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ATPIF1 (ATPase Inhibitory Factor 1) is a critical regulatory factor of mitochondrial
ATP synthase, maintaining ATP homeostasis by modulating ATP synthesis
and hydrolysis. In this study, we investigated the consequences of ATPIF1
knockout (KO) on terminal erythroid development and mitochondrial
metabolic adaptation in mice. ATPIF1-KO mice exhibited significant reductions
in peripheral red blood cell (RBC) counts, hemoglobin, and hematocrit.
Mechanistic studies identified impaired development of bone marrow (BM)
erythroid, accompanied by robust compensatory erythroid development in
the spleen. Integrated RNA-seq and metabolomic analyses revealed that
ATPIF1 deficiency disrupted cell proliferation and mitochondrial function in
oxidative phosphorylation (OXPHOS) and the tricarboxylic acid (TCA) cycle of
BM erythroblasts, leading to defective terminal differentiation of erythrocytes.
BM-derived erythroid cells showed a reduction in proliferation, mitochondrial
mass, and reactive oxygen species (ROS) levels with an increase in apoptosis.
Conversely, the spleen displayed extramedullary erythroid development
characterized by enhanced proliferation, reduced apoptosis, increased reductive
stress, and upregulation of heme-related genes. Heme levels were decreased
in the bone marrow, but not in the spleen. These findings establish ATPIF1 as
a key regulator of terminal erythroid development and highlight the essential
compensatory role of the spleen in maintaining erythropoietic homeostasis
under KO-induced mitochondrial dysfunction. Our work provides new insight
into the pathophysiology of mitochondrial-related anemias and potential
therapeutic targets.
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Highlights

o ATPIF1 knockout disrupts terminal erythroid development
in the bone marrow, triggering compensatory erythroid
development in the spleen.

« Mitochondrial dysfunction and metabolic imbalance in
ATPIF1-deficient erythrocytes
increase apoptosis.

impair proliferation and

Introduction

Terminal erythroid development is a highly regulated process
involving the proliferation and differentiation of hematopoietic
progenitors into mature RBCs (Palis, 2014). In mammals, this
process begins with proerythroblasts that undergo three mitotic
divisions, sequentially generating basophilic, polychromatic,
and orthochromatic erythroblasts before enucleating to form
reticulocytes (Ji et al, 2011). These developmental transitions
require massive metabolic resources, with erythroid precursors
shifting from glycolysis to mitochondrial OXPHOS to meet
energy demands (Lepelley and Crow, 2021). In mitochondria, ATP
production via the TCA cycle, OXPHOS and heme biosynthesis are
essential for erythroid cell function (Ponka, 1997; Oburoglu et al.,
2016; Liu et al., 2017; Richard et al., 2019).

ATPIFI functions as a critical regulator of F,F -ATP synthase
(Complex V), modulating the synthesis and hydrolysis function
of Complex V (Zhong et al., 2022). By finely tuning these dual
functions, ATPIF1 ensures the maintenance of intracellular ATP
homeostasis (Zhong et al., 2022). Beyond its role in OXPHOS
regulation, ATPIF1 contributes to mitochondrial ROS production
under normoxia (Gore et al., 2022; da Silva et al., 2024). Under
hypoxic stress, its regulatory influence on the mitochondrial proton
gradient becomes especially vital for sustaining ATP synthase
activity (Zhong et al., 2023; Ge et al.,, 2024). Genetic deletion of
ATPIF1 disrupts this balance, leading to proton gradient collapse,
mitochondrial dysfunction, and cellular energy crisis (Acin-
Perez et al., 2023).

The impact of ATPIF1 genetic disruption on heme biosynthesis
during erythroid development appears to vary between mammalian
and non-mammalian species (Yien and Perfetto, 2022). For
instance, ATPIF1 knockout zebrafish exhibit anemia from heme
synthesis defects (Shah et al, 2012), while ATPIF1-depleted
human CD34" cells and murine erythroleukemia (MEL) cells show
impaired erythroid differentiation (Shah et al,, 2012). However,
our previous investigations revealed that ATPIF1-knockout
mice did not develop severe anemia, suggesting the existence
of compensatory mechanisms in mammalian hematopoiesis
(Nakamura et al., 2013; Zhong et al., 2023).

