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Transactive response DNA-binding protein 43 (TDP-43) is a key factor in 
motor neurons and related neurodegenerative disorders, and the presence 
of cytoplasmic aggregates of TDP-43 is a major hallmark of diseases such 
amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration 
(FTLD). Nevertheless, little is known about early developmental effects or 
the systemic nature of TDP-43-mediated pathology. Drosophila melanogaster
is acknowledged as a powerful genetic model for studying the genetic 
inheritance and the behavioral and developmental processes associated with 
human neurodegenerative diseases, including ALS. To better understand the 
possible roles and potential pathogenic mechanisms of TDP-43 protein in the 
pathogenesis of ALS, we performed a transcriptomic analysis of larvae from a
Drosophila model knock-out (KO) for the TBPH gene, the fly TDP-43 ortholog. 
Interestingly, the Gene Ontology (GO) analysis highlighted some pathways not 
yet associated with this pathology and this model. We identified several genes 
encoding for serine proteases, a class of enzymes that in the central nervous 
system (CNS) play important roles in neural development, synaptic plasticity, 
and neurodegeneration. Our work provides insights into novel pathological 
mechanisms underlying the disease, thereby opening new pathways for drug 
discovery.
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Introduction

The TDP-43 gene (TAR DNA-binding protein 43) has been implicated in both sporadic 
and familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia 
(FTD) (de Boer et al., 2020). The human TDP-43 protein is composed of 414 amino acids 
and includes several functional domains: an N-terminal domain, a nuclear localization 
sequence (NLS), two RNA recognition motifs (RRM1 and RRM2) essential for RNA 
binding, and a C-terminal glycine-rich domain (Mompeán et al., 2016). TDP-43 is a 
member of the heterogeneous nuclear ribonucleoproteins (hnRNPs) family and plays a 
key role in RNA metabolism, including splicing, stability, and transport. The protein 
shuttles between the nucleus and the cytoplasm via both active and passive mechanisms
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(Pinarbasi et al., 2018). Under physiological conditions, particularly 
in motor neurons, TDP-43 is predominantly localized in the nucleus, 
with only low levels found in the cytoplasm and cytoplasmic 
organelles such as mitochondria (Wang et al., 2016). Mutations 
in the TDP-43 gene account for approximately 4%–5% of familial 
ALS cases and around 1% of sporadic ALS cases and are typically 
inherited in an autosomal dominant manner (Alsultan et al., 2016). 
In most individuals with ALS carrying TDP-43 mutations, the 
protein forms cytoplasmic aggregates, which represent the principal 
component of ubiquitinated inclusions found in both neurons 
and glial cells (Tan et al., 2017). Although the exact pathogenic 
mechanisms by which TDP-43 contributes to neurodegeneration 
remain unclear, growing evidence points to disruptions in several 
RNA-related cellular processes as potential contributors to neuronal 
death. Current research supports two main, non-mutually exclusive 
mechanisms of TDP-43 toxicity: a nuclear loss-of-function and 
a cytoplasmic gain-of-function. These involve the depletion of 
TDP-43 from the nucleus - where it normally regulates RNA 
metabolism - and its mislocalization and accumulation in the 
cytoplasm, where it becomes sequestered into insoluble inclusions 
(Cascella et al., 2016). This cytoplasmic aggregation is believed to 
induce toxic effects and cellular damage, playing a central role in ALS 
pathogenesis (Prasad et al., 2019). Overall, while TDP-43-mediated 
ALS and ALS in general predominantly affects motor neurons, 
it is nowadays widely recognized as a systemic disease, involving 
disruption of multiple molecular mechanisms in different tissues 
(Moresi, 2023; Appel et al., 2021).

