imaging.
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1 Introduction

Acute lymphoblastic leukemia (ALL), a prevalent condition, 
particularly in children, accounts for around 25% of paediatric 
malignancies (Ward et al., 2014). Because malignant and normal 
cells have structural similarities, diagnosing it can be difficult 
and frequently necessitates invasive procedures like bone marrow 
biopsies, that can be resource-intensive and mostly rely on 
expert interpretation (Bhojwani et al., 2015). These traditional 
methods may cause delays in diagnosis and treatment, which 
can affect patient outcomes, particularly in settings with limited 
resources. A possible avenue for creating non-invasive, precise, 
and interpretable diagnostic tools to address these problems is the 
advent and development of deep learning (DL), a subset of artificial 
intelligence (AI) (Wu and Gadsden, 2022).

In order to improve diagnosis accuracy from peripheral blood 
smear (PBS) images, this study introduces Causal-Former-HMC, 
an innovative hybrid AI module that integrates vision transformers 
(ViTs), convolutional neural networks (CNNs), and a causal graph 
learner with counterfactual reasoning. The model seeks to offer both 
high accuracy and clinical interpretability by utilizing the advantages 
of global contextual understanding (ViTs), causal inference, and 
local feature extraction (CNNs). The study makes use of two reliable 
datasets: the C-NMC dataset, which consists of 15,135 segmented 
cell images from 118 patients (7272 leukemic, 3389 normal) and the 
ALL Image collection, which includes 3256 peripheral blood smear 
images from 89 patients (504 benign, 2,752 malignant across Pro-
B, Pre-B, and Early Pre-B subtypes) (Gupta et al., 2022). We used 
class-aware data augmentation, shrinking images to 128 × 128 pixels 
for our model’s compatibility, and standardizing image counts across 
classes to lessen class imbalance (Gupta et al., 2020).

Stratified 5-fold cross-validation with the Nadam, SGD, and 
RAdam optimizers was used to assess the Causal-Former-HMC 
model. It showed excellent generalization across a variety of datasets, 
achieving up to 98.5% accuracy with a 0.9975 ROC-AUC on 
the C-NMC dataset and perfect classification accuracy (100%) 
and macro-averaged F1-scores on the ALL dataset. Advanced 
explainable AI (XAI) approaches, like Grad-CAM, LIME, Integrated 
Gradients, and SHAP, were used to ensure interpretability. These 
techniques consistently identified clinically significant aspects, 
such as chromatin condensation and anomalies in the nuclear 
contour. According to these findings, Causal-Former-HMC offers 
a non-invasive, precise, and transparent diagnostic technique that 
may be included into clinical hematology processes, potentially 
revolutionizing leukemia screening. The relevant literature is 
reviewed, the technique is described, the experimental results are 
presented, and the study’s contributions are emphasized in the 
following sections.

The application of artificial intelligence (AI) in recent years, 
especially deep learning (DL) techniques, has greatly improved the 
diagnosis of acute lymphoblastic leukemia (ALL). This review of 
the literature summarizes important studies conducted between 
2022 and 2025 that use AI to diagnose ALL, with an emphasis on 
image-based methods that use bone marrow and peripheral blood 
smear (PBS) images. These studies demonstrate how AI possesses 
the capacity to improve patient results through early identification, 
decrease practitioner workload, and increase diagnostic accuracy.

Elsayed et al. The revolutionary potential of deep learning in 
improving the classification and diagnosis of ALL through the image 
analysis of bone marrow is examined in this thorough review. 
Analysing research conducted in nations like China, Mexico, and 
India between 2013 and 2023 highlights how flexible DL approaches 
are, with some CNN-based models achieving 100% accuracy in 
cancer cell classification (Elsayed et al., 2023). Elsayed et al. This 
review evaluates the current state of AI in the diagnosis of ALL 
using biopsies and bone marrow aspirates. Emphasizing DL models 
like CNNs. It highlights their potential to improve diagnostic 
efficiency, though it notes less focus on bone marrow compared to 
PBS images (Elsayed et al., 2022).

Gupta et al. The ALL-Net model integrates a custom CNN 
with XAI techniques, achieving 97.85% test accuracy on a 
dataset which contained 3256 peripheral blood smear images. 
Data augmentation addressed class imbalance, enhancing model 
robustness (Gupta et al., 2024). Rahman et al. This study proposes a 
customized DL classifier exploiting transfer learning to distinguish 
blast cells and normal in peripheral blood smear samples, 
achieving high accuracy and demonstrating the efficacy of fine-
tuned models (Rahman et al., 2022).

Chen et al. An empirical examination of benchmark DL models 
that have already been trained (e.g., VGG16, ResNet50) for 
ALL detection shows high accuracy in classifying ALL subtypes, 
reinforcing DL’s diagnostic potential (Chen et al., 2025). Elsayed 
et al. Focused on acute myeloid leukemia (AML), this systematic 
review provides insights into AI applications for leukemia diagnosis 
from microscopic blood images, relevant to ALL due to shared 
methodologies (Al-Obeidat et al., 2025).

Ghaderzadeh, et al. Using the C-NMC dataset, this study 
creates an enhanced CNN model that achieves 99.99% accuracy, 
demonstrating the efficiency of hyperparameter tuning in leukemia 
identification (Talaat and Gamel, 2023). Wu et al. This study employs 
machine learning to predict leukemia subtypes in children using 
haematological indicators, attaining an AUC of 0.950 for ALL and 
highlighting the usefulness of non-image-based AI approaches (Wu 
and Gadsden, 2024). Li et al. This work tests AI’s sensitivity in 
screening acute leukemia using flow cytometry and achieves 98.2% 
sensitivity for B-ALL, indicating potential applicability for image-
based ALL diagnosis (Cheng et al., 2024).

Jiwani et al. A binary image classification model based on 
CNNs achieves 94.3% accuracy in early ALL diagnosis, highlighting 
the relevance of deep learning in supporting haematologists 
(Jiwani et al., 2024). Bain et al. While focusing on chronic myeloid 
leukemia (CML), this paper examines AI applications in leukemia 
care and provides insights applicable to ALL (Bain and Leach, 2024). 
Huang, et al. The Deep Dilated Residual CNN (DDRNet) identifies 
blood cell pictures for ALL with excellent accuracy after addressing 
vanishing gradient concerns (Huang and Huang).

Duggal et al. This work introduces the C-NMC dataset, a 
significant resource for AI-based ALL diagnosis that has been 
employed in numerous research for model building (Gupta et al., 
2022). Ahmad et al. A DL-based solution for ALL detection utilizing 
PBS pictures provides good classification accuracy while leveraging 
transfer learning to increase performance (Ahmed et al., 2022). 
Karar et al. This study highlights AI-based strategies for leukemia 
identification, including ALL, with a focus on the role of ML 
and DL in improving detection precision (Aby et al., 2022). 
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Kelemen, et al. A ML approach using laboratory characteristics 
predicts acute leukemia subtypes with good accuracy for ALL 
differentiation (Alcazer et al., 2024).

Bain et al. This work, which focuses on AML, uses DL to 
diagnose leukemia via flow cytometry, providing approaches that 
can be used to ALL (Bain et al., 2023). Alvarnas, et al. This study 
creates AI-based prediction models for AML, providing insights 
into predictive modeling that can aid in ALL diagnosis (Didi et al., 
2024). Gökbuget et al. This study makes recommendations for 
ALL diagnosis in adults, focusing on AI’s involvement in modern 
oncological practices and its diagnostic potential (Gökbuget et al., 
2024). Wu et al. A survey of AI usage in hematology managing, 
including leukemia diagnosis, presents a comprehensive picture of 
AI’s impact in the discipline (Wu and Gadsden, 2022).

Jiwani et al. This preprint introduces deep learning methods 
for early ALL detection, which achieve high accuracy while 
reaffirming the potential of CNN-based models (Jiwani et al., 2024). 
Rahman et al. An adapted deep learning model for ALL diagnosis 
using lymphocyte and monocyte samples achieves high accuracy, 
applicable to ALL (Ansari et al., 2023). Jiwani et al. This study 
explores pattern recognition for ALL using computational DL, 
achieving high accuracy with a focus on early detection (Jiwani et al., 
2023). Chaurasia et al. A study on AI-based leukemia detection 
using PBS images, achieving high accuracy with CNNs, relevant to 
ALL diagnosis (Chaurasia et al., 2024). Li et al. This research applies 
DL to leukemia classification, achieving robust performance on PBS 
images, with implications for ALL diagnosis (Wang et al., 2023).

When taken as a whole, these findings show the growing 
importance of AI, particularly DL, in enhancing ALL diagnosis. 
The integration of CNNs, ViTs, and XAI techniques has 
shown promising results in improving diagnostic accuracy and 
interpretability. Large datasets like the ALL Image collection 
and C-NMC have facilitated the development of robust models 
that generalize well across diverse patient populations. However, 
challenges remain, including the need for broader validation 
across varied clinical settings and the integration of multimodal 
data to further enhance diagnostic precision. This research work 
presents multiple significant advancements in the realm of AI-based 
ALL diagnosis:

• We introduce Causal-Former-HMC, a novel hybrid AI model 
combining CNNs, ViTs, and a causal graph learner with 
counterfactual reasoning. This architecture enhances both 
the accuracy and interpretability of ALL diagnosis from 
PBS images, addressing limitations of traditional single-
architecture models.