In this study, we demonstrate that ATPIFI-KO mice
exhibit mild anemia characterized by reduced peripheral RBCs
and lower hemoglobin levels. BM analyses revealed defective
terminal erythroid differentiation, characterized by diminished
mitochondrial mass, attenuated ROS production, and increased
apoptotic rates among erythroid precursors. Transcriptomic
and metabolomic profiling identified impaired proliferation,
downregulate of TCA cycle and OXPHOS activity. Compensatory
splenic erythroid development in ATPIF1-KO mice featured
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metabolic reprogramming and cell proliferation. ATP/ADP,
lactate/pyruvate and malate/oxaloacetate ratios demonstrated the
presence of reductive stress in the spleen (Xiao and Loscalzo,
2020). These findings establish ATPIF1 as a master regulator
of mitochondrial metabolism during erythroid development
and reveal potential therapeutic targets for mitochondrial-
related anemias.

Materials and methods
ATPIF1-KO mice

ATPIF1-KO mice on a C57BL/6 genetic background were
generated and characterized as previously reported (Zhong et al.,
2022). All animals were bred and maintained in the animal facility
at Zhengzhou University under standard conditions (20 °C # 2 °C,
60% + 5% humidity, 12-h light/dark cycle) with ad libitum access
to food and water. All experimental procedures involving animals
were approved by the Life Sciences Ethics Review Committee of
Zhengzhou Central Hospital, affiliated with Zhengzhou University
(Approval No. ZXYY2024131). Male ATPIF1-KO mice aged
8-12 weeks were used for experiments, with age-matched wild-type
littermates serving as controls.

Hematology analysis

Peripheral blood counts were measured using a Myriad
Veterinary Automatic Blood Cell Analyzer Model: BC-2800vet.

BrdU detection

Cell proliferation was evaluated using the FITC-BrdU Cell
Proliferation Detection Kit (KeyGEN, Cat# KGA9201-20). Mice
received intraperitoneal injections of BrdU (100 mg/kg body
weight, dissolved in PBS) and tissue samples were collected for
analysis 1 week after administration. DNA denaturation was carried
out according to the manufacturer’s instructions prior to BrdU
detection.

Cell isolation and preparation

Bone marrow cells were flushed from tibiae and femora with
PBS supplemented with 0.5% BSA and 2 mM EDTA, and then
passed through 70 pm cell strainers. Spleen cells were mechanically
dissociated in PBS containing 0.5% BSA and filtered through 70 um
strainers.

Flow staining of terminal erythroid cells

BM and spleen single cell suspensions were counted and 2
million cells were taken from each and stained with TERI19-
Brilliant Violet 421™ (BV421; Cat# 116233, Biolegend), CD44-APC
(Cat# 103012, Biolegend), CD45~ APC/Cyanine7 (APC-Cy7; Cat#
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157204, Biolegend), CD11b- APC-Cy7 (Cat# 101226, Biolegend),
and Ly-6G/Ly-6C (Gr-1)- APC-Cy7 (Cat# 108423, Biolegend),APC
anti-mouse TER-119/Erythroid Cells Antibody (APC; Cat# 116212,
Biolegend). Data acquisition was performed on a BD LSRFortessa
SORP flow cytometer, and data were analyzed using FlowJo software
(version 10.0).

Mitochondrial assay

After flow staining of the erythroid cells, cells were incubated
with 100 nM Mito Tracker Green (Cat# C1048, Beyotime) at
37 °C for 30 min. Stained cells were washed to remove the Mito-
Tracker Green staining working fluid, fresh cell culture medium
(pre-warmed at 37 °C) was added, cells were resuspended in
fresh cell culture medium (pre-warmed to 37 °C) and immediately
subjected to flow cytometric analysis to assess mitochondrial mass,
as indicated by MitoTracker Green fluorescence intensity.

ROS assay

Intracellular ROS levels were measured using the Reactive
Oxygen Species Assay Kit (Cat# CA1410, Solarbio). After flow
staining, cells were collected and resuspended in serum-free
medium containing 10 mM DCFH-DA, a fluorescent probe for
ROS detection, and incubated at 37 °C for 20 min. Cells were then
washed three times with PBS to remove any extracellular DCFH-DA.
After resuspension, ROS fluorescence intensity was immediately
measured by flow cytometry.