The fruit fly Drosophila melanogaster has long been established 
as a great tool to study neurodegenerative diseases (Marsh and 
Thompson, 2006) including ALS (Hegde and Srivastava, 2022), and 
a series of transgenic and knock-out models of TDP-43-mediated 
ALS have been generated and characterized (Romano et al., 2012). 
In particular, one of the first generated and well-characterized 
TDP-43-mediated ALS Drosophila models is the TBPHΔ23/Δ23 fly 
(Feiguin et al., 2009). TBPH is the Drosophila TDP-43 ortholog, 
broadly conserved in terms of both structure and functions 
(Romano et al., 2012; Diaper et al., 2013). This model is characterized 
by a 1,616 bp deletion that partially removed TBPH coding 
and regulatory regions, resulting in the complete abolishment 
of endogenous TBPH protein expression (Feiguin et al., 2009). 
Hence, this strain exhibits high lethality and extremely reduced 
lifespan, with dramatic locomotor impairment both in the adult 
and in the larva (Feiguin et al., 2009). Moreover, at a cellular level, 
TBPHΔ23/Δ23 larvae display morphological defects in the presynaptic 
terminals of motoneurons at the neuromuscular junctions, with 
reduced number of axonal branches and synaptic boutons present 
inside the muscles (Feiguin et al., 2009). Overall, this model has 
been proven to fully recapitulate TDP-43-mediated ALS pathology, 
exhibiting significant similarities with mice models (Gendron and 
Petrucelli, 2011) and patients, and over the subsequent years 
it has been used to further investigate different aspects of the 
disease, in particular TDP-43-regulated genes and their roles in 
the pathogenesis and pathophysiology of ALS (Godena et al., 2011; 
Miskiewicz et al., 2014; Langellotti et al., 2018; Romano et al., 2020; 
Strah et al., 2020; Romano et al., 2021). However, a comprehensive 
molecular characterization of TBPHΔ23/Δ23 model at the gene 
expression level in developmental stages was still lacking. Given the 
aim of investigating alterations occurring already from the early 

stages of development, we chose to focus our attention on third 
instar larvae. Moreover, considering the systemic nature of the 
disease, we decided to analyse the gene expression profile based 
on RNA extracted from the entire larval body. Therefore, in this 
work, we provide the first molecular characterization of whole third 
instar TBPHΔ23/Δ23 larvae, through which we not only validated 
its relevance as a TDP-43/TBPH-mediated ALS model even at 
the transcriptomic level, but we also uncovered novel and hidden 
pathological mechanisms underlying the disease, thereby opening 
new pathways for drug discovery.

Methods

Fly strains

w1118 (control) and TBPHΔ23/CyO (BDSC #93599) (Feiguin et al., 
2009) D. melanogaster strains were used. The latter was then 
crossed with a fly strain carrying a balancer chromosome CyO
associated with a GFP sequence, to obtain the TBPHΔ23/CyO-
GFP strain allowing for the selection of TBPHΔ23/Δ23 (hereinafter 
referred to as TBPH knock-out) larvae. Flies were raised at 23 °C 
under a 12:12 h light-dark (LD) cycle and fed on a standard 
cornmeal-yeast agar food. 

RNA extraction

For each sample, 10 third instar larvae of the selected genotype 
were collected and frozen in liquid nitrogen. Total RNA was 
extracted by using the TripleXtractor reagent (GRiSP Research 
Solutions, Porto, Portugal) according to the manufacturer’s 
instructions. RNA concentration was measured using the NanoDrop 
2000c spectrophotometer (Thermo Fisher Scientific, Waltham, 
USA) and RNA integrity was assessed by electrophoresis using 
the Agilent 4,150 TapeStation (Agilent Technologies, Santa 
Clara, USA). Only samples with an RNA Integrity Number 
(R.I.N.) value higher than 8.0 were used for gene expression
analysis. 

