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Renal cell carcinoma (RCC) is a common malignant tumour of the urinary 
system, characterised by high heterogeneity and a tendency to metastasise, 
with poor prognosis in advanced patients. Although surgical resection and 
targeted therapies such as tyrosine kinase inhibitors and immune checkpoint 
inhibitors have significantly improved survival outcomes in some patients, 
drug resistance and recurrence remain clinical challenges. In recent years, 
extracellular vesicles (EVs) and the microRNAs (miRNAs) they carry have 
emerged as a research hotspot due to their critical roles in tumour initiation, 
progression, immune regulation, and drug resistance. This systematic review 
summarises the biological functions of EVs-derived miRNAs in renal cell 
carcinoma and their potential applications in clinical diagnosis and treatment, 
with a focus on their value in diagnosis, prognosis, immune regulation, and 
prediction of treatment response.
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 1 Introduction

Renal cell carcinoma (RCC) is one of the most common malignant tumours of the 
urinary system, with over 400,000 new cases diagnosed globally each year, making it 
one of the leading causes of cancer-related deaths. The incidence of RCC is on the 
rise in both developed and developing countries (Chen et al., 2023; Sun et al., 2023; 
Grünwald et al., 2024). Based on histological characteristics, the most common subtypes 
of RCC are clear cell type, papillary type (Type I and Type II), and chromophobe 
type, accounting for 70%–90%, 10%–15%, and 3%–5% of all renal malignant tumours, 
respectively. RCC accounts for 2%–3% of all cancers and is the most lethal urogenital 
system cancer, with a mortality rate of 30%–40%, compared to approximately 20% for 
bladder cancer and prostate cancer. The incidence of RCC continues to rise, varying 
globally with higher rates in developed countries than in developing countries (Stepanovska 
Tanturovska et al., 2023). Despite recent advances in surgical techniques and the 
introduction of novel targeted therapies such as tyrosine kinase inhibitors (TKIs) and
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immune checkpoint inhibitors (ICIs), the prognosis for patients 
with advanced RCC remains poor, with a five-year survival rate 
below 15%. The primary challenges in current treatment include 
the presence of drug resistance mechanisms and the lack of reliable 
early diagnostic and prognostic biomarkers (Chen et al., 2020; 
Motzer et al., 2022; Delcuratolo et al., 2023).

Extracellular vesicles (EVs) have been demonstrated to serve as 
crucial intercellular communication mediators within the tumour 
microenvironment (TME) (Kalluri and LeBleu, 2020; Urabe et al., 
2020; Xiao Y. et al., 2020; Huang et al., 2021; Marar et al., 
2021; Fusco et al., 2024). Enclosing diverse bioactive components 
including proteins, lipids, and nucleic acids, EVs modulate recipient 
cell behaviour, thereby influencing numerous physiological and 
pathological processes such as TME formation and evolution 
(Maacha et al., 2019; Ortiz, 2021; Kita and Shimomura, 2022; 
Kumar et al., 2024; Rai et al., 2024). The mechanisms of EV-mediated 
cellular communication are diverse, encompassing activation of 
membrane surface receptors, Messenger RNA (mRNA) transport 
and translation, transfer of microRNA (miRNAs) and target 
mRNAs, delivery of functional proteins, and activation of signalling 
pathways via internalisation (D'Souza-Schorey and Clancy, 2012; 
Svensson and Belting, 2013; Maeda et al., 2023). Among these, 
miRNAs have emerged as a current research focus due to their 
crucial role in gene expression regulation and their extensive 
involvement in tumour progression, metastasis, angiogenesis, and 
immunomodulation. Valadi et al. were the first to demonstrate that 
miRNAs can be transported between cells via extracellular vesicles 
while retaining biological activity in recipient cells (Valadi et al., 
2007). miRNA constitutes one of the most abundant RNA 
components within EVs, accounting for up to 40% of RNA in human 
plasma EVs as revealed by RNA sequencing (Mittelbrunn et al., 
2011; Makarova et al., 2021; Yang et al., 2021; Xiong et al., 2023). 
Studies have shown that miRNAs are predominantly enclosed within 
extracellular vesicles (EVs), where vesicular encapsulation protects 
them from nuclease degradation in body fluids, thereby facilitating 
intercellular communication (Kogure et al., 2019). EVs are widely 
distributed across various biological fluids, including plasma, saliva, 
urine, milk, and cerebrospinal fluid. Notably, the abundance of 
miRNAs carried by EVs from milk and cerebrospinal fluid may 
exceed that of plasma-derived EVs (Tabatabai et al., 2025). Whether 
derived from normal or tumour tissues, EVs serve as carriers for 
both miRNA and pathogenic proteins, potentially contributing to 
the onset and progression of certain diseases (Saeedi et al., 2021; 
Doncheva et al., 2022; Kumar et al., 2024) (Figure 1).

microRNAs (miRNAs) are a class of small non-coding 
RNAs that primarily suppress gene translation by targeting 
messenger RNAs (mRNAs), and participate in diverse biological 
processes including cell differentiation, proliferation, apoptosis, 
and development (Lu et al., 2005; Filella and Foj, 2017; 
Selvaskandan et al., 2023). In malignant tumours, miRNAs may 
function as either tumour suppressors or oncogenes, exhibiting 
characteristic alterations in their expression levels (Guil and Esteller, 
2009; Hill and Tran, 2021; Li B. et al., 2021). The differential 
expression of miRNAs between normal and cancerous cells 
renders them ideal candidate molecules for tumour biomarkers 
(Chow et al., 2010). miRNAs within tumour-derived EVs can further 
enhance the invasive and metastatic capabilities of tumour cells by 

modulating the tumour microenvironment (TME) (Nishida-Aoki 
and Ochiya, 2015; Tkach and Théry, 2016).