Apoptosis detection

After flow staining of the erythroid cells, the apoptosis rate was
assessed using the Annexin V-FITC Apoptosis Detection Kit (Cat#
C1062, Beyotime). According to the manufacturer’s instructions,
cells were collected and resuspended in 195 pL of binding buffer.
Followed by addition of 5 pL. Annexin V-FITC and 10 pL propidium
iodide (PI) solution., Samples were incubated for 15 min at room
temperature (20 °C-25 °C) in the dark and subsequently analyzed
by flow cytometry immediately. Cell populations were classified
as viable (Annexin V7/PI7), early apoptotic (Annexin V*/PI7),
late apoptotic/necrotic (Annexin V*/PI*), or necrotic (Annexin
V7/PI*), and the proportion of apoptotic cells was compared
between groups.

Detection of intracellular ferrous iron (Fe2")

After flow staining of the erythroid cells, intracellular Fe*" levels
were detected using an Iron Assay Kit (abs47038990; Absin, China).
Cells were incubated with 1 uM FerroOrange working solution at
37 °C under 5% CO, for 30 min. After incubation, the cells were

washed once with PBS, and the fluorescence intensity reflecting
ferrous iron content was immediately analyzed by flow cytometry.
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Heme detection

Single-cell suspensions were prepared from the spleen and
bone marrow (n = 6). 5 million cells from each tissue were
homogenized by grinding. The homogenates were centrifuged
to obtain the supernatant. Spleen supernatant, bone marrow
supernatant (diluted to an appropriate concentration), standards,
and distilled water were aliquoted into separate wells of a 96-
well plate. Reaction Buffer was then added to each well, followed
by the addition of the dye reagent. The plate was gently shaken
to ensure thorough mixing and incubated at room temperature
for 10 min. Absorbance was measured at 505 nm for quantitative
analysis.

RNA-seq of BM CD45™ cells

CD45-negative cells were isolated from BM of mice (n
= 2 per group) and preserved in TRIzol reagent (Invitrogen)
for RNA extraction. RNA sequencing libraries were prepared
and sequenced (by Genesky Biotechnologies Inc., Shanghai,
China) following standard protocols. RNA concentration was
prepared with a minimum required concentration of 50 pg/uL
for a total input amount of >400 pg in sequencing. Full-length
cDNA was synthesized and amplified from the total RNA using
the SMART-seq2 protocol. The final libraries with an average
insert size distribution of 300-400 bp, as verified by the Agilent
2,100 Bioanalyzer. Libraries that passed quality control were
quantified by Qubit, pooled in equimolar ratios, and sequenced
on an Illumina NovaSeq 6,000 using a 2 x 150 bp paired-end
strategy. Raw sequencing data (raw reads) in fastq format were
subjected to quality control and filtering with the following
parameters: Removal of adapter sequences, trimming of bases
with a Phred quality score (Q) < 15 at read ends, discarding of
reads shorter than 40 bp after processing. Differential expression
analysis between groups was performed using the DESeq2 (http://
bioconductor.org/packages/release/bioc/html/DESeq2.html) R
package.

RNA-seq of spleen CD45™ cells

CD45-negative cells were isolated from mouse spleens
(WT:ATPIF1-KO = 4:5) and preserved in TRIzol reagent (Magen)
for RNA extraction. RNA-seq analysis was conducted by Shanghai
Applied Protein Technology (Shanghai). RNA samples were used
for subsequent library preparation and sequenced on MGISEQ-
T7 platform to generate 150 bp paired-end reads. Raw data
in fastq format were initially processed to remove low-quality
reads and adapter sequences. The resulting high-quality data
are referred to as clean reads. Differential expression analysis
between groups was performed using the DESeq2 (http://
R
package. Genes with an absolute value of log2 fold change

bioconductor.org/packages/release/bioc/html/DESeq2.html)
(log2FC) > 1 and an adjusted p-value (padj) < 0.05 were

considered statistically significant differentially expressed genes
(DEGsS).
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Targeted metabolomics analysis