RNA-seq and gene ontology (GO) analyses

The RNA-seq analysis was conducted on three independent 
samples of RNA extracted from TBPHΔ23/Δ23 and w1118 whole 
third instar larvae. The experiment was performed by the NGS 
Facility (Department of Biology, University of Padova, Padova, 
Italy). cDNA libraries were constructed from 450 ng of total 
RNA by using the QuantSeq 3′ mRNA-Seq Library Prep Kit for 
Illumina (FWD) (Lexogen, Vienna, Austria) according to the 
manufacturer’s instructions. The workflow consists of first strand 
cDNA synthesis with oligo (dT) primers containing an Illumina-
compatible sequence at the 5′ end, RNA template removal, second 
strand synthesis with random primers containing an Illumina-
compatible linker sequence at the 5′ end, purification using 
magnetic beads to remove all reaction components, and PCR 
amplification to add the complete adapter sequences and to generate 
the final library. The libraries were quantified with the Qubit Flex 
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Fluorometer (Invitrogen, Carlsbad, USA) and quality tested by 
Agilent 4150 TapeStation system (Agilent Technologies, Santa Clara, 
USA). Sequencing was carried out in single-end mode (150 bp) by 
using NovaSeq X Plus (Illumina, San Diego, USA) with a targeted 
sequencing depth of 30 million reads per sample. Base-calling was 
performed using RTA2 software (Illumina, San Diego, USA). File 
conversion and demultiplexing were performed using bcl2fastq 
software (version 2.20.0). Sequence reads are available on NCBI 
BioProject database with the accession number PRJNA1289126. 
Raw reads were trimmed to remove adapter sequences using 
cutadapt (version 4.9). In accordance with the guidelines provided 
by Lexogen, the poly(A) tails and the first 12 bases of each read 
were trimmed. Additionally, the --nextseq-trim = 10 parameter was 
applied to account for quality score bias associated with Illumina’s 
two-color chemistry. The abundances of all D. melanogaster
transcripts annotated by ENSEMBL (release 112) were estimated 
using the Salmon software (version 1.10.3) (Patro et al., 2017) 
with --noLengthCorrection option enabled and then summarized 
at the gene level using tximport (version 1.32.0) (Soneson et al., 
2015). Genes were filtered by their expression levels using the 
strategy described in Chen et al. (2016), as implemented in the 
edgeR package (version 4.2.1) (Robinson et al., 2010) with default 
parameters. A total of 11,328 genes were retained. Gene-level counts 
were normalized using the TMM method (edgeR, version 4.2.1) 
and for unwanted variation using EDASeq (version 2.38.0) and 
RUVSeq (version 1.38.0; RUVg method, k = 1 confounding factors) 
(Risso et al., 2014). Differential expression was tested with edgeR 
(version 4.2.1) using a GLM model. Genes with an adjusted p-value 
(FDR) <0.05 after correction for multiple testing (Benjiamini-
Hochberg method) were considered differentially expressed 
(Supplementary Table S1). All the heatmaps were obtained using the 
Morpheus software (https://software.broadinstitute.org/morpheus, 
Broad Institute, USA). Finally, to investigate the molecular 
functions of the differentially expressed genes and the biological 
processes in which they were involved, a Gene Ontology (GO) 
functional enrichment analysis was performed using ShinyGO 
(Ge et al., 2020), applying a false discovery rate (FDR) <0.05
(Supplementary Table S2). 

Analysis of gene tissue distribution

The tissue distribution of the genes of interest was assessed 
on FlyAtlas 2 (flyatlas2.org) (Krause et al., 2022). For each gene, 
the tissue with the highest scores in terms of Larval FPKM 
and Enrichment was identified as the main tissue of expression; 
genes with no expression or equal scores were included in 
the “Not Assigned/N.A.” group. All analysed genes and their 
FlyAtlas 2 Larval FPKM and Enrichment scores in each tissue are 
reported in Supplementary Table S3. 

Differential transcript usage (DTU) analysis

Differential Transcript Usage (DTU) analysis was carried out 
following the workflow described by Love et al. (2018), using 
transcript-level quantification from Salmon. Transcript counts were 
imported with tximport version 1.32.0 (Soneson et al., 2015) using 

countsFromAbundance = “no”, appropriate for 3′RNA-seq data where 
transcript length bias is minimal. Transcript-to-gene annotations 
were generated from the Ensembl Drosophila melanogaster GTF 
(release BP46.112) using the GenomicFeatures package version 1.56.0 
(Lawrence et al., 2013). Filtering and model fitting were performed 
with DRIMSeq version 1.32.0 (Nowicka and Robinson, 2016). We 
kept transcripts that met three conditions: first, they appeared at 
least 5 times in 3 or more samples; second, they made up 5% or 
more of their gene’s transcripts in at least 2 samples; and third, 
their associated gene was present at least 10 times across 4 or 
more samples. DRIMSeq’s Dirichlet-multinomial model was used 
to estimate transcript usage and test for differential usage between 
conditions. Gene- and transcript-level p-values were corrected using 
stageR version 1.26.0 (Van den Berge et al., 2017) to control the overall 
false discovery rate (target 0.05). Following guidance from the original 
study, NA p-values from DRIMSeq were replaced with 1, before 
the stageR step, to allow stage-wise testing. Genes that passed the 
stageR screen were considered showing DTU between control and 
TBPH KO. Limitations affecting sensitivity and comprehensiveness 
could be identified for the DTU analysis. The filtering steps, while 
essential for model stability and false positive control, remove low-
abundance isoforms, potentially excluding biologically relevant events. 
Moreover, using 3′ RNA-seq protocols provides limited coverage 
of full-length transcripts and may fail to detect isoforms with 
differential usage occurring outside the 3′region or those with poor 
3′end capture efficiency. Finally, the DRIMSeq statistical framework, 
though designed for robust differential proportion testing, employs 
conservative multiple testing correction procedures that prioritize 
specificity over sensitivity. 

