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Scarless skin regeneration remains one of the most ambitious goals in
regenerative medicine. Unlike fibrotic healing, which results in excessive
collagen accumulation and functional impairment, true regeneration restores
both the structural integrity and physiological function of skin, including
the reconstitution of hair follicles and other appendages. Retinoids, a broad
class of natural and synthetic vitamin A derivatives, have attracted increasing
attention for their potential to modulate wound repair at multiple levels. These
compounds regulate a diverse array of biological processes, including epidermal
differentiation, fibroblast activation, immune response, and extracellular matrix
remodeling. This review provides a comprehensive overview of how retinoids
coordinate cellular and molecular events across key skin compartments during
healing. Retinoids have been reported to suppress TGF-f1/Smad signaling,
inhibit myofibroblast differentiation, and restore matrix homeostasis, thereby
exerting anti-fibrotic effects. In addition, retinoid-based therapies enhance
re-epithelialization, stimulate angiogenesis, and promote dermal regeneration
when incorporated into advanced biomaterial systems. Recent studies further
demonstrate that retinoids can support skin appendage regeneration, including
de novo hair follicle formation, a hallmark of functional repair typically absent
in adult wounds. In view of converging evidence from developmental biology,
stem cell research, and regenerative engineering, retinoids present a promising
pharmacological strategy in reduced-scarring healing and functional skin
regeneration.

KEYWORDS

retinoids, fibroblasts, skin regeneration, scarless wound healing, hair follicle neogenesis,
regenerative biomaterials

1 Introduction

The skin is the largest organ of the human body, functioning as a barrier against
environmental insults while maintaining immune surveillance, thermoregulation, and
sensory integration (Joshi et al, 2025; Lopez-Ojeda et al, 2022). It is composed
of three primary layers (epidermis, dermis, and hypodermis) each containing
distinct cellular components that coordinate structural support, immune defense,
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and regenerative capacity (Figure 1A). The epidermis is populated
primarily by keratinocytes and houses epidermal stem cells
within the basal layer. The underlying dermis contains fibroblasts,
endothelial cells, and a dynamic ECM, while the skin appendages
such as hair follicles, sebaceous glands, and sweat glands originate
at the epidermal-dermal interface. These specialized compartments
play critical roles in maintaining skin homeostasis and facilitating
wound healing.

Upon injury, adult skin typically undergoes fibrotic repair,
restoring the epidermal barrier but often resulting in permanent scar
formation. Such scarring can compromise tissue function, mechanical
strength, and aesthetic appearance (Pefia and Martin, 2024). During
fibrotic healing, immune cells infiltrate the wound bed and release
large amounts of cytokines, triggering a sustained inflammatory
response. In parallel, local levels of reactive oxygen species (ROS) rise
rapidly, further amplifying tissue stress. Resident dermal fibroblasts are
activated by profibrotic mediators, particularly transforming growth
factor-beta 1 (TGF-f1) and ROS, and subsequently differentiate into
myofibroblasts (Figures 1A,B). These myofibroblasts migrate into the
wound site, where they deposit excessive extracellular matrix (ECM)
and perpetuate a positive feedbackloop (Figure 1B). This cycle not only
drives fibrotic remodeling but also impairs key regenerative processes
such as angiogenesis and hair follicle neogenesis (Wang et al., 2023).
Despite advances in wound care, current interventions rarely enable
full-thickness tissue regeneration.

Scarless skin healing, the aspirational goal of regenerative
dermatology, is defined by two key hallmarks: the suppression
of fibrotic remodeling and the regeneration of skin appendages,
particularly hair follicles (Li et al., 2024). These features are essential
not only for restoring skin integrity but also for reinstating its
full physiological function. Retinoids, which include both natural
and synthetic derivatives of vitamin A, have already been widely
applied in cosmeceuticals and are well recognized for their anti-aging
efficacy (Siddiqui et al., 2024; Bohm et al., 2025). More recently, they
have emerged as compelling candidates in the field of regenerative
dermatology. The bioactive form of vitamin A, retinoic acid (RA),
is synthesized endogenously from dietary precursors such as retinyl
esters and (-carotene (Bohn et al,, 2023). RA governs a broad range
of biological processes including epithelial differentiation, embryonic
patterning, immune modulation, and ECM remodeling (Wang et al.,
2020; Szymanski et al., 2020). Through regulating these biological
events, retinoids display unique function that concurrently target the
two key hallmarks of scarless healing: inhibiting fibrogenesis and
promoting skin appendage regeneration (Wang et al., 2020; Wen et al.,
2025). This review examines the therapeutic potential of retinoids
in promoting scarless skin regeneration by targeting both fibrosis
suppression and appendage renewal, with a focus on their molecular
mechanisms and translational prospects.