Recent studies have revealed significant differences in the 
expression of EVs-miRNA between healthy individuals and 
RCC patients (Nawaz et al., 2014), suggesting broad application 
prospects in non-invasive diagnosis and prognostic assessment. 
Furthermore, engineered miRNA delivery systems based on EVs 
have demonstrated potential therapeutic value (Rädler et al., 2023). 
The high stability of miRNAs in bodily fluids such as plasma and 
urine render them ideal molecules for liquid biopsy. Nevertheless, 
technical challenges persist in clinical implementation, including 
standardization of isolation methods, target specificity, and potential 
off-target effects. This paper aims to provide a systematic review of 
research progress on EVs-miRNA in RCC, focusing on their role in 
tumour biology, potential as diagnostic biomarkers, and therapeutic 
applications. It also explores challenges and future directions in their 
clinical translation. 

2 The biological basis of EVs and 
miRNAs

Extracellular vesicles are a class of membrane-bound 
nanovesicles actively secreted by cells, carrying diverse biomolecules 
such as proteins and nucleic acids, particularly microRNA (miRNA), 
which play crucial roles in tumourigenesis and progression. These 
vesicles can be readily extracted from peripheral blood and other 
bodily fluids, rendering them potential tools for non-invasive 
tumour diagnosis (Raposo and Stoorvogel, 2013; Kogure et al., 
2019; Munir et al., 2020). The biological effects of extracellular 
vesicles on surrounding or distant target cells are primarily 
determined by their biomolecular cargo. Their lipid composition 
includes sphingolipids, cholesterol, phosphatidylserine, saturated 
fatty acids, and sphingosine—substances also prevalent in 
the plasma membrane (Trajkovic et al., 2008; Skotland et al., 
2020). Research indicates that sphingosine plays a direct role 
in the formation of internalised vesicles (ILVs) within the 
lumen of multivesicular bodies (MVBs). Inhibition of neutral 
sphingomyelinase significantly reduces extracellular vesicle release, 
further validating this lipid’s critical function in extracellular vesicle 
biogenesis (Menck et al., 2017).

The proteome of extracellular vesicles primarily comprises 
proteins involved in membrane transport, such as tetramembrane 
proteins (CD63, CD81, CD82, and CD9), whose recruitment 
depends on the ALIX and ESCRT-III pathways (Larios et al., 
2020). Furthermore, extracellular vesicles are rich in heat shock 
proteins (Hsp60, Hsp70, Hsp90), integrins, and class II major 
histocompatibility complex (MHC II) molecules (Clayton et al., 
2005). Notably, extracellular vesicles do not simply represent the 
protein expression profile of the parent cell; rather, they selectively 
enrich certain proteins through specific mechanisms. Among these, 
ubiquitination is recognised as a key regulatory step mediating 
protein binding to the ESCRT complex and facilitating their 
incorporation into vesicles (Larios et al., 2020).

miRNAs are regulated both by their biogenesis mechanisms 
and by the sequence characteristics of the miRNAs themselves. 
Although the ESCRT system plays a central role in the formation 
of multi-vesicular bodies (MVBs) and EV release, studies indicate 
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FIGURE 1
EV Types and Sources. Extracellular vesicles (EVs) encapsulate bioactive components like proteins, nucleic acids, and lipids—lipids act as structural 
elements and reflect cellular traits. Cells across tissues use EVs for intercellular communication, releasing them into body fluids. A large share of human 
EVs comes from stem cells; EVs are also actively produced and released by organisms from plants to bacteria.

that knocking down key ESCRT proteins does not affect miRNA 
content (Kosaka et al., 2010). Interestingly, while knocking down the 
ESCRT-III-associated protein Alix does not affect total extracellular 
vesicle release, it leads to a significant reduction in miRNA content
(Iavello et al., 2016).

Certain miRNA sequences contain conserved domains known 
as EXO-motifs, which bind to specific RNA-binding proteins such as 
hnRNPA2B1 and SYNCRIP, thereby facilitating their incorporation 
into extracellular vesicles (Santangelo et al., 2016). Previous studies 
have identified short motif sequences (e.g., GGAG in miR-198 and 
UGCA in miR-601) that regulate miRNA loading into extracellular 
vesicles, with point mutations altering these motifs significantly 
impacting miRNA efficiency (Villarroya-Beltri et al., 2013). Recent 
studies have further revealed an association between AGO2 
and extracellular vesicle-associated miRNAs, with AGO2 being 
identified in extracellular vesicle proteomics via mass spectrometry 
(MS) or Western blotting analyses (Goldie et al., 2014; Zhang J. et al., 
2015). Knockout of AGO2 was found to reduce the types or 
abundance of preferentially exported miRNAs in extracellular 
vesicles derived from HEK293T cells (Guduric-Fuchs et al., 2012). 
Further investigations indicate that YBX1 (Y-box protein I) also 
binds to miR-223 and miR-144, regulating their packaging into 
vesicles (Ung et al., 2014; Shurtleff et al., 2016). Collectively, these 

findings suggest that specific sequences within miRNAs may guide 
their incorporation into extracellular vesicles.