Results

Gene expression signature of
TDP-43/TBPH knock-out larvae

We extracted total RNA from 3 TBPH knock-out (KO) 
and 3 w1118 (CTR) whole larvae samples and performed an 
RNA-seq experiment on the three biological replicates per 
genotype. As indicated by the Principal Component Analysis 
(PCA) (Supplementary Figure S1), the two populations clustered 
distinctly and exhibited a clear separation, highlighting a markedly 
different gene expression profile. As a result, a large number of 
differentially expressed genes (DEGs) were identified between 
the two populations. Specifically, out of a total of 1718 DEGs 
(identified at FDR <0.05), 845 and 873 genes were found to be 
respectively down- and upregulated in TBPH KO vs. control larvae 
(Supplementary Figure S2; Supplementary Table S1). 

GO analysis highlights established and 
emerging paradigms in ALS pathology

To deepen our molecular characterization of the TBPH KO 
larval model, starting from the 1718 DEGs we performed a GO 
analysis to investigate their molecular functions and the biological 
processes in which they were involved (Supplementary Table S2). 
As expected, given the ongoing development of the larvae, most 
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of the identified Biological Processes (BP) terms were broadly 
associated with developmental processes (Figure 1). However, 
among them, we identified a substantial number of terms 
specifically related to neuronal development, morphogenesis, and 
physiology (Figure 1, indicated by red arrows), and in particular 
to neuronal projections (Supplementary Table S2), which suggests 
a neurodegenerative phenotype associated with ALS pathology. 
Indeed, the altered expression levels of several of the genes taking 
part in the enriched neuronal processes were previously associated 
with ALS and in general with neurodegeneration. As a matter 
of example, we reported the downregulation of Atx2 and Nedd4, 
together with the upregulation of key drivers of ALS such as 
Sod1 (identified at FDR <0.1) and CHMP2B, all of which are 
discussed in more detail in the final section. Altogether, the gene 
expression profile of TBPH KO larvae is consistent with that 
expected under such pathological conditions, thereby validating 
and further supporting its relevance as a TDP-43/TBPH-mediated 
ALS model, even at the transcriptomic level.

Moreover, the GO analysis also revealed novel and hidden 
insights into ALS pathology, highlighting biological processes and 
molecular functions that remain largely unexplored or insufficiently 
characterized. The most interesting results were obtained by 
examining the enriched GO terms belonging to the Molecular 
Function (MF) category (Figure 2). While the term “Misfolded 
protein binding” is somewhat expected due to the well-known 
protein misfolding that occurs in the disease and leads to the 
formation of aggregated proteins and inclusions (Parakh and Atkin, 
2016), the other terms underscore distinct and still emerging aspects 
of the pathology, as further elaborated in the Discussion.