2 Biological basis of retinoids in skin

2.1 Synthesis, metabolism, and signaling of
RA

As shown in Figure 1C, RA is the primary bioactive metabolite
of vitamin A (Osanai et al., 2023). Although RA itself is not directly
obtained from the diet, it is synthesized intracellularly through a
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multistep enzymatic process (Gudas, 2022a). Various dietary forms
of vitamin A, including retinyl esters and provitamin A carotenoids
such as [-carotene, can serve as precursors (Gudas, 2022a).
These compounds are first hydrolyzed to retinol (Lavudi et al,
2023). The final and rate-limiting step is the irreversible oxidation
of retinaldehyde to all-trans retinoic acid (atRA), catalyzed by
retinaldehyde dehydrogenases RALDH1, RALDH2, and RALDH3,
encoded by the ALDH1A1-3 genes (Thompson et al., 2019). RA
exerts its biological effects by binding to RA receptors (RARq,
RARB, RARY), which form heterodimers with retinoid X receptors
(RXRs). These complexes interact with RA response elements
(RAREs) in the promoter regions of target genes to regulate
transcription (Lavudi et al., 2023; Cunningham and Duester, 2015).
Intracellularly, RA is further regulated by cellular RA-binding
proteins (CRABPs). In addition, cytochrome P450 enzymes, such as
CYP26A1 and CYP26B1, metabolize RA into inactive derivatives,
providing negative feedback to prevent excessive signaling. This
tightly controlled system ensures that RA levels remain within a
precise range, enabling context-specific responses to injury and
repair signals (Das et al., 2013; Hu et al., 2024).

2.2 Biological effects of retinoids across
skin compartments

The regenerative effects of RA in skin repair arise from its
ability to modulate key cellular populations and signaling pathways
across multiple layers of tissue. RA orchestrates healing by regulating
epidermal stem cells, dermal fibroblasts, and immune cells.

In the epidermis, RA promotes re-epithelialization by enhancing
keratinocyte proliferation and differentiation, effects that have long
been established (Saitou et al., 1995; Fuchs and Green, 1981). Both
retinol and RA have been shown to increase epidermal thickness and
upregulate the expression of collagen types I and III in human skin
(Kon etal., 2016). Notably, the fourth-generation retinoid seletinoid
G has been demonstrated to stimulate keratinocyte proliferation
and migration, thereby accelerating wound re-epithelialization
(Lee et al., 2020). In the dermis, RA attenuates fibrotic activation of
fibroblasts. It suppresses the expression of key fibrogenic markers
such as a-SMA, COL1A1, and COL3A1 through downregulation
of the TGF-B1/Smad signaling axis (Lin et al., 2023). In a murine
ear wound model, topical application of the RAR agonist tazarotene
enhanced wound closure and led to regeneration of skin appendages,
including newly formed hair follicles and mature collagen fibers
(Al etal., 2016). At the ECM level, RA promotes matrix turnover by
upregulating matrix-degrading enzymes such as MMP-3 and MMP-
13, while downregulating tissue inhibitors of metalloproteinases
(TIMPs), thus slowing fibrotic progression (Kartasheva-Ebertz et al.,
2021; Sorg et al., 2006). These effects have been confirmed in animal
models, where RA-treated wounds exhibit reduced scar formation
and restoration of near-normal tissue architecture. The immune
microenvironment is another critical target of RA (Mora et al,
2008). RA has been shown to influence macrophages, T cells,
and B cells, and plays an essential role in maintaining immune
homeostasis during tissue repair (Oliveira et al., 2018; Erkelens and
Mebius, 2017). As reviewed in detail by Oliveira et al. (Oliveira et al.,
2018), RA modulates both innate and adaptive immune responses.
In photoaged skin, vitamin A derivatives reduce the production
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FIGURE 1