Extensive research indicates that miRNAs within extracellular 
vesicles participate in the formation of multiple tumour types 
and serve as sensitive biomarkers for cancer diagnosis (Aguilar-
Hernandez et al., 2021; Lu et al., 2021; Romano et al., 2021; 
Maruoka et al., 2022; Wang et al., 2022; Genova et al., 2024; 
Kural et al., 2024). Compared to free-floating miRNAs, those 
derived from extracellular vesicles exhibit enhanced stability, owing 
to the protective double-layered membrane structure that shields 
them from degradation by endogenous nucleases or phagocytes 
such as macrophages. The nanoscale dimensions and membrane 
protective mechanisms of extracellular vesicles prolong the half-
life of miRNAs in bodily fluids, enhancing their biological 
functionality (Sun et al., 2022). Upon release into bodily fluids, 
extracellular vesicles may be internalised by neighbouring or 
distant cells, where the encapsulated miRNAs can regulate a 
range of biological processes including immune evasion, tumour 
microenvironment modulation, angiogenesis, metastasis, and drug 
resistance development (Sun et al., 2018). Consequently, the role 
of EVs-miRNAs in cancer progression has garnered significant 
attention. For instance, Fabbri (2012) demonstrated that miRNAs 
within lung cancer-derived extracellular vesicles promote tumour 
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cell proliferation and metastasis by activating Toll-like receptors 
(TLRs). Zhou et al. (2014) further reported that extracellular vesicles 
secreted by tumour cells carrying miR-105 disrupt tight junctions 
between vascular endothelial cells, compromising the natural barrier 
and thereby promoting metastasis. Additionally, studies on renal 
cell carcinoma (RCC) have identified circulating EVs enriched with 
multiple miRNAs associated with metastasis and invasion, including 
miR-200c, miR-92, miR-141,miR-19b, miR-29a, miR-29c, miR-650, 
and miR-151 (Chow et al., 2010; Grange et al., 2011). These miRNAs 
hold promise as biomarkers for renal carcinoma progression, 
demonstrating significant research and clinical application value. 

3 The function of EVs carrying miRNAs 
in renal cell carcinoma

3.1 Tumorigenesis and progression

In recent years, multiple studies have progressively revealed 
the pivotal regulatory role of miRNAs carried by EVs in the 
development and progression of clear cell renal cell carcinoma 
(ccRCC). DISA et al. discovered that PTEN serves as a common 
target gene for hsa-miR-301a-3p, hsa-miR-200c-3p, and hsa-miR-
25-3p. Studies indicate that these miRNAs are significantly enriched 
in plasma extracellular vesicles during the presence of primary 
tumours, with their expression levels markedly decreasing following 
tumour resection. This suggests that EVs-miRNAs may regulate 
tumour progression at the post-transcriptional level by activating 
the PI3K/AKT signalling pathway (Dias et al., 2020). Notably, hsa-
mir-301a-3p exhibited a declining trend post-tumour resection, 
with its levels continuing to decrease during follow-up. However, 
its expression significantly increased in the metastasis cohort, 
suggesting this miRNA may play a crucial role in metastasis 
and holds potential as a prognostic biomarker. In contrast, the 
EV-derived levels of hsa-miR-1293 progressively increased after 
tumour resection until follow-up yet were markedly reduced in the 
metastatic cohort. This indicates the miRNA’s potential tumour-
suppressing function and its possibility as a biomarker for metastatic 
disease in ccRCC patients (Dias et al., 2020). Among these, hsa-
miR-301a-3p exhibited a consistent decrease in expression following 
surgery but was significantly elevated in patients with metastasis 
during follow-up, indicating its potential involvement in metastatic 
dissemination and its utility as a prognostic biomarker. Conversely, 
hsa-miR-1293 displayed increased EV expression post-surgery but 
was significantly downregulated in metastatic cases, suggesting 
its potential tumor-suppressive role and prognostic relevance in 
identifying metastatic ccRCC (Dias et al., 2020). Ding et al. using 
small RNA sequencing, demonstrated that miR-181d-5p was highly 
enriched in EVs derived from cancer-associated fibroblasts (CAFs) 
in RCC patients. This miRNA directly suppressed RNF43 expression 
in RCC cells and activated the Wnt/β-catenin pathway, thereby 
enhancing cancer stemness and promoting tumor progression 
(Ding et al., 2022). Additionally, RAB27 A/B has been shown to 
regulate EV-miRNA secretion. Decreased RAB27A expression was 
closely associated with lymph node metastasis and poor prognosis in 
RCC (Chen et al., 2012; An et al., 2019). Song et al. further reported 
that elevated RAB27A expression promoted RCC cell secretion 
of miR-127-3p, which, through EV-mediated transfer, upregulated 

MYCN expression and enhanced tumor invasiveness (Song et al., 
2024). miR-9-5p has also been implicated in RCC progression. 
Song et al. found that it was significantly elevated in serum from 
advanced RCC patients and positively correlated with TNM stage 
and Fuhrman grade. Functional assays demonstrated that EV-
derived miR-9-5p promoted proliferation and invasion of A-704 
cells by downregulating SOCS4, both in vitro and in vivo, supporting 
its role as a diagnostic and prognostic biomarker (Song et al., 2020).

Further in vitro and in vivo studies confirmed that ccRCC-
derived EVs transmit miR-27a, which suppresses its target 
gene SFRP1 while enhancing vascular endothelial growth factor 
(VEGF) and tumour necrosis factor-α (TNF-α) expression, 
thereby promoting RCC cell viability, migration, and angiogenesis 
(Hou et al., 2021). Xuan et al. observed significantly downregulated 
miR-549a expression in TKI-resistant ccRCC cells and their 
extracellular vesicles. Extracellular vesicle-derived miR-549a 
inhibits tumour angiogenesis and reduces endothelial cell migration 
by binding to the 3′-UTR region of HIF-1α, thereby suppressing its 
expression (Xuan et al., 2021).

Li et al. further observed that miR-15a, upregulated in EVs, 
enhances the epithelial-mesenchymal transition (EMT) capacity 
of ccRCC cells by downregulating BTG2 and activating the 
PI3K/AKT pathway (Li D. Y. et al., 2021). Furthermore, Wang 
et al. observed that in metastatic ccRCC patients, cancer stem 
cell (CSC) extracellular vesicles induce EMT by transporting miR-
19b-3p to tumour cells and suppressing PTEN gene expression. 
CD103+-guided CSC extracellular vesicles target cancer cells and 
organs, conferring enhanced lung metastatic potential to ccRCC. 
Consequently, CD103+ extracellular vesicles also emerge as a 
potential metastatic diagnostic biomarker (Wang L. et al., 2019). 