DEGs tissue distribution suggests a broader 
tissue involvement in the disease

While our primary objective was to get a molecular overview 
of the TBPH KO larval model in its entirety, we were also 
interested in understanding where the most relevant DEGs were 
mainly expressed, thus exploring the anatomical regions most 
implicated in the pathology. To do so, we took advantage of 
FlyAtlas 2 database (Krause et al., 2022), from which we obtained 
the main larval tissue of expression of all the analysed DEGs 
(Supplementary Table S3). Firstly, we performed this kind of 
analysis on the 100 most prominent DEGs in terms of FDR 
(Figure 3A; Supplementary Table S3). The results of this analysis 
revealed a wide distribution in terms of main tissue of expression, 
yet with a marked involvement of the fat body (25%) and the gut 
(24%, with 21% in the midgut and 3% in the hindgut). However, 
since this analysis could be influenced by the proportion of each 
tissue in the whole larva (e.g., the fat body lipid mass alone represents 
the 15% of the total body weight of third instar larvae (Baker and 
Thummel, 2007), we decided to integrate this approach with the 
data from the previous GO analysis. Specifically, we determined 
the primary tissue of expression of the genes that, according to the 
GO analysis, were associated with neuronal pathways (Figure 3B; 
Supplementary Table S3). While, as expected, the Brain/CNS was 
found to be the most enriched tissue (35%), the gut was confirmed 
as a relevant hub for the expression of these genes (21%, with 17% 
in the midgut and 4% in the hindgut). Interestingly, a similar result 

was obtained for the genes associated with serine peptidase and 
hydrolase activity (Figure 3C; Supplementary Table S3), with 45% of 
them being expressed in the midgut.

TBPH depletion affects gene transcript 
usage

As part of the hnRNP family, TDP-43 is essential for regulating 
different aspects of RNA metabolism, particularly splicing, either 
directly or through the interaction with other hnRNPs (Ayala et al., 
2005; Tollervey et al., 2011; Polymenidou et al., 2011; Buratti et al., 
2005; Freibaum et al., 2010). Specifically, one of the main 
functions of TDP-43 - and of its Drosophila ortholog TBPH - 
is splicing repression (Donde et al., 2019), a process that is 
disrupted in ALS and FTD (Ling et al., 2015). Consistently, its 
depletion results in abnormal splicing events (Koike, 2024), and 
alterations in alternative splicing have been frequently reported in 
ALS patients (Miwa et al., 2025).

Hence, even though our RNA-seq experiment did not allow 
for a complete analysis of all transcripts - mainly due to 
technical limitations given by 3′ RNA-seq protocols, providing 
limited coverage of full-length transcripts (see Methods) - we 
decided to at least preliminarily explore potential alternative 
transcript usage among the identified genes. With this analysis, 
we were able to identify 78 genes showing significant Differential 
Transcript Usage (DTU) (Supplementary Table S4). Subsequent GO 
analysis of these genes revealed their involvement in processes 
mainly associated with systemic and nervous system development 
(Figure 4A) but also including more specific terms associated 
with neuron projections, dendrite morphogenesis, axon extension, 
and synapse assembly (Supplementary Table S5). In addition, to 
investigate also genes in which alternative transcript usage might 
have led to changes in gene expression, we performed a GO 
analysis specifically on the subset of genes exhibiting DTU that 
were also differentially expressed between TBPH KO and control 
larvae (Figure 4B; Supplementary Table S6). Our results highlighted 
a clear involvement of these DEGs in processes almost exclusively 
associated with muscle cells development and differentiation.

Discussion

What we knew: identification of genes and 
pathways previously associated with ALS

As expected, the samples obtained from TBPH KO larvae 
clustered distinctly and exhibited a clear separation from those 
obtained from control larvae, resulting in a total of 1718 DEGs. 
Subsequent GO analysis revealed that a large proportion of 
these DEGs were involved in pathways related to neuronal 
development, morphogenesis, and physiology, and also to cell 
and in particular neuronal projections, which is consistent with 
the neurodegenerative phenotype associated with ALS pathology. 
Effectively, numerous genes taking part in the enriched neuronal 
processes were previously associated with ALS and in general with 
neurodegeneration, like Atx2 and Nedd4. Atx2, a gene already 
associated with ALS, is essential for cytoskeletal dynamics and 
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FIGURE 1
Gene Ontology (GO) analysis (BP) of differentially expressed genes in TBPH KO larvae. Results obtained from the GO analysis performed on the genes 
found to be differentially expressed between TBPH KO and control larvae. The top 40 significantly enriched biological processes (BP) are depicted, 
with red arrows indicating those associated with neuronal development and morphogenesis. The complete list of enriched terms is provided in
Supplementary Table S2.