events such as angiogenesis and hair follicle neogenesis. (C) Metabolism and

Overview of retinoic acid metabolism and skin fibrosis mechanism (A) Schematic illustration of fibrotic wound healing. Following injury, infiltrating
immune cells release cytokines and reactive oxygen species (ROS), which amplify local inflammation and tissue stress. Resident dermal fibroblasts are
activated and differentiate into myofibroblasts under the influence of ROS and transforming growth factor-beta 1 (TGF-p1). These myofibroblasts
migrate into the wound site, deposit excessive extracellular matrix (ECM), and secrete profibrotic mediators, leading to collagen accumulation, matrix
stiffening, and scar formation. (B) Positive feedback loop driving fibrosis. Crosstalk among ROS, inflammation, TGF-p1 signaling, and myofibroblast
activation establishes a self-perpetuating cycle that reinforces ECM overproduction. This process promotes skin fibrosis while impairing regenerative

Signaling of Retinoids: The uptake and metabolism of retinoids can be
(Continued)
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FIGURE 1 (Continued)

broadly divided into three stages based on organ localization. In the first stage, within the gastrointestinal tract, f-carotene and retinyl esters are
absorbed and converted into retinol. Retinol then binds to cellular retinol-binding protein Il (CRBPII) to prevent premature oxidation. The
retinol-CRBPII complex is subsequently re-esterified into retinyl esters, packaged into chylomicrons, and transported through the lymphatic system
into systemic circulation. In the second stage, hepatocytes uptake circulating retinyl esters from the bloodstream. These are hydrolyzed back to
retinol, a portion of which is stored in hepatic stellate cells as retinyl esters within cytoplasmic lipid droplets, while another portion is secreted back
into plasma. In the third stage, plasma retinol is taken up by target cells. Once inside, it may bind to cellular retinol-binding proteins (CRBPs) or
undergo sequential oxidation by alcohol dehydrogenases and retinol dehydrogenases (ADH/RDH) to form retinaldehyde (retinal). Retinal is then
irreversibly oxidized by aldehyde dehydrogenases (ALDHs) to form RA, including atRA, 9-cis-RA, and 13-cis-RA. atRA binds to CRABPs and
translocates to the nucleus, where it interacts with nuclear receptors RAR and RXR to regulate gene transcription. In parallel, 9-cis-RA can activate
intracellular kinase cascades. Retinoic acids are further metabolized by cytochrome P450 enzymes (particularly CYP26 family) into inactive
oxidative metabolites such as 4-hydroxyretinoic acid (4-OH-RA) and 4-oxoretinoic acid (4-oxo-RA).

of pro-inflammatory cytokines (Riahi et al., 2016). In psoriasis,
which is an inflammatory dermatosis characterized by leukocyte
infiltration, topical tazarotene cream has demonstrated notable
therapeutic efficacy (Weinstein et al., 2003).

3 Mechanistic potential of retinoids in
scarless skin healing

3.1 Anti-fibrotic mechanisms

Asshown in Figures 1A,B, fibrotic scarring in skin wounds arises
primarily from the pathological activation of dermal fibroblasts into
myofibroblasts, sustained stimulation of the TGF-B1/Smad pathway,
and excessive accumulation of ECM (Pena and Martin, 2024).
These processes ultimately result in disorganized tissue architecture,
stiffness, and functional impairment (Martin and Nunan, 2015).
RA, the active metabolite of vitamin A, has been shown to
interfere with multiple steps in fibrogenesis (Barber et al., 2014;
Jumper et al., 2016). Its anti-fibrotic actions, observed across various
organs including the lung, liver, and kidney, involve inhibition
of TGF-P signaling, suppression of myofibroblast differentiation,
and enhancement of ECM degradation (Wang et al.,, 2020). To
be specific, in pulmonary fibrosis models, RA reduces oxidative
stress, regulates inflammatory cytokines, and attenuates ECM
deposition (Gokey et al, 2021; Eleraky et al, 2021; Lu et al,
2022). In the liver fibrosis, RA suppresses IL-17A production
and downregulates IL-6R and IL-23R expression, thereby limiting
hepatic stellate cell activation and collagen synthesis (Kartasheva-
Ebertz et al,, 2021; Xiong et al., 2023; Cassim and Zhang, 2023).
Although mechanistic insights into RA’s anti-fibrotic activity in the
skin are still emerging, early studies have demonstrated that RA,
particularly atRA, inhibits fibroblast proliferation and collagen type
I production in human dermal cultures (Daly and Weston, 1986).
However, the anti-fibrotic effects of RA are not universally consistent
(Zhou et al., 2012). Some studies report context-dependent pro-
fibrotic outcomes (Hwang et al., 2021), such as increased collagen
synthesis and ECM accumulation under specific concentrations,
delivery methods, or cellular states (Zhou et al., 2012; Czuba et al.,
2021; Moller-Hackbarth et al., 2021; Rankin et al., 2013; Jalian et al.,
2008). These paradoxical findings emphasize the need to clarify RA’s
“conditional specificity” in cutaneous fibrosis, which will be essential
for safe and effective clinical application.