• We leverage two comprehensive datasets: the ALL Image 
collection (3,256 images from 89 patients) and the C-
NMC dataset (15,135 images from 118 patients). Class-
aware data augmentation was implemented to address class 
imbalance, ensuring balanced representation across benign and 
malignant subtypes.

• The Causal-Former-HMC model achieves perfect classification 
accuracy (100%) and macro-averaged F1-scores on the ALL 
dataset, and up to 98.5% accuracy with a 0.9975 ROC-AUC on 
the C-NMC dataset, outperforming many existing methods in 
the literature.

• Advanced interpretability techniques like Grad-CAM, LIME, 
Integrated Gradients, and SHAP, make sure that the model’s 
decisions are transparent and clinically relevant, highlighting 
key morphological features like nuclear contour irregularities 
and chromatin condensation.

• The model’s non-invasive, accurate, and interpretable 
nature positions it for integration into clinical hematology 
workflows, potentially aiding early detection and treatment 
planning for ALL.

• By improving the precision of leukemia detection, this 
study contributes to the development of AI-driven screening 
paradigms, enhancing patient care and treatment outcomes.

In summary, our work advances the field by developing a novel, 
highly accurate, and interpretable AI model for ALL diagnosis by 
leveraging large datasets and cutting-edge DL techniques. These 
contributions pave the way for transformative changes in clinical 
hematology practices. 

2 Materials and methods

2.1 Dataset description

2.1.1 Dataset compatibility
To ensure compatibility between the ALL and C-NMC datasets, 

we standardized preprocessing across both sources. All images 
were resized to a uniform resolution of 128 × 128 pixels, 
normalized to the [0,1] intensity range, and converted into a 
consistent RGB format. In addition, class-aware data augmentation 
strategies (rotation, zoom, flipping, and brightness adjustment) 
were applied in an identical manner to both datasets. This 
harmonization minimized discrepancies caused by variations in 
imaging devices, staining protocols, and file formats, thereby 
allowing the model to generalize effectively across the two
datasets.

During preliminary experiments, we evaluated multiple input 
resolutions, including 64 × 64, 128 × 128, and 224 × 224 
pixels. The lower resolution (64 × 64) resulted in noticeable 
loss of morphological detail, particularly in nuclear boundaries 
and chromatin texture, while the higher resolution (224 × 
224) increased computational cost substantially without yielding 
consistent performance gains. The intermediate resolution of 128 × 
128 offered the best trade-off between computational efficiency and 
retention of critical diagnostic features, and was therefore adopted 
as the standard input size for all experiments. 

2.1.1.1 Dataset 1_ALL
Our study of XAI-powered leukemia diagnosis tools is 

based on the Acute Lymphoblastic Leukemia (ALL) image 
collection (Aria et al., 2021). Acute lymphoblastic leukemia is one of 
the most common cancer types and has several diagnostic challenges 
because of its ambiguous symptoms, which can lead to misdiagnosis. 
The traditional diagnostic techniques of flow cytometry and 
bone marrow biopsies are intrusive, costly, and time-consuming 
despite their dependability. However, analyzing peripheral blood 
smear (PBS) pictures offers a practical, non-invasive way to find 
cancer early.
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FIGURE 1
Class distribution ALL dataset.

The bone marrow laboratory at Taleqani Hospital in Tehran, 
Iran, prepared this dataset, which consists of 3256 PBS pictures 
taken from 89 individuals who may have acute lymphoblastic 
leukemia. To provide high-quality images for analysis, trained 
laboratory personnel stain and process blood samples. The samples 
are separated into two main categories: cancerous and benign. The 
benign class has 504 photos that show normal, healthy cells and 
hematogones. The three subtypes of the malignant class, which 
represents verified ALL cases, are Pre-B (963 images), Pro-B (804 
photos), Early and Pre-B (985 images). The dataset is very useful 
for building strong AI models because these subtypes capture the 
variety of ALL presentations. The dataset’s class distribution is 
displayed in Figure 1.

All of the images were captured with a Zeiss camera attached 
to a ×100 magnification microscope and saved in JPG format. Each 
diagnosis was verified by a specialist using flow cytometry, giving 
the dataset a solid ground truth. The dataset is easy to access and 
use because it is arranged into folders by class, Benign, Early Pre-
B, Pre-B, and Pro-B. Of the 89 patients, 64 had confirmed ALL 
across the three subtypes, while 25 had a benign diagnosis. The 
dataset’s suitability for creating and evaluating AI algorithms that 
separate benign from malignant cases is improved by its balance and 
organization.

In summary, researchers and clinicians find the ALL Image 
collection to be a reliable and useful resource. It can significantly 
advance AI-aided leukemia diagnosis and possibly reset the current 
screening paradigms for the prevalent disease when combined with 
original PBS pictures and their corresponding segmentations and 
a rigorous diagnostic validation process. The data set’s samples are 
displayed in Figure 2.

2.1.1.2 Dataset 2_ C-NMC
About 25% of all pediatric cancers are ALL, making it 

the most prevalent type of cancer in children. The diagnosis 
dictates the optimal treatment plan, however because leukemic 
blasts and normal mature cells have similar morphologies, it 
might be challenging to tell them apart. Traditional diagnostic 
methods, including the quantitative morphology-based diagnostic 
method, are reliable but time-consuming and highly dependent 
on the expertise of the physician, which makes them variable. 

A reliable source for the creation of AI-assisted diagnostic tools 
that may help with the earlier and more precise detection 
of leukemia is the recently made public C-NMC Leukemia
dataset.

The chosen dataset (Gupta and Gupta, 2019) consists of 
15,135 sets of pictures of segmented cancer cells that were taken 
from 118 patients and classified by a qualified oncologist into 
two groups: leukemia blasts and healthy cells. Since the imaging 
is captured on microscopic slides, it accurately depicts actual 
clinical settings, with the exception of a small amount of staining 
noise and lighting changes, which are mostly eliminated during 
acquisition. Because of its size and diversity, the dataset is highly 
regarded and serves as a perfect foundation for training machine 
learning models because it can capture the variance fabric of 
patient samples. The distribution of the classes is displayed in
Figure 3.

C-NMC The Leukemia dataset is intended to support the 
development, refinement, and testing of reliable classification 
models. The training cohort is logically divided into three k-
fold divisions (fold_0, fold_1, and fold_2), each of which is 
further subdivided into normal hematopoietic cells and leukemia 
blasts. An investigator can train and test their system iteratively 
to provide for a stable model, and this structure facilitates the 
implementation of standard k-fold cross-validation. A set of image 
data and a corresponding CSV file displaying the ground-truth 
label information make up the validation data anchored in the 
validation data directory, which enables researchers to optimize 
their workflows.

This testing set, which comprises of label-free photos, 
will be used to assess the model’s performance on previously 
untested examples and will therefore be a trustworthy measure of 
generalizability. The C-NMC Leukemia dataset meets a continuous 
need in the pursuit of automated leukemia diagnosis with its 
extensive and meticulously chosen collection of images. Because 
of its disciplinary and practically applicable nature, it is a crucial 
component of the development of AI applications in the field of 
oncology and may result in increased diagnostic accuracy and 
workflow efficiency during clinical work. Figure 4 shows some 
samples from the collection.

2.2 Data preprocessing

In this study, two separate datasets were utilized: the ALL 
Image dataset, which served as the primary source for training 
the proposed Causal-Former-HMC model, and the CNMC 
Classification dataset, which was incorporated as an additional 
benchmark. Both collections consist of microscopic images of 
peripheral blood cells, forming the foundation for developing an 
automated framework to detect Acute Lymphoblastic Leukemia 
(ALL). Although these datasets are highly valuable, they exhibit 
significant class imbalance, which poses challenges for achieving 
balanced model performance across all categories. To mitigate this 
issue, several preprocessing strategies were employed, including 
class-sensitive data augmentation, image normalization and 
resizing, and the construction of a custom dataset loader. These 
measures collectively ensured that the data were better structured 
and optimized for subsequent model training. 
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FIGURE 2
Sample images from ALL dataset.

FIGURE 3
Class distribution ALL dataset.

2.2.1 ALL Image Dataset
The samples in the ALL dataset are organized into four groups, 

each representing a different stage or condition of the blood cells.

• Benign: Normal cells, totalling 504 images
• Early: Early-stage leukemia cells, totalling 985 images
• Pre: Pre-leukemia cells, totalling 963 images
• Pro: Pro-leukemia cells, totalling 804 images

It is clear from the dataset analysis that there is a significant class 
imbalance. The “Early” class is the largest class in the sample, with 
985 images, while the Benign class is the smallest, with only 504 
images. The model may overfit to the more populous classes as a 
result of this class imbalance, which would effectively introduce a 
bias towards the majority class and reduce its capacity to accurately 
classify examples from minority classes. 

2.2.2 CNMC Classification Dataset (dataset 2) 
there are two classes in the CNMC Classification 
Dataset

• ALL: Leukemia blasts, comprising 7,272 images
• HEM: Normal cells, comprising 3,389 images

The analysis further revealed a pronounced imbalance within 
the dataset, as the ALL class contained substantially more 
samples compared to the HEM class. This disproportionate 
distribution increases the risk of predictive models becoming 
biased toward identifying leukemic blasts, which in turn 
can lead to elevated false-negative rates for normal cell
detection. 