Bone marrow and spleen tissues were rapidly harvested and
stored in —80°C freezer after flash-frozen in liquid nitrogen
(n = 6 per group). The samples were thawed at 4°C and
80 mg of each sample was mixed with 25 pL isotope internal
standards and 400 pL of cold methanol/acetonitrile solution
(1:1, v/v). The lysate was homogenized by MP homogenizer
(20s, thrice), adequately vortex, then ultrasounded for 5 min at
low temperature, followed by incubation at -20°C for 1h.
The mixture was centrifuged for 20 min (14000rcf, 4 °C). The
supernatant was taken from the Ostro plate, and divided into
two tubes (one tube is 2/3 and the other tube is 1/3). 2/3 of the
solution was dried in a vacuum centrifuge, re-dissolved in 150 uL
acetonitrile/water (1:1, v/v) and adequately vortexed, and then
centrifuged (14000rcf, 4 °C, 15 min). The supernatant was then
injected into the HPLC-MS/MS apparatus for quantification and
analysis by the Applied Protein Technology Company (Shanghai,
China).

Statistical analysis

Unless otherwise specified, all quantitative data are presented
as mean + standard deviation (SD). Statistical significance
between groups was evaluated using an unpaired two-tailed
Student’s t-test. Sample sizes are indicated in the corresponding
figure legends. Flow cytometry data were acquired on an
LSRFortessa instrument and analyzed using FACSDiva software
(BD Biosciences) and FlowJo v10 (Tree Star, United States). All
statistical analyses and graphing were performed using GraphPad
Prism. A p-value <0.05 was considered statistically significant.
RNA-seq data are presented after FDR (False discovery rate)
adjustment and metabolomics data are presented without FDR
adjustment.

Results

Loss of ATPIF1 impairs BM terminal
erythroid development

To elucidate the impact of ATPIF1 deficiency on erythroid
development, we evaluated peripheral blood parameters and BM
erythroid populations in ATPIF1-KO mice. Blood parameters
analysis revealed decreases in RBCs, hemoglobin (HGB), and
hematocrit (HCT) (Figure 1A and Supplementary table), while
mean corpuscular hemoglobin (MCH) values remained unchanged
(Supplementary Figure S1A). Macroscopically, bones from ATPIF1-
KO mice appeared noticeably paler compared to wild type mice,
and a marked reduction in erythroid cells was observed in BM
single-cell suspensions, as indicated by the lighter color of cell pellets
(Figure 1B). Typically, a combination of Ter119, CD44, and cell
size is utilized to distinguish different stages of terminal erythroid
cells in mice by flow cytometry (Liu et al., 2011; Liu et al., 2013).
Flow cytometric analysis demonstrated a significant reduction in
the proportion and cell numbers of Ter119* cells in the BM of
ATPIF1-KO mice. Furthermore, we analyzed the distribution of
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erythroblasts, reticulocytes, and RBCs during terminal erythroid
development in the BM (Figures 1C-E; Supplementary Figure S1D).
FerroOrange-based flow cytometric analysis revealed an increase
in Fe?* content within Ter119" cells and reticulocytes in the bone
marrow. (Figure 1F). But heme levels in bone marrow cells was
decreased (Figure 1G).

Elevated ferrous iron levels coupled with reduced heme
content in bone marrow cells indicate impaired heme synthesis.
Given that mitochondria serve as the primary site for heme
biosynthesis (Dutt et al,, 2022), these findings strongly suggest
mitochondrial abnormalities in ATPIF1-knockout bone marrow
These data established that loss of ATPIF1 impairs
terminal erythroid development in the bone marrow, resulting in
diminished RBC production. Notably, while Ter119* cells were
substantially depleted in ATPIF1-KO BM, the mice maintained
near-normal HCT, suggesting activation of compensatory erythroid

cells.

development.

Splenomegaly and compensatory erythroid
development in ATPIF1-KO mice

In line with the compromised terminal erythroid development
observed in the BM, ATPIFI-KO mice developed significant
splenomegaly while maintaining stable body weight (Figures 2A,B;
Supplementary Figure S1B). In contrast to the BM, the spleen
of ATPIF1-KO mice exhibited notable expansion of Ter119"
populations (Figure 2C;  Supplementary Figure S1E), reflecting
elevated erythroid precursor cells proliferation and differentiation,
which corresponded with an increased proportion and cell numbers
of erythroblasts and reticulocytes (Figures 2D,E). Flow cytometric
analysis demonstrated an increased Fe** content in the spleen
Ter119" cells and erythroblasts (Figure 2F). And heme level in
spleen cells was increased (Figure 1G).