Frontiers in Cell and Developmental Biology

3.1.1 RA and modulation of TGF-p1/smad
signaling

The TGF-B1/Smad signaling pathway is considered the central
driver of dermal fibrosis (Wang et al., 2023). Following skin injury,
TGF-P1 levels rise sharply, activating Smad2/3 phosphorylation
and nuclear translocation. Within the dermis, this cascade triggers
the transition of fibroblasts into myofibroblasts and promotes the
production of type I and type III collagen, thereby reinforcing
the fibrotic microenvironment (Figure 1C) (Wang et al.,, 2023;
Changetal., 2025). Furthermore, the accumulation of type I collagen
in the dermis can activate integrin-mediated signaling, which in
turn stimulates the proliferation and differentiation of epidermal
keratinocytes, ultimately shaping the characteristic histological
architecture of scar tissue (Chang et al., 2025).

RA has been shown to suppress TGF-p1 expression and reduce
phosphorylation of Smad1/5/8, thereby interrupting the pathway’s
activation loop (Song et al., 2013; Shimono et al., 2011). In vitro
studies on human fetal palatal mesenchymal cells demonstrated that
RA dose-dependently inhibited the synthesis of ECM components,
such as fibronectin and tenascin C, through downregulation of
MMP2 and TIMP2 mediated by suppression of TGF-B/Smad
signaling (Li et al., 2014). Other reports confirm that RXR agonists
inhibit Smad nuclear translocation, suppress fibroblast activation,
and reduce collagen production in TGF-P1-stimulated fibroblasts
(Lin et al., 2023). These findings suggest that RA and RXR-targeted
ligands act synergistically to exert anti-fibrotic effects in the dermis
by disrupting the TGF-B1 axis. In addition, within the epidermis,
retinoids have been shown to play a pivotal role in maintaining
homeostasis and promoting regeneration. Supplementation with
retinoid metabolites revitalizes epidermal cells, enhancing their
structural and functional integrity (Wu et al., 2025; Kim et al., 1992;
Quan, 2023). The regulatory effects of retinoic acid on epidermal
biology may, at least in part, be mediated through interactions with
the TGF-P1 signaling pathway (Kim et al., 1992).

3.1.2 Regulation of myofibroblast differentiation
and collagen deposition

Myofibroblast activation is a pivotal event in dermal fibrosis,
characterized by a-smooth muscle actin (a-SMA) expression and
elevated contractile and collagen-synthetic activity. RA has been
reported to inhibit pro-inflammatory fibroblast (PIF) activation and
promote differentiation into less fibrogenic mesenchymal fibroblast
phenotypes (Xiao et al., 2024). Delivery of RA via nanoparticles has
been shown to reduce a-SMA levels and collagen accumulation in
fibrotic tissues (Xia et al., 2023). In systemic sclerosis models, atRA
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reduced the expression of fibrosis markers including Fra2, collagen
I, and a-SMA (Pi et al., 2023). Moreover, RA downregulates a broad
set of ECM-related genes such as fibronectin-1, thrombospondin-
1, tenascin C, integrins, and laminins (Du et al., 2013). Suppression
of these components may prevent matrix crosslinking and stiffness,
facilitating a tissue environment conducive to regeneration.