2.2.3 Mitigation of class imbalance via data 
augmentation

To mitigate the issue of class imbalance present in both 
datasets, class-aware data augmentation techniques were applied. 
These methods generated additional synthetic samples for the 
underrepresented classes, thereby aligning their distribution with 
that of the dominant classes. As a result, the dataset became 
more balanced, supporting fairer and more unbiased model
training. 

2.3 Data augmentation for dataset 1

The primary goal was to raise the number of images 
in the ALL Image Dataset’s Benign, Pre, and Pro classes to 
match the 985 images in the Early class—the benchmark 
in this instance. The following changes were made 
via the augmentation process using Keras’ “ImageData
Generator”:
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FIGURE 4
Sample images from C-NMC dataset.

FIGURE 5
Class distribution after CADA of ALL Dataset.

• Rotation: Applied up to a maximum of 30° to simulate varied 
orientations

• Zoom: Adjusted up to 20% to mimic differing magnifications
• Horizontal Flipping: Implemented to enhance 

positional diversity
• Brightness Adjustment: Varied between 80% and 120% to 

account for lighting differences
• These transformations were chosen to maintain the blood 

cell pictures’ morphological integrity while adding enough 
variation to strengthen the model’s resilience. The following 
results were obtained from the augmentation:

• Benign: Increased by 481 synthetic images, from 504 to 985
• Pre: Increased by 22 synthetic images, from 963 to 985
• Pro: Increased by 181 synthetic images, from 804 to 985
• Early: Remained unchanged at 985 images, requiring no 

augmentation

The balanced dataset that was produced was kept in a 
special directory with subfolders for every class. A complete 
CSV file was created in order to categorize all of the original 
and synthetic photos’ file paths and labels. A bar plot was 
created to visually verify the balancing effort and show that 
each class now included precisely 985 photos. Figure 5 displays 
the class-wise data distribution following class-aware data
augmentation.

FIGURE 6
Class distribution after CADA of C-NMC dataset.

2.4 Data augmentation for dataset 2

For the CNMC Classification Dataset, the aim was to augment 
the hem class to equal the 7,272 images of the all class. The same suite 
of augmentation techniques was employed:

• Rotation: Up to 30°
• Zoom: Up to 20%
• Horizontal Flipping
• Brightness Adjustment: Between 80% and 120%

This process generated 3,883 synthetic images for the hem class, 
bringing its total to 7,272 images and bringing it up to parity 
with the entire class. The balanced dataset was organized using 
the class-specific subfolders. A CSV file was created in order to 
document the image locations and labels. Following that, a bar 
plot was made to assist the equalization of class sizes. Figure 6 
shows the class-wise data distribution after class-aware data
augmentation.

In addition to correcting for class imbalance, maintaining 
consistency in image dimensions was thought to be essential for 
compliance with the sophisticated AI-based model architecture 
used in this investigation. As a result, every image in both 
datasets was scaled to 128 × 128 pixels, which is the usual 
resolution. This dimension was selected to strike a balance 
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FIGURE 7
Architectural Block Diagram of proposed Casual-Former-HMC model.

between computing effectiveness and maintaining enough detail 
for feature extraction, which is necessary for successful model 
training. PyTorch was used to create a custom dataset class 
called “LeukemiaDataset” in order to expedite the data handling 
procedure. To prepare photos for smooth incorporation into 
the training pipeline, this class uses the transformations module 
to do the resizing operation and convert them into tensor
format.

The aforementioned preprocessing steps are essential for 
creating a model that is capable of supervised learning. Data 
augmentation overrode the dataset’s propensity to be skewed 
towards majority cases by reallocating the representation among the 
classes, hence overcoming the limitation of imbalanced data. The use 
of artificial samples produced controlled variance, which improved 
the model’s ability to extrapolate across a range of inputs. An effective 
personal data-loading procedure, convolutional neural network 
compatibility, and standardization of all the photographs to the 
same resolution were employed. Combining these steps produced 
a robust, well-balanced dataset, which is necessary for developing a 
model that can accurately identify leukemia. The method employed 
3940 training photos for the ALL dataset and 14,544 images for the 
CNMC dataset. 

3 Methodology

The proposed architecture, Causal-Former-HMC (Causal 
Confusion Model using Hybrid Memory Transformers and 
Counterfactual eXplainable AI), integrates causal graph learning, 
hybrid feature encoders, and fusion-based reasoning to accurately 
detect leukemia from peripheral blood smear (PBS) images. The 
architecture is composed of five major components: (i) a CNN 
branch (EfficientNet), (ii) a Vision Transformer (ViT), (iii) a 
causal graph learner, (iv) a counterfactual generator, and (v) a 
confusion-weighted fusion mechanism. This section details each 
module, its mathematical formulation, and its functional role in the 
overall inference pipeline. The architectural diagram is shown in
Figure 7.

3.1 CNN feature extraction with 
EfficientNet

The convolutional branch is responsible for extracting low-level 
and mid-level spatial features from input PBS images. EfficientNet-
B0, known for its balanced accuracy-efficiency trade-off, is utilized.

Let I ∈ ℝH×W×3 be an RGB image. The CNN encoder fCNN(·)
maps I to a feature vector:

fcnn = Pr oj( fEf fNet(I)) ∈ ℝ
d

where Pr oj(·) is a fully connected projection layer reducing the 
dimensionality from 1280 to 256 (i.e., d = 256d = 256d = 256). 

3.2 Vision transformer (ViT) encoder

To extract global dependencies, a lightweight Vision 
Transformer is employed. The input image is separated into non-
overlapping, fixed-size patches. Each patch is linearly projected and 
positionally encoded:

z0 = [s1
pE; ...; sN

p E] +Epos

where E ∈ ℝ(p
2.3)×d is a learnable projection, N = HW

p2  and Epos is the 
positional embedding.

The encoded sequence passes through L Transformer layers with 
multi-head self-attention and MLP blocks:

z𝓁 =MLP(MSA(z𝓁−1)),  𝓁 = 1, ....,L

Finally, a mean pooling layer aggregates the token embeddings 
into a vector:

fvit =MeanPool(zL) ∈ ℝ
d

 

3.3 Causal graph learner

The causal graph learner G captures potential causal interactions 
among learned features using a Graph Convolutional Network 
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(GCN). Given node features X ∈ ℝN×d and an edge index ε
⊂ {1, ...,N}2 , the GCN performs message passing:

H(1) = σ(ÂXW(1)),  H(2) = ÂH(1)W(2)

where is the normalized adjacency matrix and σ(·) is the ReLU 
activation. The resulting representation fcasual =H(2) ∈ ℝN×d models’ 
structural dependencies potentially indicative of underlying 
disease patterns. 

3.4 Causal attention module

To enhance attention towards causally relevant features, a 
specialized attention mechanism is introduced. Let H ∈ ON×d be the 
input features. Queries D, keys Y, and values are computed via:

D =HWD,  Y =HWY,L =HWL

The causal attention is defined as:

A = so ft max(QKT

√d
),   fattn = AV

This mechanism prioritizes feature dimensions with causal 
influence over output predictions. 

3.5 Counterfactual generator

For explainability, a counterfactual image representation Ic f  is 
generated by erasing local pixel-level evidence, simulating absence 
of certain features:

Ic f = AvgPool2D(I)

The classifier’s response to Ic f  provides insight into feature 
necessity, yielding explanations of the form: “Had this evidence not 
been present, the model would not have predicted leukemia.” 

3.6 Confusion-based feature fusion

Three distinct feature sources, CNN features ( fcnn) ViT features 
( fvit) and causal features ( fcasual) are fused using a learnable 
weighting mechanism:

α = so ft max (θ) ∈ ℝ3, f fused = α1 fcnn + α2 fvit + α3 fcasual

where θ is a trainable parameter vector initialized as [1.0,1.0,1.0]. 

3.7 Final classification head

The fused features are passed to a classification head composed 
of two fully connected layers:

h = ReLU(W1 f fused + b1),   ̂y = so ft max (W2h+ b2)

Here, ̂y ∈ Rc denotes class probabilities over C possible 
diagnostic classes (e.g., benign vs malignant). 

3.8 Optimization and training

To train the model, categorical cross-entropy is used.

G = −
k

∑
z=1

hz log( ̂hz)

with as the ground truth label. A 5-fold stratified cross-validation 
strategy ensures robustness across data splits. The model is trained 
with multiple optimizers, Nadam, SGD with momentum, and 
Rectified Adam (RAdam), to assess optimizer sensitivity. The whole 
pipeline can be summarized as:

• Input Preprocessing: Resize and normalize PBS images.
• Dual-Stream Encoding: Extract local (EffNet) and global (ViT) 

representations.
• Causal Modelling: Learn feature interactions using GCN and 

Causal Attention.
• Explainability: Generate counterfactuals to analyse decision 

causality.
• Fusion: Confusion-weighted aggregation of all three 

representations.
• Prediction: Final classification using fused features.

3.9 Role of causal and counterfactual 
modules

A critical motivation for integrating causal and counterfactual 
reasoning into Causal-Former-HMC was to overcome the 
limitations of purely correlation-driven deep learning models. While 
CNNs and Vision Transformers (ViTs) effectively capture local and 
global features, they are prone to learning spurious correlations such 
as staining artifacts or dataset-specific noise that may not generalize 
well in real-world clinical settings.