ATPIF1 deficiency impairs terminal
erythroid differentiation of RBC in vivo

To elucidate mechanisms underlying the terminal erythropoietic
defects in ATPIF1-KO mice, we isolated CD45 cells from
BM via magnetic bead sorting and performed RNA-seq. The
proportion of Ter119-positive cells among CD45-negative bone
marrow cells following magnetic bead sorting exceeded 90%
(Figure 3A). Differential identified 862
upregulated and 338 downregulated genes in ATPIFI-KO mice

expression analysis

(Figure 3B). Untargeted metabolomic profiling uncovered buildup
of 2-hydroxybutanoic acid disrupts the NADH/NAD" balance,
thereby impairing nucleotide biosynthesis (Sharma et al., 2021);
elevated DHAP levels reflect dysregulation of glycolysis and
gluconeogenesis (Orozco et al, 2020); inosine accumulation
coupled with cytosine depletion indicates compromised purine
and pyrimidine metabolism (Abudayyeh et al., 2019). Additionally,
increased levels of 2-hydroxyglutarate (2-HG) may be indicative
of reductive TCA cycle activity under hypoxic conditions
(Munk et al., 2023). Collectively, these metabolic derangements
limit both the supply of essential biosynthetic precursors and
cellular energy required for proliferation, while reduced itaconate
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6). (B) Representative images of bone marrow and corresponding cell suspensions, along with quantification of total bone marrow cell counts (n = 24).
(C) Quantification and cell numbers of total Ter119" cells (n = 24). (D) Quantification of erythroblasts, reticulocytes and RBCs (n = 24). (E) Cell numbers
of erythroblasts, reticulocytes and RBCs (n = 24). (F) Flow cytometric analysis of Fe>* content showing increased mean fluorescence intensity (MFI) in
Ter119* cells and reticulocytes in the bone marrow (n = 6). (G) Heme level in bone marrow cells (n = 6). Data are presented as mean + SD;*p < 0.05;**p
< 0.01;,***p < 0.001 by unpaired two-tailed t-test.

levels suppress SDH, further disrupting TCA cycle function
(Selak et al., 2005). ,Downregulation of TCA cycle and OXPHOS
pathways, together with decreased ATP/ADP ratios in bone
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marrow (Supplementary Figure SID-E), highlight a state of
energy deficiency that is unfavorable for cellular proliferation and
differentiation (Figure 3D; Supplementary Figure S1D).
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Compensatory splenic erythropoiesis in ATPIF1-KO mice. (A) Quantification of spleen weight and spleen/body weight ratio (n = 6). (B) Representative
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Gene set enrichment analysis (GSEA) revealed significant  assays confirmed significantly reduced proliferation of Ter119*
downregulation of genes involved the DNA replication and tRNA  erythroid cells in the BM of ATPIF1-KO mice (Figure 3E), lending
biosynthesis pathway pathway (Figures 3C,F). BrdU incorporation  functional support to the multi-omics findings. Genetic ablation
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of ATPIF1 induces systemic dysregulation of energy supply, and
redox homeostasis, creating a “metabolic bottleneck” that impairs
erythroid development.

ATPIF1 deficiency disrupts mitochondrial
homeostasis and promotes erythroblasts
apoptosis in BM

Mitochondrial content and ROS production were both
decreased in BM erythroid cells, correlating with increased
rates of apoptosis (Figure 4). Flow cytometric analyses further
confirmed decreased mitochondrial content in terminal
erythroid cells of the BM (Figures 4A,B), alongside marked
attenuation of ROS generation (Figures4C,D). Apoptosis rates
were correspondingly increased in both the Terl19" cells
and erythroblasts populations (Figures 4E,F). These findings
demonstrate that ATPIF1 deficiency impairs mitochondrial
function through coordinated suppression of oxidative metabolism,
ultimately triggering apoptosis in BM erythroid progenitors. The
observed reduction in both mitochondrial and ROS suggests
profound dysregulation of mitochondrial homeostasis following
ATPIF1 deletion.

ATPIF1 knockout promotes compensatory
erythroid development in spleen

Transcriptomic profiling of splenic CD45  cells isolated
from ATPIF1-KO mice demonstrated significant upregulation
of cell cycle and DNA replication pathways according to KEGG
enrichment (Figure 5A), suggesting enhanced cellular proliferation.
These findings are consistent with our compensatory splenic
(Figures 2C,D).
the adaptations observed in the spleen differed from those

flow cytometry quantification Importantly,
in the BM, where mitochondrial content was maintained
(Supplementary Figure S2A-B), and there was evidence of increased
proliferative capacity and improved erythroid cell survival. ROS
levels in splenic erythroid cells were markedly increased in ATPIF1-
KO mice (Figures 5B,C), and apoptosis rates in splenic erythroid
cells were significantly reduced (Figures 5D,E), which is in stark
contrast to observations in BM.