Recent work by Correa-Gallegos etal. (2023) revealed that
RA gradients within wound beds shape fibroblast fate decisions.
In early inflammation, CD201* progenitor fibroblasts upregulate
Aldhla3 and Rdh10, enzymes critical for RA biosynthesis, which in
turn activate RARy and favor the emergence of pro-inflammatory
fibroblasts over myofibroblasts. Exogenous RA or CYP26B1
inhibition further suppressed myofibroblast formation, reduced
wound contraction, and minimized scar formation. This study
provides a compelling mechanistic link between local RA signaling
and myofibroblast lineage specification, reinforcing the rationale for
RA-based anti-fibrotic therapies.

3.2 Skin appendage regeneration

In recent years, RA has emerged as a promising regulator of
skin appendage regeneration, especially in the context of wound-
induced hair follicle neogenesis (WIHN). As a classical morphogen,
RA participates in epithelial-mesenchymal crosstalk and stem cell
activation, positioning it as a central signal in the transition from
fibrotic repair to structural regeneration (Ankawa and Fuchs, 2022).

3.2.1 Role of RAin WIHN

Hair follicles, sebaceous glands, and sweat glands are
essential components of fully functional skin. In adult mammals,
these structures rarely regenerate after full-thickness injury,
leading to functionally deficient scars. However, WIHN, a
phenomenon first characterized in murine dorsal wounds,
demonstrates that appendage regeneration is possible under specific
conditions (Ito et al., 2007).

RA has been shown to play a critical role in this process
(Bhoopalam et al., 2020; Goggans et al., 2024). Endogenous RA
synthesis is induced by double-stranded RNA signaling through
Toll-like receptor 3 (TLR3), which stimulates RA production and
promotes WIHN. Kim et al. showed that RA is essential for WIHN
in mice (Kim et al, 2019). In human skin, laser resurfacing
similarly activates RA production, suggesting translational relevance
(Kim et al., 2019). Standardized WIHN models developed by
Garza and colleagues have further validated RAs involvement
in appendage regeneration (Xue et al, 2022). Recent studies
indicate that RA can restore hair follicle stem cell (HFSC) identity
(Tierney et al., 2024). Through RARy/RXRa signaling, RA activates
lineage-determining factors such as SOX9 and suppresses epidermal
markers like KLF5, thereby steering HFSCs back toward a hair
follicle fate (Tierney et al., 2024). These findings suggest that RA
may serve as a “lineage-resetting” signal in early wound healing,
providing a mechanistic window for targeted intervention.

3.2.2 Crosstalk between RA and Wnt/B-catenin,
shh, and BMP signaling

RA does not act in isolation but intersects with key
developmental pathways, notably Wnt/B-catenin, Sonic hedgehog
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(Shh), and bone morphogenetic protein (BMP) signaling. Activation
of Wnt/B-catenin is essential for HFSC activation and anagen
entry. In a recent study on androgenetic alopecia, Wen et al.
demonstrated that RA reactivates dormant HFSCs and prolongs
hair cycling through Wnt enhancement (Wen et al., 2025). Clinical
observations supported RA’s potential in restoring follicular activity
in early-stage AGA patients (Wen et al., 2025). In developmental
biology, RA has been shown to interact synergistically with
multiple signaling pathways, including the Shh axis. RA plays a
pivotal role in embryogenesis and the regenerative development
of various tissues and organs, as demonstrated in multiple studies
(Lukonin et al., 2020; Rekler and Kalcheim, 2022; Niederreither
and Dollé, 2008; Wu et al., 2022). The Shh pathway is a key
regenerative signal during embryonic hair follicle morphogenesis
and WIHN. Through activation of downstream effectors such as
Ptchl and Glil, Shh signaling induces bidirectional activation
of both epidermal and dermal stem cells, thereby initiating
the formation of new follicular units (Wier and Garza, 2020;
Liu et al., 2022). Similarly, the BMP pathway plays a critical role
in cutaneous wound healing, hair follicle cycling, and spatial
patterning (Plikus et al., 2017; Hu et al., 2021). These developmental
insights offer valuable mechanistic parallels for understanding

how RA may coordinate with conserved morphogenetic
pathways to promote skin regeneration and appendage
restoration.