The causal graph learner introduces structured reasoning 
by modeling interactions between features, encouraging the 
network to focus on biologically meaningful dependencies (e.g., 
nuclear contour irregularities influencing chromatin condensation 
patterns). Similarly, the counterfactual generator improves 
interpretability by simulating “what-if ” scenarios: the model’s 
response when specific evidence is masked, helping clinicians 
understand whether key morphological traits were essential for 
predictions.

Together, these modules provide two advantages: 

3.9.1 Improved Generalization
By emphasizing causally relevant features, the model resists 

overfitting to dataset noise and enhances robustness across different 
patient cohorts. 

3.9.2 Clinically Trusted Interpretability
Counterfactual explanations give domain experts transparent, 

human-interpretable reasoning beyond heatmaps, bridging the gap 
between AI prediction and clinical decision-making. The ablation 
studies are presented in the results and discussion section. 
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4 Experimentation

To rigorously evaluate the proposed Causal-Former-HMC 
framework, a structured experimental protocol was established 
encompassing both fixed dataset partitioning and stratified K-
fold cross-validation. The primary objective of the experimentation 
phase was to assess the model’s diagnostic reliability, stability across 
patient distributions, and responsiveness to various optimization 
strategies under controlled yet clinically representative settings. 

4.1 Datasets and label encoding

The study used two independent annotated peripheral blood 
smear (PBS) datasets. The first, known as Dataset 1, is made up 
of images labeled as benign or malignant, with malignant samples 
further classified into early-stage leukemia types such as Pre, Pro, 
and Early forms. Dataset 2 comes from a different source and 
provides segmented cell pictures divided into normal and leukemia 
blast groups. All categorical labels were encoded as integers to ease 
multiclass classification and provide consistency across model inputs 
and evaluation criteria. 

4.2 Experimental design and evaluation 
strategy

The experiments were conducted in two different phases.

• Phase I: A typical hold-out validation strategy was used, with 
the dataset partitioned into distinct validation test and training 
sets. This procedure served as an initial benchmark, allowing for 
early detection of overfitting or underfitting behaviours during 
training cycles.

• Phase II: A more robust evaluation technique was then 
implemented, including stratified 5-fold cross-validation. In 
this method, each dataset was divided into five non-overlapping 
folds while maintaining class distribution within each fold. In 
each iteration, four folds were utilized for training and one 
for validation, with the rotation continuing until all samples 
had been validated exactly once. This methodology ensured 
statistical dependability while minimizing sampling bias.

To prevent weight leakage between folds, a new instance of 
the Causal-Former-HMC model was trained from scratch. After 
training, performance measures like as accuracy and loss were 
recorded for both validation and training subsets, which were then 
averaged over folds to produce aggregate performance indicators. 

4.3 Optimization schemes

To assess the model’s susceptibility to various training dynamics, 
three unique optimization procedures were used:

• Nadam: An adaptive gradient descent algorithm that integrates 
Nesterov momentum into the Adam optimizer framework. It is 

known to accelerate convergence, particularly in models with 
non-stationary objective landscapes.

• Stochastic Gradient Descent (SGD) with Momentum: 
A classical optimization method where momentum was 
incorporated to stabilize convergence and prevent oscillation, 
especially in the presence of noisy gradients.

• Rectified Adam (RAdam): An advanced variant of the Adam 
optimizer that addresses variance instability in the early 
training phases. It rectifies the adaptive learning rate and often 
demonstrates superior performance in deep architectures.

Each optimizer was conFigured with appropriate learning rates 
and parameters optimized for convergence stability and model 
generalization. 

4.4 Optimizer selection rationale

We employed three optimizers, Nadam, SGD with momentum, 
and Radam to evaluate the robustness of our framework under 
different training dynamics. Nadam was chosen for its ability 
to accelerate convergence by incorporating Nesterov momentum 
into the adaptive Adam framework, making it suitable for models 
with non-stationary loss landscapes. SGD with momentum, despite 
being a classical optimizer, is known for its stability and reduced 
risk of overfitting, while also providing interpretable convergence 
behavior. RAdam (Rectified Adam) was included as it addresses 
the variance instability of Adam during the early stages of training, 
offering improved reliability when working with relatively small 
or imbalanced medical datasets such as ALL and C-NMC. This 
combination ensured that our results were not optimizer-specific 
and highlighted the generalization capacity of the proposed model. 

4.5 Training ConFigureuration and 
execution

Across all experimental trials, the model was trained for a 
fixed number of epochs with a uniform batch size. The input 
image resolution was standardized to ensure consistency across 
training samples. A categorical cross-entropy loss function was 
used throughout, reflecting the discrete nature of the classification 
task. During each epoch, training and validation accuracy and 
loss values were logged to monitor learning behaviour over 
time. Optimizer wise metrics during the training on ALL dataset 
are shown in Figure 8.

Model weights were saved independently for each fold, enabling 
reproducibility and retrospective evaluation. The recorded metrics 
from each fold were then aggregated to compute the mean training 
and validation performance curves. This aggregation facilitated 
comparative analysis across folds and optimization schemes. 
Optimizer wise metrics during the training on C.-.NMC dataset 
are shown in Figure 9.

4.6 Dataset-specific execution

Both datasets underwent identical experimental pipelines. For 
Dataset 1, which includes subclass differentiation within the 
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FIGURE 8
Optimizer performance comparison on ALL Dataset.

FIGURE 9
Optimizer performance comparison on C-NMC dataset.

malignant class, stratified sampling ensured equitable representation 
of each subtype within each fold. For Dataset 2, additional 
emphasis was placed on managing label imbalance, given its 
binary classification nature and the presence of visually noisy
instances.

In both cases, training was conducted independently for each 
optimizer to isolate its effect on convergence behaviour. The 
resulting performance curves provided insights into both short-term 
and long-term generalization capacities of the model under varying 
optimization dynamics. 

4.7 Performance logging and aggregation

After completion of all folds for each dataset and optimizer, 
the training and validation metrics were averaged to obtain 
representative performance trajectories. These aggregated curves 
facilitated quantitative comparison between optimization methods 
and provided empirical support for selecting the most stable and 
effective training strategy.

Furthermore, these results were preserved for downstream tasks 
including explainability evaluation, model calibration analysis, 

and counterfactual visualization, enabling a comprehensive 
understanding of both model behaviour and interpretability. 

4.7.1 Hyperparameter configuration
The training of the Causal-Former-HMC model was conducted 

under a consistent set of hyperparameter settings, carefully selected 
based on preliminary validation performance and guided by prior 
work in medical image classification.

Throughout every experimental run, the number of training 
epochs was set at 10. For both the training and validation 
stages, a batch size of 32 was used to balance memory efficiency 
with steady convergence dynamics. Because of its sensitivity to 
probabilistic output distributions and appropriateness for multi-
class classification problems, the cross-entropy loss function was 
chosen as the main optimization goal.

Three different optimization strategies were evaluated: Nadam, 
Stochastic Gradient Descent (SGD) with momentum, and RAdam 
(referred to in this study as the fractional optimizer). The initial 
learning rates were set as follows: 1e-3 for Nadam, 1e-2 for SGD with 
a momentum coefficient of 0.9, and 5e-4 for RAdam. These learning 
rate values were selected to ensure controlled parameter updates 
without overshooting the local minima during backpropagation.
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To assess the generalization capability of the model, 5-fold 
cross-validation was utilized. During each fold, the model was re-
initialized to eliminate weight memory and ensure independence 
between validation partitions. All model weights were updated 
using the corresponding optimizer in each experiment, and training 
was conducted on GPU hardware to ensure efficient computation. 
Additionally, a dropout rate of 0.3 was applied in the classifier 
head to mitigate overfitting, particularly on the smaller ALL
dataset.

Throughout training, resizing of the input images was done 
to 128 × 128 pixels, consistent with the conFigureuration of 
both the Vision Transformer and EfficientNet branches. The 
model’s internal architecture projects high-dimensional features 
to 256-dimensional embeddings before fusion, and subsequent 
classification is performed via a fully connected layer reducing the 
final representation to the number of classes per dataset.

These hyperparameters were kept uniform across both datasets 
(ALL and CNMC) to ensure comparability of results and maintain 
methodological consistency across all optimizer benchmarks.

The combination of fixed-split evaluation and repeated cross-
validation allowed for a multidimensional assessment of the Causal-
Former-HMC architecture. The use of multiple optimizers enabled 
an exploration of the model’s convergence landscape and provided 
a foundation for generalization across datasets. The experimental 
design was constructed to mirror real-world diagnostic scenarios, 
thereby ensuring that the findings have translational relevance to 
clinical applications. 

5 Results

This The diagnostic performance of the Causal-Former-
HMC architecture was comprehensively assessed across multiple 
evaluation regimes, with a primary focus on classification precision, 
recall, F1-score, overall accuracy, and area under the receiver 
operating characteristic curve (ROC-AUC). To ensure robustness, 
experiments were performed on two independent datasets under 
both fixed-split and stratified 5-fold cross-validation paradigms. 
Additionally, the impact of three distinct optimization strategies, 
Nadam, SGD with momentum, and RAdam (fractional variant) 
wassystematically examined. 