3.2 Immune regulation

Tumour-associated macrophages (TAMs) play a pivotal 
role in regulating the tumour microenvironment (TME) and 
promoting tumour initiation and progression (Pollard, 2004). 
Increasing evidence indicates that TAMs are not only one of the 
predominant cell types within the TME, but also participate in 
the complex processes of cancer through multiple mechanisms 
including immune suppression, promotion of tumour progression, 
metastasis, and drug resistance (Pathria et al., 2019; Wei et al., 
2019). Macrophages can be categorised into pro-inflammatory 
M1 and immunosuppressive M2 types based on their functional 
state. TAMs exhibit phenotypic and functional characteristics closer 
to M2 macrophages, which are strongly associated with tumour-
promoting properties (Boutilier and Elsawa, 2021). Multiple 
studies demonstrate that TAM infiltration correlates closely with 
poor prognosis across various cancer types, including RCC 
(Komohara et al., 2011; Zhou et al., 2015; Chen et al., 2017). 
Consequently, targeting TAMs presents a potential therapeutic 
strategy that may offer novel insights into the interactions 
between the tumour microenvironment and tumour cells 
(Pyonteck et al., 2013; Ries et al., 2014). In RCC, TAMs have been 
demonstrated to promote tumour cell migration and tumour growth 
(Kadomoto et al., 2019; Schnetz et al., 2020).

Regarding specific mechanisms, research has revealed that 
upregulation of HIF-1α in macrophages promotes miR-193a-5p 
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expression. This microRNA is subsequently transported to RCC cells 
via extracellular vesicles, targeting the 3′-untranslated region (3′-
UTR) of TIMP2 mRNA. This downregulates TIMP2 expression, 
thereby enhancing tumour angiogenesis and invasive capacity. 
Inhibition of miR-193a-5p in extracellular vesicles derived from 
TAMs has been shown to significantly attenuate RCC progression 
and metastasis, offering a novel therapeutic approach targeting 
TAM-associated miRNAs (Liu et al., 2022). In a ccRCC model, 
Feng et al. discovered that extracellular vesicles derived from M2-
polarised macrophages transport miR-342-3p to target and inhibit 
NEDD4L, thereby blocking the ubiquitination and degradation 
of CEP55 and activating the PI3K/AKT/mTOR pathway. This 
ultimately enhances the proliferation, migration, and invasive 
capacity of RCC cells. This research offers fresh perspectives 
for developing therapeutic targets in RCC (Feng et al., 2021). 
Zhang et al. further indicated that extracellular vesicles derived 
from M2 macrophages serve as key mediators enhancing RCC 
cell migration and invasive potential. The miR-21-5p they enrich 
promotes distant tumour metastasis by downregulating PTEN 
expression and activating the Akt signalling pathway. In vitro
and in xenograft models, this miRNA consistently demonstrated 
metastatic-promoting capabilities. Notably, application of miR-21-
5p inhibitors reversed these pro-metastatic effects, opening novel 
pathways for intervening in TAM-mediated metastatic behaviour 
and offering a novel therapeutic strategy for preventing RCC 
metastasis (Zhang Z. et al., 2022). Furthermore, research indicates 
that extracellular vesicles derived from ccRCC cells can transport 
long non-coding RNA (lncARSR), activating the miR-34/miR-449-
STAT3 signalling pathway. This induces the transformation of M1 
macrophages towards an M2 phenotype, enhancing their phagocytic 
activity and promoting angiogenesis, thereby accelerating tumour 
progression (Zhang W. et al., 2022). 

3.3 Drug resistance

With the widespread application of multi-targeted kinase 
inhibitors in the treatment of advanced ccRCC, the issue of 
drug resistance has progressively become a key obstacle affecting 
therapeutic efficacy. Sorafenib is a commonly used oral multi-
targeted tyrosine kinase inhibitor in clinical practice. Its mechanism 
of action primarily involves inhibiting multiple angiogenesis 
and tumour proliferation-related signalling pathways, including: 
VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β 
(PDGFR-β), RAF-1,c-Kit, and FMS-like tyrosine kinase 3 (Flt-
3) (Yu et al., 2015).

Research by He et al. revealed that tumour-derived extracellular 
vesicles can promote sorafenib resistance by transporting miR-31-
5p. They further demonstrated that this microRNA targets the 3′-
UTR of the MLH1 gene, leading to its downregulation and thereby 
inducing a sorafenib-resistant response (Yu et al., 2015). Additional 
studies have reported that miR-31-5p-enriched extracellular vesicles 
in ccRCC models mediate resistance signals by directly targeting the 
DNA mismatch repair-associated gene MutL homolog 1 (MLH1), 
thereby enhancing the sorafenib-resistant phenotype. Consequently, 
both miR-31-5p and its target genes may serve as predictive 
biomarkers and therapeutic targets for sorafenib resistance (He et al., 
2020). Qu et al. further discovered that extracellular vesicles secreted 

by RCC cells deliver IncARSR, which promotes sunitinib resistance 
by competitively binding miR-34/miR-449, thereby enhancing AXL 
and c-MET expression in RCC (Qu et al., 2016).

In summary, EV-carried miRNAs exert core regulatory roles 
in RCC initiation, progression, immune modulation, and drug 
resistance mechanisms. By targeting multiple signalling pathways 
(e.g., PI3K/AKT, Wnt/β-catenin, STAT3), they influence cancer cell 
proliferation, migration, invasion, and metastatic nodule formation. 
Certain miRNAs (e.g., miR-301a-3p, miR-21-5p,miR-342-3p) are 
closely associated with prognosis, whilst miR-193a-5p, miR-9-5p, 
and miR-127-3p play crucial roles in immune regulation and 
invasive metastasis mediated by tumour-associated macrophages 
(TAMs) and cancer stem cells (CSCs). Furthermore, miR-31-
5p has been demonstrated to contribute to sorafenib resistance 
by downregulating MLH1 expression, suggesting its potential for 
predicting and overcoming targeted therapy resistance. As the 
functional role of EV-associated miRNAs is increasingly elucidated, 
their clinical value as non-invasive biomarkers and therapeutic 
intervention targets becomes increasingly evident, offering broad 
prospects for the early diagnosis, dynamic monitoring, and 
personalised treatment of renal cell carcinoma (Figure 2, Table 1).