4 Therapeutic applications and
translational opportunities

The biological effects of RA are mediated through its
interaction with RARs, which are members of the nuclear
receptor superfamily of transcription factors (Figure 1C). These
receptors include three main isoforms: RARa, RARP, and RARy
(di Masi et al., 2015). Each of these can form homodimers or
heterodimers with retinoid X receptors (RXRa, RXRp, and RXRy),
enabling gene regulation through RA response elements (RARE)
(Di Masi et al., 2015). Non-selective activation of all three RAR
isoforms has been linked to adverse cutaneous effects, such
as skin irritation, erythema, and desquamation. Among these,
RARYy is the most abundantly expressed isoform in the epidermis,
accounting for approximately 90 percent of total RAR expression
in this layer (Di Masi et al,, 2015). RARy plays a central role in
controlling terminal differentiation of keratinocytes. As a result,
selective activation of RARy is considered a key strategy for
maximizing therapeutic benefit while minimizing systemic and local
side effects.

Retinoids are routinely used to treat acne, photoaging, psoriasis,
pigmentary disorders, and certain skin cancers (Chen et al., 2014;
Gudas, 2022b; Paichitrojjana and Paichitrojjana, 2023). Currently,
retinoids are grouped into four generations based on chemical
structure and receptor selectivity. First- and second-generation
agents (e.g., tretinoin, isotretinoin, etretinate, and acitretin)
bind non-selectively to all RAR subtypes and are associated
with systemic toxicity and teratogenicity (Chambon, 1996).
Third-generation retinoids (such as adapalene and tazarotene)
demonstrate improved receptor selectivity, particularly for RARp
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TABLE 1 (Continued) Clinical applications, dosage, and notable features of retinoids across different generations.

Notable features
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Indication

Examples

Retinoid type

McKesey et al. (2020), Reynolds et al.

(2024), Susan et al. (2023), Foster et al.

(1998)

Enhanced efficacy; reduced irritation

Typical combinations

Tretinoin (0.05%) + Hydroquinone (4%)

Tretinoin (0.05%) + Corticosteroid

(0.025%)

Tretinoin (0.05%) + Erythromycin (3%) gel

Fixed formulations such as Tri-Luma:

fluocinolone 0.01% + hydroquinone 4% +

tretinoin 0.05%, nightly

Melasma, acne, psoriasis

Retinoid + Hydroquinone, Retinoid +

Corticosteroid, Retinoid + Erythromycin

Combination Therapies
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This table summarizes the major classes of retinoids, their representative compounds, indications, and administration regimens. Beyond applications in acne, psoriasis, and oncology, retinoids are extensively utilized for aging and photoaging management, with topical
formulations established as the gold standard for improving wrinkles, pigmentation, and dermal matrix integrity. Additionally, the table highlights advances in receptor selectivity, safety profiles, and combination regimens, which collectively enhance therapeutic efficacy

while minimizing adverse effects. (Comprehensive pharmacological data can be accessed via the StatPearls database).
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and RARy, resulting in better tolerability. Trifarotene, a fourth-
generation compound, is a highly selective RARY agonist that offers
efficacy in truncal and facial acne with a favorable safety profile
due to rapid hepatic metabolism (Gudas, 2022b; Aubert et al., 2018;
Wagner et al. 2020).

Table 1 summarizes the applications, dosage considerations,
and administration routes of various generations of retinoids in
skin diseases. In clinical dermatology, topical adapalene is a first-
line therapy for mild acne, while oral isotretinoin is typically
prescribed for severe or treatment-resistant cases (Wagner et al.
2020; Kolli et al.,, 2019). Topical retinoid formulations are also
extensively applied in the management of skin aging, where they
improve dermal collagen synthesis, reduce fine wrinkles, and
counteract photoaging (Kon et al., 2016; Kligman et al., 1986;
Talwar et al, 1995). Tretinoin was the first retinoid to receive
FDA approval for photoaged skin and has demonstrated significant
efficacy in reducing wrinkles, mottled hyperpigmentation, and
surface roughness (Mulkher et al., 2006; Yoham and Casadesus,
2025). Combination products such as Tri-Luma, which includes
fluocinolone acetonide, hydroquinone, and tretinoin, are approved
for the treatment of melasma and hyperpigmentation (Torok,
2006; McKesey et al., 2020). In psoriasis, systemic acitretin
is often combined with phototherapy to reduce cumulative
UV exposure, while topical tazarotene provides local anti-
inflammatory effects (Lebwohl et al., 2004; Ogawa et al., 2018;
Mehta and Lim, 2016; van de Kerkhof and de Rooij, 1997).
Beyond inflammatory conditions, retinoids play a role in skin
oncology. Bexarotene, a selective RXR agonist, is approved
for cutaneous T-cell lymphoma (Duvic et al, 2001). In the
cosmetic domain, retinol and other stable retinoid derivatives
are incorporated into cosmeceuticals targeting signs of aging
with favorable skin tolerance (Mambwe et al, 2025; Zasada
and Budzisz, 2019).