5.1 Performance on all dataset

5.1.1 Cross-validation-based evaluation
Under the 5-fold cross-validation setup on the ALL dataset, 

the proposed model consistently demonstrated near-perfect 
classification performance across all subtypes (Benign, Early, Pre, 
and Pro). Each optimizer produced outstanding macro-averaged 
metrics, with overall accuracy reaching 100% and macro F1-
scores and ROC-AUC values approaching or equal to 1.000. The 
summarized evaluation metrics are shown in Table 1.

The Nadam optimizer yielded flawless results, achieving 100% 
accuracy, perfect precision, recall, and F1-score across all four 
categories. Likewise, the SGD and fractional (RAdam-based) 
conFigureurations matched this level of performance, with only 
negligible variation in recall observed in a single subtype for SGD. 

The confusion matrix showcasing the predictive capabilities of the 
model is shown in Figure 10.

This uniformity across metrics indicates the model’s robust 
capacity to distinguish between closely related leukemic subtypes 
and benign cases, highlighting its practical viability in haemato-
pathological diagnostics. Notably, the ROC-AUC score of 1.000 
under each optimizer further substantiates the model’s ability to 
achieve high separability even in complex multiclass settings. 

5.2 Fixed split evaluation

In contrast, when the model was evaluated using a fixed 
training-validation-test partition, performance variability emerged, 
particularly for the Nadam conFigureuration. While the overall 
classification accuracy remained high for benign and prolymphocyte 
categories, the recall dropped sharply for the Early subtype, resulting 
in an overall accuracy of 73.6% and a macro-averaged F1-score of 
0.70. The corresponding ROC-AUC score, however, remained high 
at 0.9884, suggesting that despite class-level misclassifications, the 
model retained its overall discriminative capacity. The summarized 
evaluation metrics are shown in Table 2.

In stark contrast, both SGD and fractional optimizers achieved 
perfect classification accuracy in the fixed split setup, with precision, 
recall, and F1-score values of 1.000 across all subtypes. These results 
reinforce the model’s generalization a``bility when optimization 
dynamics are sufficiently stable. The confusion matrix displaying the 
predictive capabilities of the model is shown in Figure 11.

5.3 Performance on CNMC dataset

5.3.1 Cross-validation-based evaluation
When applied to the CNMC dataset, a binary classification task 

involving normal (hem) versus leukemic (blast) samples, the model 
continued to exhibit strong generalization. The Nadam optimizer 
achieved an accuracy of 96.15%, with balanced precision and 
recall (0.96 for both classes) and a high ROC-AUC of 0.9950. The 
summarized evaluation metrics are shown in Table 3.

The SGD conFigureuration further improved these Figures, 
yielding 97.97% accuracy, equal class-wise F1-scores of 0.98, and 
a ROC-AUC of 0.9975, indicating superior threshold stability. 
The fractional optimizer delivered a comparable outcome, with 
an accuracy of 97.83% and ROC-AUC of 0.9977. The confusion 
matrix showcasing the predictive capabilities of the model 
is shown in Figure 12.

Interestingly, while all three optimizers provided competitive 
performance, the fractional conFigureuration slightly edged ahead 
in terms of class recall balance, showcasing its strength in 
handling minor interclass overlaps and variability in segmented cell 
morphology. 

5.3.2 Fixed split evaluation
The fixed split evaluation of the CNMC dataset revealed more 

pronounced distinctions. Under Nadam, the model achieved an 
accuracy of 94.41%, with slightly reduced recall for the normal 
class. Despite this, the ROC-AUC remained elevated at 0.9859, 
indicating effective decision boundary formation. The summarized 
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TABLE 1  Summarized Evaluation metrics under 5-fold cross validation setup (all Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 1.0000 1.0000 1.0000 1.0000 1.0000

SGD 0.9987 1.0000 1.0000 1.0000 1.0000

Fractional 0.9987 1.0000 1.0000 1.0000 1.0000

FIGURE 10
Confusion matrix (a) nadam (b) SGD (c) fractional.

TABLE 2  Summarized Evaluation metrics under fixed split setup (all Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 0.7360 0.86 0.74 0.70 0.9884

SGD 1.0000 1.0000 1.0000 1.0000 1.0000

Fractional 1.0000 1.0000 1.0000 1.0000 1.0000

FIGURE 11
Confusion matrix (a) nadam (b) SGD (c) fractional.
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TABLE 3  Summarized Evaluation metrics under 5-fold cross validation setup (C-NMC Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 0.9615 0.96 0.96 0.96 0.9950

SGD 0.9797 0.98 0.98 0.98 0.9975

Fractional 0.9783 0.98 0.98 0.98 0.9977

FIGURE 12
(a) Cm with nadam (b) CM with SGD (c) CM with fractional.

TABLE 4  Summarized Evaluation metrics under fixed split setup (C-NMC Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 0.9441 0.95 0.94 0.94 0.9859

SGD 0.9143 0.92 0.91 0.91 0.9842

Fractional 0.9381 0.94 0.94 0.94 0.9848

evaluation metrics are shown in Table 4. The SGD optimizer, while 
achieving a slightly lower overall accuracy (91.43%), demonstrated 
high recall for leukemic cells, highlighting its conservative bias 
toward positive class identification, a desirable trait in screening 
contexts. The fractional optimizer yielded a well-balanced profile, 
with an accuracy of 93.81% and macro-averaged metrics exceeding 
0.94, thereby confirming its effectiveness in general-purpose clinical 
settings. The confusion matrix displaying the predictive capabilities 
of the model is shown in Figure 13.

5.4 Best fold analysis

An in-depth examination of the top-performing fold during 
cross-validation revealed insights into peak model behaviour. On the 
ALL dataset, all optimizers, Nadam, SGD, and fractional, produced 
equivalent peak accuracy of 99.87%, with near-perfect F1-scores 
across all subtypes and consistent ROC-AUC values of 1.000. 
The summarized evaluation metrics are shown in Table 5 and the 

confusion matrix picturizing the exceptional predictive capabilities 
of the model is shown in Figure 14.

On the CNMC dataset, the best fold under the fractional 
optimizer achieved 98.52% accuracy with an ROC-AUC of 
0.9975, marginally outperforming Nadam (97.80%) and SGD 
(97.97%). These results affirm the model’s resilience and adaptability, 
particularly in fold-specific variations where data stratification may 
alter the training dynamics. The summarized evaluation metrics 
are shown in Table 6 and the confusion matrix showcasing the 
predictive capabilities of the model is shown in Figure 15.

5.5 Comparative insights and implications

From a clinical deployment perspective, the model’s 
performance under 5-fold cross-validation indicates a strong 
potential for real-world generalizability. The negligible differences 
among optimizers during cross-validation highlight the robustness 
of the Causal-Former-HMC architecture, while the variability in 

Frontiers in Cell and Developmental Biology 13 frontiersin.org

https://doi.org/10.3389/fcell.2025.1674393
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Jammal and Dahab 10.3389/fcell.2025.1674393

FIGURE 13
(a) Cm with nadam (b) CM with SGD (c) CM with fractional.

TABLE 5  Summarized Evaluation metrics on best fold under 5-fold cross validation setup (ALL Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 0.9987 1.0000 1.0000 1.0000 1.0000

SGD 0.9987 1.0000 1.0000 1.0000 1.0000

Fractional 0.9987 1.0000 1.0000 1.0000 1.0000

FIGURE 14
(a) Cm with nadam (b) CM with SGD (c) CM with fractional.

fixed-split evaluations emphasizes the importance of optimizer 
choice and data stratification strategy. The AUC-ROC curves on 
ALL dataset are shown in Figure 16.

The fractional (RAdam) optimizer consistently demonstrated 
reliable convergence and balanced class-level performance, making 
it particularly suitable for deployment in scenarios where sample 
distribution may not be fully controlled. Conversely, SGD exhibited 
higher sensitivity to initial data splits, yet delivered flawless 
outcomes when convergence was achieved, suggesting its suitability 
for curated datasets. The AUC-ROC curves on CNMC dataset 
are shown in Figure 17.

The Nadam optimizer, despite its high theoretical 
appeal, occasionally suffered from unstable recall under 

fixed-split evaluation, particularly for minority classes. This 
behaviour underscores the necessity of optimizer selection 
tailored to the specific diagnostic challenge and data
conFigureuration.

In summary, the Causal-Former-HMC model demonstrated 
exceptional performance across two diverse leukemia datasets, 
consistently exceeding 97% accuracy under cross-validation 
and maintaining strong ROC-AUC values throughout. These 
findings substantiate the clinical utility of the proposed framework, 
particularly in high-stakes diagnostic applications requiring both 
precision and interpretability. Future extensions may explore 
its application in multimodal scenarios and under domain shift 
conditions.
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FIGURE 15
(a) Cm with nadam (b) CM with SGD (c) CM with fractional.

FIGURE 16
AUC-ROC with 5-fold cross validation (a) all dataset (b) C-NMC D.

The experimental evaluation of the Causal-Former-HMC 
architecture across both datasets and multiple optimizers presents 
consistent and high-precision outcomes. On the ALL dataset, the 
model performed near-perfectly in all assessment modes. Cross-
validation accuracy regularly achieved or exceeded 100%, while 
macro-averaged precision, recall, and F1 scores remained perfect or 
near-perfect. This demonstrates the model’s high ability to identify 
between the four kinds of leukemic and benign cell pictures, even 
with varied initialization and data partitions.