Metabolite analysis of spleen from ATPIF1-KO mice revealed
significant enrichment in metabolic pathways of glycolysis and
amino acid synthesis. Notably, metabolites in glycolysis were
elevated, and almost all amino acids were increased. Within the
pentose phosphate pathway (PPP), level of D-sedoheptulose-
7-phosphate was increased, which may indicate enhanced
NADPH production. In addition, the accumulation of DHAP
and glyceral-3-phosphate suggests upregulation of the glycerol
synthesis pathway (Figure 5F). Increased ratios of ATP/ADP,
lactate/pyruvate and malate/oxaloacetate indicate that the spleen is
undergoing reductive stress (Xiao and Loscalzo, 2020). We speculate
that the surge in demand for biomolecules and energy in cell
proliferation helps to balance and mitigate the damage caused by
reductive stress (Figures 5G,H). These data establish the spleen as a
pivotal site for compensatory erythroid development in the context
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of ATPIF1 deficiency, sustaining erythroid homeostasis through
coordinated metabolic and proliferative adaptations.

Discussion

Our study wunveils a previously unrecognized “tissue-
compartmentalized metabolic adaptation” in mammalian
erythropoiesis. Existing literature indicates that in cases of
mitochondrial deficiency-related anemia, the spleen is unable
to substitute the bone marrow in the production of red blood
cells in patients (Menon et al, 2024). Our data suggest that
ATPIF1 deficiency drives a divergent remodeling of mitochondrial
function and metabolic flux between the BM and spleen,
enabling the spleen to act as a “erythropoietic rescue niche” that
mitigates severe anemia. The finding challenges two long-standing
assumptions in the field: first, that ATPIF1’s role in erythropoiesis
is conserved across vertebrates derived from the observation of
non-compensatory severe anemia in ATPIF1-deficient zebrafish
(Shah et al, 2012); and second, that splenic erythropoiesis only
execute a stress-specific erythropoiesis and cannot replace BM
erythropoietic programs (Menon et al., 2024). The finding reflects
a mammalian-specific ability to rewire metabolic pathways in the
spleen for erythropoiesis.

A core innovation of our work lies in identifying “reductive stress
as a context-dependent regulator of erythroid fate” - a departure
from the traditional focus on oxidative stress in erythropoietic
dysfunction (Aragones et al, 2008). In the BM of ATPIFI1-
KO mice, reductive stress manifests as collapsed mitochondrial
OXPHOS (evidenced by downregulated TCA cycle/OXPHOS
genes, reduced ATP/ADP ratios, and depleted ROS), which creates
a metabolic bottleneck for nucleotide biosynthesis and heme
production. Specifically, the accumulation of 2-hydroxybutanoic
acid disrupts NADH/NAD™ balance (a key redox couple for
nucleotide synthesis), while diminished mitochondrial mass
impairs heme biosynthesis despite elevated intracellular Fe**. This
decoupling of Fe?* availability from heme production - previously
unreported in ATPIFl-associated erythropoiesis - highlights a
unique mechanism by which mitochondrial dysfunction disrupts
iron-heme homeostasis in the BM.

In contrast, the spleen of ATPIF1-KO mice reconfigures
reductive stress into a metabolic reprogramming that is distinct from
both WT spleen and KO BM. Transcriptomic and metabolomic
analysis reveal that splenic erythroid cells upregulate glycolysis
(to compensate for OXPHOS defects) and the pentose phosphate
pathway (PPP; marked by increased D-sedoheptulose-7-phosphate),
which generates NADPH to buffer reductive stress through
supporting nucleotide synthesis for proliferation. Critically, this
reprogramming is accompanied by selective upregulation of heme
biosynthesis genes (Fech and Hmbs), which is a regulatory step not
observed in the BM. Fech catalyzes the final iron-incorporation step
in heme synthesis, and Hmbs is a rate-limiting enzyme in porphyrin
precursor production. They synergistically restore heme levels in the
spleen despite ATPIF1 deficiency. This targeted activation of heme
biosynthetic machinery, coupled with elevated Fe®", explains why
the spleen maintains heme homeostasis even as the BM fails, which
represents a novel splenic-specific compensatory mechanism.
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FIGURE 4