4 EVs-miRNA serves as a biomarker 
for RCC

In recent years, liquid biopsy has garnered significant attention 
in both clinical practice and fundamental research as a non-
invasive tool for tumour detection. Particularly in the early diagnosis 
of renal tumours, accurately distinguishing between benign and 
malignant small renal masses (SRMs) is crucial for determining the 
need for surgical intervention. Although the diagnostic accuracy 
of tissue biopsy continues to improve (Marconi et al., 2016), its 
invasive nature and procedural limitations remain obstacles to 
widespread clinical adoption. In contrast, miRNAs carried by EVs 
possess inherent protective mechanisms due to their membrane-
enclosed structure, exhibiting enhanced stability and detection 
reproducibility in biological fluids such as plasma, serum, and urine. 
This offers promising clinical application prospects. Consequently, 
liquid biopsy strategies based on EVs-miRNA hold potential as 
a safer, more sensitive, and reproducible diagnostic approach for 
renal cancer. Simultaneously, identifying ccRCC patients at high 
metastatic risk is crucial for developing personalised monitoring 
plans, optimising adjuvant treatment decisions, and enabling early 
intervention against metastatic lesions. However, clinically validated 
molecular biomarkers for risk stratification in this patient cohort 
remain scarce. Notably, despite advances in targeted therapies such 
as TKIs and ICIs, predictive indicators for treatment efficacy remain 
limited (Linxweiler and Junker, 2020). Consequently, exploring 
EVs-miRNAs with high stability, specificity, and reproducibility as 
liquid biopsy biomarkers has become a core research direction for 
precision diagnosis and treatment of RCC. Previous studies have 
demonstrated that EV-associated miRNAs remain stable without 
degradation in preservation solutions under hypothermic ischemia 
conditions (4 °C) during liver transplantation (Vidal-Correoso et al., 
2024). Ma et al. further showed that glycosylated extracellular 
vesicles preserve their miRNA cargo without degradation under 
storage at −80 °C and remain stable for up to 7 days at 4 °C (Ma et al., 
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FIGURE 2
Roles of Renal Cell Carcinoma-Derived Extracellular Vesicles (EVs) in Tumorigenesis. This figure shows renal carcinoma EVs drive tumor development 
via multiple pathways: delivering growth-promoting miRNAs/oncogenes to boost cancer cell proliferation/dissemination, transferring molecules to 
induce epithelial-mesenchymal transition, conveying pro-angiogenic factors for neovascularization, and transporting immunosuppressive molecules 
to enable immune evasion, while interacting with stromal cells to remodel the tumor microenvironment.

2023). In addition, Muth et al. evaluated the effects of freeze–thaw 
cycles and room temperature incubation on plasma EV-miRNAs, 
and found that appropriate pre-analytical processing (e.g., platelet 
removal) markedly improves the stability and accuracy of EV-
miRNA analysis (Muth et al., 2018). Collectively, these findings 
suggest that EV-associated miRNAs are feasible candidates for 
use as routine biomarkers. Numerous studies have reported that 
miRNAs in extracellular vesicles demonstrate significant potential 
in RCC diagnosis, prognostic assessment, and treatment response 
prediction (Butz et al., 2016; De Palma et al., 2016; Zhang et al., 2018; 
Song et al., 2019; Wang X. et al., 2019).

miR-210 and miR-1233, isolated from serum extracellular 
vesicles, have been validated as diagnostic biomarkers for clear 
cell renal cell carcinoma (ccRCC), exhibiting sensitivities of 
70% and 81%, respectively, alongside specificities of 62.2% and 
76.0%. Notably, these biomarkers demonstrate a significant 
decline following nephrectomy. Furthermore, Wang and colleagues 
reported that miR-210 could identify RCC with 82.5% sensitivity 
and 80.0% specificity. In this context, higher miR-210 levels 
were observed in more advanced cases and those with higher 
Fuhrman grading, independent of gender or age (Zhang et al., 

2018; Wang X. et al., 2019). Fujii et al. further demonstrated that 
high expression of Exo-miR-224 correlates strongly with poor 
prognosis in ccRCC patients, manifesting as reduced survival 
times and accelerated tumour progression. Compared to the low-
expression group, the high-expression Exo-miR-224 group exhibited 
significantly shorter progression-free survival, cancer-specific 
survival, and overall survival. In multivariate analysis, elevated Exo-
miR-224 levels emerged as a significant prognostic risk factor across 
all studies. Co-incubation of primary renal cell carcinoma (RCC) 
cell lines with extracellular vesicles derived from metastatic RCC 
cell lines enhanced cellular proliferation and invasive capacity while 
markedly reducing apoptotic cell proportions. Intracellular miR-224 
levels were significantly upregulated in primary renal carcinoma 
cell lines. Extracellular miR-224 in extracellular vesicles influences 
patient prognosis and represents a potential prognostic biomarker 
in ccRCC patients (Fujii et al., 2017). Dias et al. confirmed that 
multiple miRNAs (miR-301a-3p, miR-200c-3p, miR-25-3p) play 
a crucial role in sustaining ccRCC cell proliferation by targeting 
PTEN and activating the PI3K/AKT pathway. The expression 
level of hsa-miR-301a-3p derived from EVS was again elevated 
in metastatic patients, highlighting its potential as a biomarker for 
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TABLE 1  Functions of EV-carried miRNAs in RCC.