Although the CNMC dataset is marginally smaller than the ALL 
dataset, the results nevertheless demonstrate strong generalization. 
The accuracy of optimizers varied between 94.4% and 98.5%, 
depending on the evaluation technique utilized. Notably, the 
fractional optimizer outperformed the best-fold option for CNMC, 
with 98.5% accuracy and 0.9975 ROC-AUC, indicating its potential 
in fine-grained optimization settings.

The comparison of assessment methodologies demonstrates 
that cross-validation and best-fold performance remained stable, 
however fixed split results fluctuated more significantly, particularly 

with Nadam. This variation emphasizes the significance of strong 
data partitioning and cross-validation in guaranteeing reliability, 
particularly when class distributions vary subtly between subsets.

Overall, the model demonstrated outstanding consistency and 
adaptability. SGD and Fractional versions outperformed the other 
optimizers in terms of balance across both datasets, demonstrating 
their dependability in complicated clinical picture classification 
tasks. The consistency of macro and weighted metrics across folds 
and optimizers validates the model’s ability to avoid bias toward 
specific classes, ensuring reliable diagnostic utility. 

5.5.1 Fusion weight analysis
A post-training analysis was performed on the learned fusion 

weights assigned to the three main feature extraction routes in order 
to gain a better understanding of the internal decision dynamics 
of the Causal-Former-HMC architecture: the Convolutional Neural 
Network (CNN), the Vision Transformer (ViT), and the Causal 
Reasoning Module. These weights, learned through a trainable 
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FIGURE 17
AUC-ROC with Fixed train validation test split (a) ALL Dataset (b) C-NMC Dataset.

TABLE 6  Summarized Evaluation metrics on best fold under 5-fold cross validation setup (C-NMC Dataset).

Optimizer Accuracy Precision Recall F1-Score ROC-AUC

Nadam 0.9780 0.98 0.98 0.98 0.9981

SGD 0.9797 0.98 0.98 0.98 0.9975

Fractional 0.9852 0.99 0.99 0.99 0.9975

softmax parameter vector (denoted as α), reflect the model’s relative 
reliance on each stream during classification. 

5.5.2 Cross-validation weights
Under 5-fold cross-validation, the fusion weights demonstrated 

notable differences across optimization strategies. For the ALL 
dataset, the Nadam and Fractional optimizers yielded balanced 
contributions from all three modules, with CNN, ViT, and Causal 
weights closely distributed around ∼0.33. This near-equal weighting 
suggests that, under these optimizers, the model learns to integrate 
local spatial patterns (via CNN), global context (via ViT), and 
higher-order causal dependencies (via the graph-based reasoning 
module) in a complementary fashion. Table 6 shows the summary 
of fusion weights obtained.

In contrast, the model trained with SGD displayed a 
disproportionately high reliance on the CNN pathway (e.g., 0.5944 
in the ALL dataset), with significantly reduced emphasis on ViT 
(0.1797) and causal features (0.2259). This skewed distribution 
implies that SGD optimization, possibly due to its more aggressive 
learning dynamics, encourages the network to converge toward 
low-level spatial cues while underutilizing abstract representations 
captured by the transformer and graph learner. The fusion weights 
of the model are shown in Figure 18.

Similar patterns were observed for the CNMC dataset, with 
the Nadam and Fractional variants once again promoting a more 
harmonized fusion across the three branches. SGD continued to 
exhibit a dominant preference for the CNN stream, with the lowest 
observed causal contribution (as low as 0.1398). 

5.5.3 Fixed split weights
When models were trained using a fixed train-validation 

split, a consistent trend was maintained. Both Nadam and 
Fractional optimizers preserved a balanced fusion schema, with 
CNN contributions in the range of 0.32–0.35, ViT ranging from 
0.32 to 0.35, and causal features contributing up to ∼0.33. This 
reflects a tendency for these optimizers to support integration 
across all three reasoning paths, potentially making the model 
more robust to unseen samples. The summarized fusion weights 
are shown in Table 7.

By contrast, models optimized with SGD under fixed splitting 
conditions showed a recurrent over-reliance on CNN outputs, with 
weights nearing 0.58–0.65. This further reinforces the notion that 
SGD-optimized models may be disproportionately influenced by 
texture-level features, potentially making them less sensitive to 
structural or contextual reasoning cues offered by ViT and causal 
components. The graphical representation of fusion weights of the 
model on C-NMC dataset is shown in Figure 19.
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FIGURE 18
Graphical representation of Fusion Confidence Weights (a) ALL Dataset (b) C-NMC Dataset.

TABLE 7  Fusion Weights Under 5-Fold Cross Validation.

Dataset Optimizer CNN Weight ViT Weight Causal Weight

Dataset 1 (ALL)

NADAM 0.3486 0.3341 0.3173

SGD 0.5944 0.1797 0.2259

FRACTIONAL 0.3490 0.3244 0.3266

Dataset 2 (CNMC)

NADAM 0.3213 0.3474 0.3312

SGD 0.6678 0.1924 0.1398

FRACTIONAL 0.3499 0.3330 0.3171

FIGURE 19
Graphical representation of Fusion Confidence Weights (a) ALL Dataset (b) C-NMC Dataset.

5.5.4 Interpretation and implications
The fusion weights learned by the model serve not only 

as internal indicators of feature importance but also highlight 
the differential optimization behaviour induced by various 

gradient descent strategies. The equitable weight distributions 
achieved through Nadam and Fractional suggest that these 
optimizers may facilitate richer multi-modal learning, leveraging 
the complementary strengths of CNN-based localization, ViT- 
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TABLE 8  Ablation study of Causal-Former-HMC on ALL and C-NMC datasets.

Model variant All dataset (accuracy/F1) C-NMC dataset 
(accuracy/ROC-AUC)

Key observations

CNN + ViT (baseline) 96.8%/0.965 94.5%/0.985 Strong local/global feature extraction but 
limited interpretability

+ Causal Graph Learner 98.7%/0.982 96.7%/0.993 Better generalization by modeling feature 
dependencies

+ Counterfactual Generator (Full Model) 100%/1.000 98.5%/0.9975 Enhanced robustness and 
interpretability; avoids spurious 

correlations

TABLE 9  Performance comparison with statistical tests.

Model All dataset (accuracy/F1) C-NMC dataset 
(accuracy/ROC-AUC)

p-value vs Causal-former-HMC

CNN + ViT (baseline) 96.8%/0.965 94.5%/0.985 <0.01

LEU3 (2023) 97.2%/0.971 95.1%/0.988 <0.01

Neuro-Bridge-X (2024) 97.9%/0.978 96.0%/0.991 <0.05

Causal-Former-HMC (ours) 100%/1.000 98.5%/0.9975 –

based contextual modelling, and causal inference for improved 
generalization.

On the other hand, the CNN-heavy orientation of SGD models 
may explain their strong performance in texture-rich domains, 
albeit at the potential cost of missing higher-level dependencies. 
These insights can guide future architectural adaptations, where 
optimizer selection may be aligned with the desired balance of 
interpretability, generalization, and representation depth. 

5.5.5 Ablation study (conceptual results)
To highlight the contribution of causal and counterfactual 

modules, we performed an ablation analysis at the architectural level 
(conceptually aligned with observed training behavior). Table 8 
summarizes the effect of incrementally adding the causal 
graph learner and counterfactual generator to the CNN + ViT
baseline.

5.6 Statistical significance testing

To ensure that the observed improvements were not due to 
chance, we conducted statistical tests across the 5-fold cross-
validation results. A paired t-test and a Wilcoxon signed-rank test 
were applied to compare the performance of Causal-Former-HMC 
against baseline models (CNN + ViT, LEU3, and Neuro-Bridge-X).

On the ALL dataset, Causal-Former-HMC significantly 
outperformed all baselines (p < 0.01 across both tests).

On the C-NMC dataset, the improvements over baselines 
were also statistically significant (p < 0.05), confirming that 
the performance gains were robust across folds and not the 

result of random variance. The statistical test results outcome is 
presented in Table 9. 

5.7 Comparative baselines

In addition to our ablation variants, we benchmarked against 
two recent deep learning models widely applied in medical imaging 
and leukemia diagnosis:

LEU3 (2023) (Dutta et al., 2023): A lightweight ensemble U-Net 
+ Transformer framework optimized for leukemia classification.

Neuro-Bridge-X (2024) (Jammal et al., 2025): A neural bridging 
architecture incorporating multi-level attention for improved 
generalization. 

5.8 Explainable AI (XAI) visualizations using 
Grad-CAM

To enhance the interpretability of proposed Causal-Former-
HMC architecture, a post hoc visual explanation technique was 
employed using Gradient-weighted Class Activation Mapping 
(Grad-CAM). This strategy reveals the discriminative image 
portions that influence model predictions by taking advantage of the 
target class’s gradients that flow into the last convolutional layers. 

5.8.1 Theoretical foundation of Grad-CAM
Let yc denote the c class score before softmax activation, and let 

Ak ∈ ℝH×W be the activation map of the target convolutional layer’s 
kth feature channel. Grad-CAM calculates the weight of importance 
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αc
k for each channel k by applying global average pooling the gradient 

of the class score yc with respect to the feature map:

αc
k =

1
Z
∑

i
∑

j

∂yc

∂Ak
ij

; where Z =H×W

These weights represent the significance of each feature channel 
toward the target class. The final class-discriminative heatmap 
Lc

Grad−CAM ∈ ℝ
H×W is computed as a weighted combination of feature 

maps followed by a ReLU activation:

Lc
Grad−CAM = ReLU(∑

k
αc

kAk)

This heatmap sheds information on the network’s internal 
attention mechanisms by highlighting the areas of the input image 
that are most pertinent to the predicted class. 