RA has recently attracted growing attention in regenerative
dermatology. When delivered through advanced carriers such as
solid lipid nanoparticles or chitosan-based hydrogels, RA exhibits
improved solubility, stability, and tissue retention (Arantes et al.,
2020; Oluwole et al., 2024). These delivery platforms have shown
therapeutic efficacy by accelerating wound closure, reducing
leukocyte infiltration, optimizing collagen deposition, and
minimizing scar formation. In addition to its anti-fibrotic and
immunomodulatory effects, RA also promotes pro-regenerative
phenotypes in mesenchymal stem cells. Treatment of mesenchymal
stem cells with all-trans RA has been shown to enhance the
expression of angiogenesis- and migration-related genes, including
COX-2, HIF-1, CXCR4, VEGE and angiopoietins, thereby
improving both in vitro cell behavior and in vivo wound healing
outcomes (Pourjafar et al., 2017). The regenerative potential of RA
further extends to the reconstitution of skin appendages. Recent
studies have shown that RA can induce the differentiation of
human induced pluripotent stem cells (iPSCs) into dermal papilla-
like cells (DPCs) (Lv et al., 2024), which are essential for hair
follicle formation (Ji et al., 2021). RA-induced pluripotent stem
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cell-derived multipotent mesenchymal cells, when transplanted in
combination with keratinocytes, are capable of forming hair follicle-
like structures in vivo (Veraitch et al., 2017). Notably, in murine skin
wound, topical application of RA has also been shown to induce hair
follicle neogenesis (Tierney et al., 2024). Sustained RA treatment
in a study by the Fuchs’ group successfully reactivated follicular
neogenesis at wound sites, offering proof-of-concept for RA-based
strategies in functional skin regeneration (Tierney et al., 2024).

Together, these findings support the integration of RA
into next-generation regenerative therapies. By simultaneously
modulating fibrosis, stem cell behavior, vascularization, and
appendage formation, RA represents a uniquely versatile molecule
for promoting comprehensive skin repair beyond mere scar
attenuation.

5 Conclusion and future perspective

Retinoids represent a unique class of compounds that bridge
dermatologic therapy and regenerative medicine. Their well-
established efficacy in treating acne, psoriasis, photoaging, and
selected malignancies is now being complemented by emerging roles
in scar modulation and appendage regeneration. Acting through
nuclear RARs, RA regulates a diverse set of biological processes,
including keratinocyte differentiation, fibroblast activation, ECM
remodeling, and immune modulation, which are core elements
of both wound healing and fibrosis. Mechanistic studies have
identified RA as a key regulator of myofibroblast differentiation and
collagen deposition, largely through inhibition of TGF-p signaling.
Additionally, RA enhances the regenerative capacity of stem cells
and supports the restoration of skin appendages such as hair follicles.
These properties collectively position RA as a potential driver of
adult scarless wound healing, a long-sought goal in regenerative
dermatology.

Despite promising therapeutic potential, the clinical translation
of RA-based regenerative strategies faces challenges derived
from poor aqueous solubility, light and oxidative sensitivity,
and systemic toxicity at pharmacologic doses (Ferreira et al,
2020; Nau, 2001; Collins and Mao, 1999). Although topical use
minimizes systemic absorption, the risk remains for high-potency
compounds or poorly controlled formulations. These issues may be
addressed by future advances in receptor-selective ligand design,
smart delivery systems, and controlled release technologies. The
integration of RA into combination therapies, such as stem cell
transplantation, tissue-engineered scaffolds and gene-modulated
regenerative systems, could hopefully enhance healing outcomes.
Elucidating the temporal and spatial dynamics of RA signaling
during wound repair would be essential for maximizing therapeutic
benefit while minimizing risk. With continued progress, retinoids
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