Sample 
source

Number of 
samples

Dysregulated 
miRNAs

Physiological 
effect

Target genes miRNA 
profiling

REF

Plasma-derived Evs 32 ccRCC patients 
with localized disease 
(before and after 
surgery) and in 37 
patients with 
metastatic disease

miR-301a-3p↑miR-
1293↓

miR-301a-3p 
activates PI3K/AKT 
to promote 
progression and 
metastasismiR-1293 
acts as a tumor 
suppressor

PTEN Small RNA-seq, 
RT-qPCR

Dias et al. (2020)

Cell-derived Evs 3 RCC patient pairs 
(tumor tissues: 
CAFs/adjacent 
normal tissues: NFs)

miR-181d-5p↑ Promotes tumor cell 
proliferation, 
migration, and 
invasion

RNF43 Small RNA-seq, 
qRT-PCR

Ding et al. (2022)

Cell-derived Evs N/A miR-127-3p↑ Promotes tumor cell 
migration, invasion, 
and metastasis and is 
associated with poor 
prognosis

MYCN RT-qPCR、Next-
Generation 
Sequencing

Song et al. (2024)

Serum-derived EVs 35 ccRCC patients 
(high expression)/31 
ccRCC patients (low 
expression)

miR-9-5p↑ Promotes tumor cell 
proliferation and 
migration, positively 
associated with TNM 
stage and Fuhrman 
grade

SOCS4 qRT-PCR Song et al. (2020)

Cell-derived Evs N/A miR-549a↓ Enhances vascular 
endothelial 
permeability and 
angiogenesis and 
promotes lung 
metastasis formation

HIF-1α RT-qPCR, Small 
RNA-seq

Xuan et al. (2021)

Tissue-derived Evs 53 paired ccRCC 
tissues and adjacent 
normal tissues (31 
stage I–II/22 stage 
III–IV patients)

miR-15a↑ Promotes tumor cell 
proliferation, 
migration, invasion, 
and EMT and 
aggravates ccRCC 
progression via 
PI3K/AKT activation

BTG2 Microarray, 
RT-qPCR

Li et al. (2021b)

Tissue-derived Evs 133 CCRCC patients 
(stage I–II, 
non-metastatic)/76 
CCRCC patients 
(stage III–IV, 
metastatic)

miR-19b-3p↑ Enhances tumor cell 
migration, invasion, 
and metastasis and 
CD103⁺ exosomes 
preferentially target 
lung tissue to 
promote metastasis

PTEN RT-qPCR, Small 
RNA-seq

Wang et al. (2019a)

Tissue-derived Evs 51 histologically 
confirmed ccRCC 
tissue samples 
(including 23 paired 
adjacent 
non-cancerous 
tissues)

miR-193a-5p↑ Enhances tumor cell 
migration and 
angiogenesis and 
promotes tumor 
progression and 
metastasis

TIMP2 RT-qPCR Liu et al. (2022)

Cell-derived Evs N/A miR-342-3p↑ Promotes tumor cell 
proliferation, 
migration, invasion, 
and metastasis by 
inhibiting NEDD4L 
and stabilizing 
CEP55 to activate 
PI3K/AKT/mTOR 
signaling

NEDD4L, CEP55 RT-qPCR Feng et al. (2021)

(Continued on the following page)
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TABLE 1  (Continued) Functions of EV-carried miRNAs in RCC.

Sample 
source

Number of 
samples

Dysregulated 
miRNAs

Physiological 
effect

Target genes miRNA 
profiling

REF

Cell-derived Evs N/A miR-21-5p↑ Promotes tumor cell 
proliferation, 
migration, invasion, 
and distant 
metastasis by 
downregulating 
PTEN and activating 
Akt signaling to 
induce EMT.

PTEN RT-qPCR Zhang et al. (2022b)

Cell-derived Evs N/A lncARSR↑→miR-
34/miR-449

Induces macrophage 
polarization from M1 
to M2 and promotes 
phagocytosis, 
angiogenesis, and 
tumor progression

STAT3 RT-qPCR Zhang et al. (2022a)

Plasma-derived Evs 40 metastatic RCC 
patients (sorafenib 
treatment)

miR-31-5p↑ Promotes sorafenib 
resistance and 
enhances tumor cell 
proliferation and 
survival under drug 
pressure

MLH1 RT-qPCR, TaqMan 
miRNA probes

He et al. (2020)

metastatic disease (Dias et al., 2020; Alves et al., 2024). Findings by 
Alves et al. further support hsa-miR-200c-3p, hsa-miR-25-3p, and 
hsa-miR-301a-3p in extracellular vesicles as potential biomarkers 
for monitoring disease aggressiveness. Experiments revealed that 
co-inhibiting these EVs-miRNAs significantly increased PTEN 
expression, reduced tumour cell proliferation and migration in 2D 
models, and diminished spheroid size and metabolic capacity in 3D 
models. These EVs-miRNAs demonstrate potential as biomarkers 
for monitoring disease invasiveness and as therapeutic targets 
for ccRCC, potentially enabling more effective and personalised 
treatments for patients (Alves et al., 2025). Song et al. identified 
miR-9-5 as highly expressed in renal cancer patients’ serum, 
correlating with advanced TNM staging (tumour size, lymph 
node metastasis) and Fuhrman grade. Both in vitro and in 
vivo studies suggest its utility as a diagnostic biomarker and 
treatment response monitor (Song et al., 2020). Furthermore, 
Xiao et al. reported upregulation of miR-149-3p and miR-424-
3p alongside significant downregulation of miR-92a-1-5p in 
plasma EVs, suggesting their combination holds potential for RCC 
screening. Plasma extracellular vesicles containing hsa-miR-92a-1-
5p,hsa-miR-149-3p, and hsa-miR-424-3p in plasma extracellular 
vesicles may serve as potential biomarkers for detecting RCC
(Xiao C. T. et al., 2020).