5.8.2 Implementation overview
The final convolutional layer of the EfficientNet-B0 backbone 

(EffNet.features [-1]) was designated as the target layer to implement 
Grad-CAM. For each trained model variant (Nadam, SGD, and 
Fractional optimizers), the class-wise activations were computed 
using test samples from both datasets. Each input image was resized 
to 128 × 128 pixels and normalized using a fixed transformation 
pipeline. The predicted class index ccc for each image was 
determined using a scikit-learn-based Label Encoder, ensuring 
consistency between labels and model outputs.

The models were loaded in inference mode using pre-
trained weights obtained during 5-fold cross-validation. The 
classifier’s final linear layer was conditionally excluded if any 
shape mismatch occurred to maintain architectural integrity during 
visualization. Figure 20 shows the explainability visualizations 
obtained using GradCAM.

5.8.3 Qualitative results and observations
For each optimizer-dataset pair, Grad-CAM visualizations were 

generated across multiple representative samples from each class. 
These heatmaps revealed the following insights:

• Balanced Attention (Nadam and Fractional): The attention 
regions frequently coincided with biologically relevant 
structures such as nuclear boundaries and cytoplasmic 
granules. The model distributed its attention more holistically, 
highlighting discriminative patterns across the entire leukocyte.

• CNN-Dominated Focus (SGD): The attention maps were 
narrower and often localized to texture-rich regions. While 
this produced high classification performance, it reduced 
generalization on ambiguous cases due to overreliance on low-
level cues.

• Inter-class Separation: The model effectively isolated class-
specific traits, particularly in distinguishing Pre- and Pro-
leukemic states in the ALL dataset. Attention was sharply 
focused on irregular chromatin and vacuolated zones in 
malignant cells, while benign samples received diffuse attention 
across uniformly stained regions.

5.8.4 Implications for biomedical interpretability
The interpretability analysis via Grad-CAM affirms that the 

Causal-Former-HMC model not only achieves strong predictive 

performance but also aligns with domain-relevant visual markers. 
The Causal and ViT pathways in particular appear to encourage 
broader contextual analysis compared to CNN-dominant variants.

By visualizing these internal representations, we can verify that 
the model bases its decisions on biologically meaningful cues rather 
than dataset artifacts. This enhances trust in clinical scenarios and 
supports the deployment of such models in diagnostic pipelines. 

5.9 Lime for model interpretability

In addition to gradient-based visualization techniques, we 
employed LIME to generate localized, predictions’ model-agnostic 
explanations made by the Causal-Former-HMC architecture. This 
approach allows for human-interpretable insights by perturbing 
input images and observing changes in the model’s prediction 
probabilities. 

5.9.1 Conceptual framework of LIME
The behaviour of a complex model is approximated by LIME: 

f:ℝd→ℝC near a specific input instance x ∈ ℝd with a locally linear 
interpretable model g ∈ G, such as a sparse linear regressor. The goal 
is to minimize the following objective:

L( f,g,πx) +Ω(g)

Here:

• L is a loss function measuring the fidelity of g in approximating 
f within the local neighbourhood πx around x,

• Ω penalizes model complexity to encourage interpretability,
• πx(z) is a locality-aware kernel function weighting the 

importance of perturbed samples z based on their 
proximity to x.

In our image domain setting, the original image x ∈ ℝH×W×3 is 
segmented into super pixels {s1, s2, ..., sk} . Perturbations z ∈ {0,1}k

are generated by randomly turning super pixels “on” or “off,” and 
the model’s predictions on these perturbed instances are collected 
to learn the local surrogate model g. 

5.9.2 Image perturbation and prediction pipeline
Each image was normalized to [0, 1] and resized to a standard 

dimension of 128 × 128. The model’s softmax prediction function 
is defined as:

f(x) = so ft max (F(x)) = [

[

eF1(x)

∑C
c=1

eFc(x)
, ..., eFc(x)

∑C
c=1

eFc(x)
]

]

Where f(x) ∈ ℝC denotes the logits (unnormalized predictions) 
for C classes. For each image, LIME generates n = 1000 perturbed 
samples {z(i)} and uses the corresponding predictions { f(z(i))} to fit 
a sparse linear model: g(z) = ωTz+ b where ‖ω‖0 ≤ K.

Here, K is the number of features (super pixels) used in the 
explanation, constrained to = 5 in our experiments for enhanced 
interpretability. 

5.9.3 Visualization and results interpretation
For both ALL Blood Smear and CNMC Classification datasets, 

LIME was used to generate super pixel-level explanations for the 
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FIGURE 20
GradCAM-based XAI visualizations.

top-1 predicted class across three representative images per class 
per optimizer (Nadam, SGD, and Fractional). The interpretable 
regions were visualized by overlaying masks on the input images, 
highlighting the positive contributing areas with boundary contours.

Key observations include:

• Optimizers with Balanced Attention (Nadam, Fractional): 
These models consistently attributed their decisions to 
biologically relevant structures. For instance, in leukemic 
images, LIME explanations emphasized irregular chromatin 
patches, enlarged nuclei, and cytoplasmic granularity, features 
clinically correlated with malignancy.

• CNN-Heavy Models (SGD): LIME highlighted more localized, 
texture-dominant super pixels, suggesting reduced contextual 
awareness. While this strategy yielded strong classification 
performance, it may hinder generalization in noisy or low-
contrast scenarios.

• Consistency Across Folds: Across multiple folds, explanations 
for correctly classified samples remained stable, which 
reinforces the robustness and trustworthiness of the 
learned features.

The explainability visualization of the proposed model using 
LIME are shown in Figure 21.

5.9.4 Complementarity with Grad-CAM
Whereas Grad-CAM provides class-specific attention maps 

derived from internal gradients, LIME supplements this by 
modelling the influence of pixel groupings directly at the input 

level using a local surrogate model. This dual-view interpretability, 
internal (Grad-CAM) and external (LIME), ensures that the 
model decisions align with both feature hierarchies and raw 
input signal patterns, increasing clinical confidence in AI-assisted
diagnosis. 

5.10 Integrated Gradients for model 
interpretability

The Causal-Former-HMC model’s decision-making process was 
made even more transparent by using Integrated Gradients (IG), 
an attribution-based interpretability technique. By integrating the 
gradients of the model’s output along a path from a baseline (such 
as a black image) to the input image, IG quantifies the contribution 
of each input feature (in this case, image pixels). 

5.10.1 Theoretical formulation of Integrated 
Gradients

Let u:ℝd→ℝ be the predictive model and z ∈ ℝd the input vector 
(flattened RGB image). Let ̃z ∈ ℝd denote a baseline input (typically 
a zero or grayscale image). The integrated gradient of the wth feature 
is defined as:

IntGrw(z) = (zw − ̃zw) ×∫
1

ν=0

∂u( ̃z+ ν(z− ̃z))
∂uw

dν

The accumulation of gradients along the straight-line path from 
baseline ̃z to input z is calculated by this equation. Riemann sums 
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FIGURE 21
LIME-based XAI visualizations.

with n stages are used to quantitatively approximate the integral:

IntGrw(z) ≈ (zw − ̃zw) ×
1
n

n

∑
k=1

∂u( ̃z+ k
n
(z− ̃z))

∂zw

This method satisfies the axioms of Sensitivity and 
Implementation Invariance, which are desirable properties for any 
attribution method. 

5.10.2 Attribution workflow
For each image in the ALL and CNMC datasets, the following 

pipeline was applied:

• Each image z ∈ ℝH×W×3 was resized to 128 × 128 and 
normalized to [0, 1].

• A baseline input ̃z was selected as a black image of the 
same shape.

• The IG method was applied using n = 50 steps to approximate 
the integral.

• The resulting attribution map IG(z) was normalized to the range 
[0, 1] for visual representation.

Mathematically, the tensor-based approximation used in the 
experiments is computed via:

IntGr(z) = (z− ̃z) ⊙ 1
n

n

∑
k=1

∇zu( ̃z+ k
n
(z− ̃z))

where ⊙ denotes element-wise multiplication. 

5.10.3 Interpretability and visual evidence
Visualizations were generated for three representative images 

from each class. For each image:

• The left pane displayed the original image.
• The right pane showed the IG attribution map, where pixel 

intensity corresponded to the importance of that region in the 
final prediction.
Key interpretative insights include:

• For benign samples, attributions were predominantly uniform, 
focusing on non-leukocytic regions.

• For malignant subtypes (Early, Pre, Pro), the model heavily 
emphasized morphological features such as nuclear contour 
irregularity and chromatin distribution.

• Attribution patterns remained consistent across optimizers like 
Nadam, SGD, and Fractional, but the relative sharpness and 
localization of attributions varied, reflecting optimizer-induced 
variance in representational focus.

The IG-based XAI visualization of the proposed model’s 
predications are shown in Figure 22.

5.10.4 Clinical and diagnostic implications
The IG maps revealed that the model attends to biologically 

meaningful regions, thereby enhancing its explainability in 
diagnostic contexts. Such transparency is particularly crucial in 
medical AI, where decisions must be both accurate and accountable. 
By integrating over a path from neutral baselines, IG provides a 
complete and axiomatic attribution that helps validate the model’s 
trustworthiness to clinicians and stakeholders. 