ATPIF1 maintains mitochondrial function and cellular viability in BM erythroid cells. (A, B) Flow cytometric analysis of mitochondrial content
(MitoTracker Green) showing decreased MFI in (A) Ter119* cells and (B) erythroblasts from ATPIF1-KO mice compared to WT mice (n = 9). (C, D)
Intracellular ROS levels measured by DCFDA fluorescence staining in (C) Terl19* cells and (D) erythroblasts (n = 9). (E) Representative flow cytometry
plots of Annexin V staining for apoptosis analysis in erythroid populations (n = 9). (F) Quantification of apoptosis rates in erythroid cells populations (n =
9). All data are presented as mean + SD; ns > 0.05;"p < 0.05;"*p < 0.01;***p < 0.001 by unpaired two-tailed t-test.

Our findings also redefine ATPIFI’s role in erythropoiesis
beyond its canonical function as an ATP synthase regulator. While
previous studies linked ATPIF1 deletion to mitochondrial proton
gradient collapse and energy crisis (Acin-Perez et al., 2023), we
demonstrate that ATPIF1 is additionally required for maintaining
the metabolic flexibility of erythroid cells - i.e., their ability to switch
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between OXPHOS and glycolysis depending on tissue context. In the
BM, ATPIF1 deficiency eliminates this flexibility, trapping erythroid
cells in an energy-deficient state; in the spleen, metabolic flexibility
is restored via glycolytic/PPP upregulation, suggesting that ATPIF1’s
absence can be bypassed if alternative metabolic pathways are
activated. This challenges the view that ATPIF1 is an indispensable
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regulator of erythroid mitochondria and instead positions it as a
“metabolic checkpoint” that modulates pathway selection.

Clinically, our work opens new avenues for treating mitochondrial-
related anemias (e.g., those associated with Complex V defects or
inherited ATPIFI variants). The observation that splenic erythroid
cells can overcome ATPIF1 deficiency via glycolytic/PPP activation
suggests that pharmacological agents targeting these pathways (e.g.,
PPP activators like metformin or glycolytic enhancers) could mitigate
anemia in patients with mitochondrial dysfunction. Additionally,
the spleen’s ability to restore heme homeostasis via Fech/Hmbs
upregulation identifies these genes as potential therapeutic targets, for
example, via gene editing or small-molecule activators to bypass BM
heme synthesis defects.

A critical unresolved question is the role of the splenic
microenvironment in driving this compensatory adaptation. The
spleen’s niche (composed of stromal cells, macrophages, and endothelial
cells) likely secretes cytokines or growth factors that trigger metabolic
reprogramming in erythroid progenitors for cell proliferation. For
instance, splenic macrophages may enhance iron recycling (via
ferroportin upregulation) to support Fe** availability, while stromal
cells could secrete SCF or EPO to promote proliferation. Additionally,
spleen recycling of heme from senescent red blood cells may contribute
to the mechanism of tissue-specific erythropoiesis. This recycling
activity is not available in the bone marrow, which may contribute to
increased cell death from the reductive stress. Like the oxidative stress,
reductive stress is able to induce cell death (Ge et al., 2024). Future co-
culture experiments will clarify how non-erythroid cells in the spleen
create a permissive niche for ATPIF1-deficient erythroid cells, which
may address broad implications for understanding extramedullary
hematopoiesis in other mitochondrial disorders (Menon et al., 2024).

In summary, our study advances the field by: (1) identifying a tissue-
specific metabolic adaptation to ATPIF1 deficiency that distinguishes
mammals from lower vertebrates; (2) uncovering reductive stress as a
context-dependent regulator of erythroid survival and differentiation;
(3) defining a novel splenic mechanism for restoring heme homeostasis
via Fech/Hmbs upregulation; and (4) repositioning ATPIF1 as a
metabolic flexibility regulator rather than a strict requirement for
erythropoiesis. These insights provide new insight into mitochondrial-
erythroid interactions but also provide a framework for developing
targeted therapies for anemias linked to mitochondrial dysfunction.
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