neurodevelopment; its depletion causes multiple morphological 
defects in the nervous system of third instar larvae, including 
impaired axon development and decreased dendrite outgrowth 
(Del Castillo et al., 2021). Nedd4 encodes an E3 ubiquitin ligase 
that plays a key role in the ubiquitin-proteasome system of protein 
degradation and is therefore essential for the clearance of proteins 
that may accumulate and form toxic aggregates, as occurs in ALS 
(Haouari et al., 2022). In addition, we also reported the altered 
expression of genes not necessarily associated with the enriched 

neuronal pathways but known to play key roles in ALS pathogenesis, 
such as Sod1 and CHMP2B. Sod1, which was found to be upregulated 
in TBPH KO larvae, was the first gene associated with both familial 
and sporadic forms of ALS and is the second most mutated gene 
in Caucasian patients, primarily through toxic gain-of-function 
mutations (Gagliardi et al., 2023; Benatar et al., 2025). CHMP2B, also 
found to be upregulated, was associated with ALS and FTD, with the 
latter having, among its causes, a gain-of-function mutation in the 
CHMP2B gene (Ugbode and West, 2021; Chen et al., 2022). 
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FIGURE 2
Gene Ontology (GO) analysis (MF) of differentially expressed genes in TBPH KO larvae. Results obtained from the GO analysis performed on the genes 
found to be differentially expressed between TBPH KO and control larvae. The significantly enriched molecular functions (MF) are depicted. 
Supplementary Figure S3 presents the heatmap showing the expression levels of the genes responsible for these enrichments. The complete list of 
enriched terms is provided in Supplementary Table S2.

FIGURE 3
Analysis of gene tissue distribution. Donut charts representing the relative percentage of the main larval tissue of expression (basing on FlyAtlas 2 
database) of the 100 most differentially expressed genes (A) and of the genes that, according to the GO analysis, were associated with neural pathways
(B) and serine peptidase and hydrolase activity (C). The complete list including all the genes and their respective Larval FPKM and Enrichment scores is 
provided in Supplementary Table S3.
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FIGURE 4
Gene Ontology (GO) analysis (BP) of genes showing Differential Transcript Usage (DTU). Results obtained from the GO analysis performed on all the 
genes identified by the RNA-seq experiment (A) and only the differentially expressed genes (DEGs) obtained from the comparison between TBPH KO 
and control larvae (B) exhibiting significant DTU across all detected transcripts. The top 40 or the complete set of significantly enriched biological 
processes (BP) are depicted. The complete lists of enriched terms are provided in Supplementary Tables S5 and S6, respectively.

What is new: further insights into ALS 
pathology

The GO analysis also revealed the enrichment of terms 
associated with molecular functions that have only recently 
emerged in the context of ALS, or that have long remained 
unexplored or insufficiently characterized. For example, the genes 
underlying the enrichment of the term “Chitin binding” include 
Idgf1, Idgf3, and Idgf4, which encode chitinase-like proteins 
(Sustar et al., 2023). Interestingly, chitinases and chitinase-like 
proteins are recently emerging as a potential diagnostic and 
prognostic biomarker for neurologic disorders (Pinteac et al., 
2020), and in particular for ALS (Xu et al., 2024). As for 
“Structural constituent of ribosome”, disruptions in ribosome 
function are increasingly recognized as key contributors to the 
disease’s progression (Lehmkuhl et al., 2021; Loveland et al., 2022). 
Moreover, one of the most noteworthy observations is the marked 
enrichment of terms associated with serine proteases/hydrolases. 
Serine proteases are a class of enzymes that catalyse the hydrolysis 
of peptide bonds, characterized by the presence of a serine 
residue within their active site. Although best known for their 
roles in coagulation and digestion, several serine proteases are 
also expressed in the brain, where they play important roles in 
the development, physiology, and pathophysiology of the nervous 
system (Wang et al., 2008; Almonte and Sweatt, 2011). To date, 
regarding ALS, little is known about the roles of serine proteases in 
the disease. However, a study reported the presence of three serine 
proteases (trypsin, chymotrypsin, and thrombin) in neurofilaments 
conglomerates, which are histopathological hallmarks of early-

stage ALS, within motor neurons of ALS patients (Chou et al., 
1998). Moreover, plasminogen and tissue plasminogen activator 
(tPA) intraperitoneal administration can induce motor neurons 
degeneration in mice (Demestre et al., 2006), and urokinase-type 
plasminogen activator (uPA) exhibits higher expression in the 
ventral horn of the spinal cord of G93A SOD1 mice and ALS patients
(Glas et al., 2007). 