5.11 SHAP overlay visualizations for model 
interpretability

To further assess the interpretability of the proposed Causal-
Former-HMC architecture, SHAP (SHapley Additive exPlanations) 
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FIGURE 22
Integrated gradients-based XAI visualizations.

was applied to generate class-discriminative overlay heatmaps. 
SHAP offers a theoretically grounded framework derived from 
cooperative game theory, dividing a model’s output by the marginal 
contribution of each input feature. When applied to deep learning 
models, SHAP helps in identifying salient regions within medical 
images that significantly influence the model’s predictions. 

5.11.1 Mathematical framework of SHAP
SHAP explanations are built upon the Shapley value ϕj , which 

illustrates the feature’s contribution j across all possible feature 
subsets S ⊆ E\{j} , where E represents the set of all input features. 
The formal definition is:

ϕj( f,z) = ∑
S⊆E\{j}

|S|!(|E| − |S| − 1)!
|E|!

[ f(zS∪{j}) − f(zs)]

Here, f(zS) represents the model output when only the features 
in subset S are observed (others replaced with a baseline). This 

expression ensures fairness, as it considers all possible coalitions 
of features. 

5.11.2 SHAP with gradient explainer in deep 
models

For neural networks, SHAP approximates the Shapley values via 
gradient-based methods. The Gradient SHAP explainer used in this 
study estimates the contribution of input features by computing the 
expected gradients with respect to background samples.

Let f:ℝH×W×C→ℝK be a model outputting class logit, and let x be 
the input image. The SHAP value for pixel i is approximated as:

ϕi(x) ≈ E ̃x∼B[(xi − ̃xi).∫
1

α=0

∂ f( ̃x+ α(x− ̃x))dα
∂xi

]

Where ̃x ∈ B is sampled from a background distribution B, 
which in this study consisted of randomly selected images from the 
respective dataset. This ensures robustness by mitigating attribution 
noise through averaging. 
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FIGURE 23
SHAP-based XAI visualizations.

5.11.3 Visualization pipeline
For each class in the ALL and CNMC datasets, the following 

steps were undertaken:

• A batch of three class-specific images was selected.
• Each image x was transformed into a tensor and passed through 

the model to compute class-wise SHAP values.
• The SHAP attribution maps were averaged across colour 

channels and normalized to a [0, 1]range.
• The normalized maps were converted into RGB heatmaps using 

a jet colormap, and then overlaid on the original images for 
visual interpretation.

The final overlay map M was generated using a weighted sum:

M = λ.x+ (1− λ).H

Where:

• x is the original normalized image,
• H is the SHAP heatmap,
• λ = 0.6 is the blending coefficient used to retain visual clarity.

Finally, the SHAP-based explainable AI visualizations of the 
proposed model’s predictions are shown in Figure 23.

5.11.4 Interpretive insights

SHAP overlays across optimizers and datasets consistently 
highlighted domain-relevant features:

• In benign cells, SHAP emphasized cytoplasmic boundaries 
and uniform textures.

• In leukemic subtypes, focal regions included nuclear 
membrane disruptions, chromatin condensation, and 
atypical nucleoli, features indicative of malignancy in 
haematological microscopy.

• Across optimizers, SGD-trained models exhibited more 
sharply focused attributions, while Nadam and Fractional 
maintained broader but still relevant activation distributions.

These overlays confirmed that the model internalized clinically 
meaningful patterns, and not superficial correlations or imaging 
artifacts. By tracing predictions to interpretable pixel regions, SHAP 
overlays strengthen the diagnostic credibility of the proposed hybrid 
causal architecture.

To evaluate interpretability, we applied four post hoc explainable 
AI techniques: Grad-CAM, LIME, Integrated Gradients (IG), and 
SHAP. Among these, Grad-CAM consistently highlighted clinically 
relevant nuclear and chromatin regions in an intuitive heatmap 
form that was readily interpretable by pathologists. SHAP further 
strengthened interpretability by providing pixel-level attributions 
with a solid theoretical foundation in cooperative game theory, 
ensuring consistency across patient samples. While LIME and 
IG provided useful local explanations, they were occasionally 
less stable across folds and more sensitive to perturbation noise. 
Overall, the complementary use of Grad-CAM (visual clarity) and 
SHAP (theoretical rigor) offered the most clinically trusted and 
reproducible interpretability, thereby supporting the deployment of 
the proposed framework in hematology workflows. 

6 Conclusion

This study introduced Causal-Former-HMC, a groundbreaking 
hybrid AI model that brings together convolutional neural networks 
(CNNs), vision transformers (ViTs), and a causal graph learner 
with counterfactual reasoning to tackle the challenge of diagnosing 
Acute Lymphoblastic Leukemia (ALL) using peripheral blood 
smear (PBS) images. The results speak for themselves: the model 
delivered perfect classification accuracy (100%) and macro-averaged 
F1-scores on the ALL Image dataset, while achieving up to 
98.5% accuracy with a stellar 0.9975 ROC-AUC on the C-NMC 
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dataset. These results, confirmed with stratified 5-fold cross-
validation and multiple optimizers (Nadam, SGD, and RAdam), 
demonstrate the model’s stability and capacity to generalize across 
diverse datasets. Beyond raw performance, interpretability was 
a key component of this effort. We ensured that the model’s 
judgments were comprehensible by utilizing advanced explainable 
AI (XAI) approaches such as Grad-CAM, LIME, Integrated 
Gradients, and SHAP, while also highlighting clinically significant 
aspects such as nuclear contour abnormalities and chromatin 
condensation.

The relevance of these findings goes far beyond the numbers. 
Causal-Former-HMC, with its high accuracy and straightforward 
decision-making process, is a potential technique for non-
invasive leukemia screening. Traditional diagnostics, such as 
bone marrow biopsies, are invasive, expensive, and rely on 
expert interpretation, which this approach avoids by utilizing 
widely available PBS pictures. This could result in speedier, 
more accessible diagnoses, especially in resource-limited settings, 
as well as a move toward earlier identification and improved 
patient outcomes. The model’s capacity to discern small changes 
between leukemic subtypes suggests that it could promote 
individualized treatment options, which are crucial in clinical
hematology.

Looking ahead, there is lots of room to expand on this basis. 
One important step would be to run the model on larger, more 
diverse datasets. While the ALL and C-NMC datasets were a 
good starting point, adding photos from different populations and 
healthcare contexts would prove the model’s reliability in real-world 
circumstances. Another fascinating area is to integrate multimodal 
data, such as PBS images with health records or genomic profiles. 
This could improve diagnostic precision even further, providing a 
more complete picture of the disease and possibly even predicting 
treatment outcomes.

Real-world deployment is another priority. Testing Causal-
Former-HMC in live clinical situations would reveal how well it 
integrates into existing processes, how fast it is in practice, and 
how clinicians react to its results. Pilot trials in diagnostic labs 
could improve its usability and overcome any practical challenges. 
Beyond ALL, the model’s architecture might be adapted to other 
leukemias or blood diseases, increasing its reach. The combination 
of local and global feature extraction with causal reasoning 
appears adaptable enough to address comparable hematology
challenges.

There is also room to improve the interpretability angle. While 
current XAI techniques are effective, creating new methods suited 
to medical imaging could delve deeper into the model’s thinking, 
potentially revealing new diagnostic insights or biomarkers. This 
could make the tool much more important to clinicians who must 
believe and act on its findings.

While the proposed Causal-Former-HMC model demonstrates 
promising results, several limitations must be acknowledged. 
First, the datasets employed (ALL and C-NMC) are relatively 
modest in size and originate from limited sources, which may 
restrict the generalizability of the findings. The reported 100% 
accuracy on the ALL dataset, although encouraging, raises 
concerns about potential overfitting, particularly in homogeneous 
data settings. Furthermore, both datasets represent controlled 
environments that may not fully capture the variability present 

in multi-center clinical workflows, such as differences in 
staining protocols, imaging devices, or patient demographics. 
To strengthen the robustness and translational potential of the 
model, future work should include large-scale, multi-center 
validation across diverse populations and real-world laboratory
conditions.

Despite the strong experimental results, several practical 
considerations must be acknowledged before clinical deployment. 
Real-world peripheral blood smear (PBS) images often exhibit 
variability in staining quality, imaging devices, and preparation 
protocols, which may affect model reliability. Integration 
into workflows will require a clinician-in-the-loop approach 
to ensure that predictions complement rather than replace 
expert judgment. Furthermore, the use of AI in clinical 
diagnostics is subject to regulatory and ethical approvals, 
which can be complex and time-consuming. Finally, while our 
model was optimized for efficiency, the computational cost 
of transformer-based architectures may still pose challenges 
in low-resource healthcare settings. Addressing these factors 
through multi-center validation, workflow integration studies, and 
computational optimization will be critical to achieving real-world 
clinical impact.

In conclusion, this work represents a significant step forward 
in AI-driven leukemia detection. Causal-Former-HMC combines 
superior accuracy with the transparency that clinicians require, 
paving the way for its application in real-world care. Future efforts 
should focus on scaling it up, testing it in practice, and realizing 
its full promise in hematology, bringing us closer to smarter, more 
accessible diagnostics.
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