In urinary EVs, researchers developed a nanowire-based EV 
enrichment technique capable of capturing over 99% of EVs and 
detecting approximately 2,500 miRNAs. This approach revealed 
a miRNA profile similar to that in serum, with urine being a 
more suitable sampling source due to its proximity to the kidneys 
(Yasui et al., 2024). Small extracellular vesicles secreting distinct 
miRNA combinations, including miR-126-3p + miR-449a, miR-
126-3p + miR-34b-5p, miR-126-3p + miR-486-5p, miR-25-3p + 

miR-34b-5p,miR-21-5p + miR-34b-5p, and miR-150-5p + miR-
126-3p, have been reported as diagnostic biomarkers for clear cell 
renal cell carcinoma (ccRCC),with sensitivities of 60.6%, 67.3%, 
52.9%, 73.1%, 74%, and 61.5%, and specificities of 100%, 82.8%, 
95.8%, 79.3%, 72.4%, and 82.8% respectively (Butz et al., 2016). Qin 
et al. demonstrated that miR-224-5p was significantly upregulated 
in urine EVs from RCC patients compared to healthy volunteers. 
Overexpression of miR-224-5p inhibited RCC cell proliferation 
and induced cell cycle arrest. Urinary EVs containing miR-224-
5p were identified as a potential biomarker for RCC (Qin et al., 
2021). Butz et al. observed significant downregulation of miR-
126-3p (P = 0.004) in urinary EVs, alongside upregulation of 
miRNA-150-5p, suggesting potential for tumour diagnosis using 
these miRNAs in SRMs.Moreover, several distinct EVs-miRNA 
combinations (including miR-126-3p, miR-486-5p, and miR-34b-
5p) not only differentiated general ccRCC patients and SRMs 
from healthy participants but also distinguished benign tumour 
patients from ccRCC patients. These data are highly promising 
and may improve future surgical management decisions for SRMs 
(Butz et al., 2016). Moreover, Song et al. discovered that miR-30c-
5p in urinary extracellular vesicles targets heat shock protein 5 
(HSPA5) and inhibits ccRCC progression, exhibiting a sensitivity of 
68.57% and specificity of 100%, demonstrating significant potential 
as a diagnostic biomarker for ccRCC (Song et al., 2019). Crentsil 
et al. identified miR-205 and miR-150 in extracellular vesicles as 
significantly differentially expressed in 786-O cells compared to 
controls, suggesting their utility as ccRCC extracellular vesicle 
biomarkers. Results from in vitro models corroborated this finding, 
though only miR-205 achieved statistical significance (Crentsil et al., 
2018). Consequently, miR-224-5p, miR-126-3p, miR-150-5p, miR-
30c-5p, miR-205,miR-486-5p, and miR-34b-5p have been reported 
to exhibit altered expression in urinary EVs, showing promise 

Frontiers in Cell and Developmental Biology 08 frontiersin.org

https://doi.org/10.3389/fcell.2025.1694257
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


He et al. 10.3389/fcell.2025.1694257

for the early diagnosis and differentiation of RCC and SRMs 
(Butz et al., 2016; Crentsil et al., 2018; Song et al., 2019). Notably, 
miR-224-5p demonstrates novel predictive value in immunotherapy 
by influencing the stability of Cyclin D1 and PD-L1 (Qin et al., 2021).

Several candidate miRNAs detected in RCC have also been 
implicated in other renal disorders, which challenges their disease 
specificity. For instance, miR-9-5p has been proposed as a non-
invasive biomarker for idiopathic membranous nephropathy (IMN) 
(Guo et al., 2022), and miR-210 has shown diagnostic relevance in 
IgA nephropathy (IgAN) (Zhao et al., 2022). Such evidence indicates 
that single miRNAs may lack sufficient specificity for RCC diagnosis. 
However, their clinical value remains promising, particularly when 
applied as part of multi-marker panels or in combination with imaging 
and clinicopathological features to enhance diagnostic precision. 

In summary, EVs-miRNAs in serum and urine have demonstrated 
favourable specificity and stability, offering broad prospects for non-
invasive detection, prognostic assessment, and treatment response 
prediction in RCC. Future large-scale prospective studies and technical 
standardisation are required to advance their clinical translation, 
thereby providing more personalised and precise management 
strategies for RCC patients (Table 2). 

5 The potential of EVs-miRNA in the 
treatment of RCC

With ongoing innovations in treatment strategies, the clinical 
management of RCC, particularly metastatic renal cell carcinoma 
(mRCC), is progressively shifting towards individualisation. 
However, the lack of stable therapeutic predictive biomarkers, 
coupled with significant tumour heterogeneity, substantially 
increases uncertainty regarding treatment response. In recent 
years, the role of miRNAs within EVs in regulating RCC biological 
behaviour and guiding therapy has garnered considerable attention, 
offering novel avenues for clinical intervention.

Indeed, for stage I tumours confined to the kidney, the five-year 
survival rate exceeds 90%. However, this rate drops to approximately 
72.5% in stages II/III. More concerning is that around 30% of RCC 
patients are already at stage IV at diagnosis, with a five-year survival 
rate of merely 12% (Padala et al., 2020). RCC exhibits widespread 
resistance to conventional chemotherapy and radiotherapy, with 
radical or partial nephrectomy remaining the standard treatment 
approach (Yang and Liao, 2018). However, radical surgery may 
lead to renal insufficiency, increased cardiovascular event risk, and 
elevated mortality (Alam et al., 2019). Surgical approach must be 
balanced against factors including tumour stage, size, and grade 
(Padala et al., 2020; Marchioni et al., 2021; Spadaccino et al., 2021). 
Despite aggressive treatment, approximately 20%–50% of patients 
will progress to advanced disease (Padala et al., 2020).