DEGs tissue distribution revealed a possible 
hidden role for the gut

To investigate the anatomical regions most relevant to the 
pathology, we identified the main larval tissue in which selected 
subsets of DEGs were expressed by using FlyAtlas 2 (Krause et al., 
2022). For DEGs associated with neuronal pathways, the Brain/CNS 
was, as expected, the most enriched tissue (35%); however, notably, 
also the gut emerged as a relevant hub for their expression (21%), 
possibly highlighting, also in this model, the contribution of the 
gut and enteric nervous system in the pathophysiology of ALS, as 
previously reported in several studies (Lee et al., 2024; Zhang et al., 
2021; Luesma et al., 2024). This is of particular interest given that 
the fruit fly has proven to be an ideal model for investigating the 
gut-brain axis in the context of metabolic and neurodegenerative 
diseases (Sadaqat et al., 2022; Kitani-Morii et al., 2021). Interestingly, 
a marked involvement of the gut (45%) also emerged from the 
analysis of DEGs associated with serine proteases, which are 
capable of exciting myenteric neurons through protease-activated 
receptors (Gao et al., 2002). 
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Effects of TBPH depletion on transcript 
usage corroborate its elusive role in 
muscles

In light of TDP-43 essential role in regulating splicing 
(Ayala et al., 2005; Tollervey et al., 2011; Donde et al., 2019), 
we preliminarily explored potential DTU among the genes 
identified by our RNA-seq experiment. The GO analysis of 
these genes highlighted their roles predominantly in systemic 
and nervous system development, but also in more specific 
processes such as neuron projection development, dendrite 
morphogenesis, axon extension, and synapse assembly. Interestingly, 
this group included genes such as CadN, which encodes an 
important hub molecule implicated in neurodevelopmental 
and neurodegenerative diseases (László and Lele, 2022), and 
Rab5, whose encoded protein was shown to accumulate in 
the cytoplasm of spinal cord neurons of patients with ALS 
(Sanhueza et al., 2015). Moreover, the GO analysis of genes 
exhibiting both DTU and differential expression between TBPH
KO and control larvae pointed to a clear involvement of these 
genes in processes associated with muscle cells development 
and differentiation, supporting and extending recent findings 
in the field of TDP-43 pathology. Indeed, after the evidence 
that TDP-43 was essential for normal skeletal muscle formation 
by assembling cytoplasmic amyloid-like structures called myo-
granules (Vogler et al., 2018), which gave rise to the discussion 
about its beneficial or detrimental role in muscle cells physiology 
and pathology (McHugh, 2019), several works have tried to 
uncover its specific role in this tissue (Šušnjar et al., 2022; 
Versluys et al., 2022) and also its possible implications in the 
context of ALS (Versluys et al., 2022; Cykowski et al., 2018;
Mori et al., 2019).

Conclusion

Overall, this study provides the first comprehensive molecular 
characterization of whole third instar TBPHΔ23/Δ23 larvae, one 
of the most important Drosophila melanogaster models for TDP-
43-mediated ALS. We first reported how the gene expression 
alterations occurring in TBPH KO larvae are consistent with 
those expected in this pathological context, thereby validating 
and further supporting its relevance as a model even at the 
transcriptomic level. We also identified several DEGs involved 
in novel or still poorly characterized biological processes and 
molecular functions linked to ALS, with a particular emphasis 
on serine proteases/hydrolases metabolism. Furthermore, we 
explored the involvement of tissues beyond the nervous 
system in ALS pathogenesis - most notably, the gut, which 
emerged as primary site of expression for a number of genes 
of interest, and the muscles, since DEGs with DTU were 
almost exclusively associated with muscle cell development 
and differentiation. Such systemic inside underscores the 
increased appreciation of ALS as more than a motoneuron 
disease, with this work providing new insights that support 
a whole-organism, multisystemic view of the pathological 
mechanisms of ALS, thus opening new pathways for drug
discovery.
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