In recent years, combination therapy with ICIs and anti-
angiogenic TKIs has significantly improved treatment response in 
mRCC (Borchiellini and Maillet, 2022). Nevertheless, therapeutic 
efficacy remains highly variable, potentially constrained by the 
absence of a unified molecular classification, intratumoural 
heterogeneity, and differences between RCC subtypes. Currently, 
the IMDC risk scoring model is the only prospectively validated 
prognostic indicator for mRCC (Dudani et al., 2020). Concurrently, 
a substantial proportion of patients develop primary or acquired 

resistance to targeted therapies (Makhov et al., 2018). Consequently, 
identifying novel, highly effective, and predictable molecular 
biomarkers is imperative.

EVs-miRNA, as key information molecules secreted by tumour 
cells and released into body fluids, participate in regulating multiple 
tumour biological processes, particularly in remodelling the 
tumour microenvironment (TME) (D'Souza-Schorey and Clancy, 
2012). EVs modulate the state of local fibroblasts, macrophages, 
and vascular endothelial cells, inducing their transformation 
into pro-tumour subtypes that support tumour progression 
(Kosaka et al., 2016; Madeo et al., 2018; Ringuette Goulet et al., 
2018). Furthermore, tumour derived EVs exert remote effects, 
inducing the formation of ‘pre-metastatic niches’ in target organs, 
enhancing vascular permeability, recruiting mesenchymal stem 
cells, and reprogramming the local matrix (Hoshino et al., 2015; 
Zhang L. et al., 2015). Conversely, EVs released by stromal cells 
can influence tumour cell behaviour, either enhancing their 
invasive capacity or inducing a dormant state (Roccaro et al., 2013; 
Ono et al., 2014). EVs also transmit drug resistance signals between 
primary and metastatic sites, participating in the establishment and 
maintenance of resistance (Qu et al., 2016; Lobb et al., 2017).

Specific studies indicate that elevated serum or plasma 
expression of miR-1233, miR-221, and miR-210 correlates 
significantly with RCC-specific mortality risk (Wulfken et al., 2011; 
Dias et al., 2017),with miR-1233 further proposed as a potential 
therapeutic target. Yoshino et al. discovered that EVs-miR-1 
significantly inhibits RCC cell proliferation, migration, and invasion. 
Its downregulation in RCC tissues correlates with reduced patient 
survival, suggesting therapeutic potential (Yoshino et al., 2022). 
Furthermore, upregulation of HIF-1α expression in TAMs induces 
high expression of miR-193a-5p, which is transported to RCC cells 
via extracellular vesicles. This miRNA inhibits TIMP2 expression by 
targeting its 3′-UTR, thereby enhancing angiogenesis and tumour 
invasiveness. Notably, suppressing miR-193a-5p in TAM-derived 
extracellular vesicles significantly slows RCC progression and 
metastasis, offering a novel therapeutic direction targeting TAM-
associated miRNAs (Liu et al., 2022). Regarding RCC resistance 
mechanisms, studies reveal that resistant RCC cells secrete EVs 
carrying long non-coding RNAs (lncRNAs). These lncRNAs 
competitively bind miR-34 and miR-449, activating MET and AXL 
pathways to mediate distant dissemination of sorafenib resistance 
(Qu et al., 2016). He et al. further demonstrated that tumour-derived 
extracellular vesicles promote sorafenib resistance by transporting 
miR-31-5p. This miRNA binds to the 3′-UTR of the MLH1 gene, 
suppressing its expression and inducing the formation of a resistant 
phenotype (Yu et al., 2015). Similar studies revealed that miR-31-
5p enriched in extracellular vesicles within ccRCC models directly 
targets the DNA mismatch repair gene MLH1, acting as a key factor 
in resistance signalling. This suggests miR-31-5p and its target gene 
MLH1 may serve as important biomarkers for predicting sorafenib 
resistance and therapeutic targets (He et al., 2020). Furthermore, 
Song et al. reported that elevated RAB27A expression promotes 
miR-127-3p secretion by RCC cells. This miRNA, delivered 
via extracellular vesicles, enhances MYCN expression levels, 
thereby increasing tumour invasiveness. Consequently, engineered 
disruption of miR-127-3p′s extracellular vesicle transport holds 
promise as an effective therapeutic intervention strategy for 
metastatic RCC (Song et al., 2024).
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In summary, the role of EVs-miRNAs in regulating therapeutic 
response to RCC is becoming increasingly evident. Their 
involvement in processes such as angiogenesis, immune regulation, 
and drug resistance signalling confers significant potential as 
predictive and therapeutic biomarkers, offering new avenues for 
achieving precision treatment in RCC. 

6 Summary

MicroRNAs (miRNAs) derived from extracellular vesicles (EVs) 
play a pivotal regulatory role in multiple aspects of renal cell 
carcinoma (RCC), including its initiation and progression, immune 
modulation, and the development of drug resistance. Extensive 
research confirms that miR-210, miR-1233, miR-224, miR-301a-
3p, and miR-31-5p are significantly enriched in RCC-associated 
EVs, exhibiting strong correlations with tumour staging, metastatic 
potential, and therapeutic response. These miRNAs regulate tumour 
cell proliferation, migration, and immune evasion by participating 
in signalling pathways such as PI3K/AKT, MET/AXL, and Wnt/β-
catenin. Furthermore, they influence tumour-associated fibroblasts, 
macrophages, and vascular endothelial cells through extracellular 
vesicle-mediated intercellular communication, thereby shaping 
the tumour microenvironment. Moreover, EVs-miRNA persist 
stably in bodily fluids such as blood and urine, exhibiting 
excellent reproducibility and detection reliability, making them 
highly promising non-invasive biomarkers in the liquid biopsy
field.

Nevertheless, current research faces several challenges. Firstly, 
standardisation of EVs extraction, identification, and miRNA 
analysis methods remains elusive, compromising the comparability 
and reproducibility of research outcomes. Secondly, the inherent 
high heterogeneity of RCC, with miRNA expression across distinct 
subtypes, different patients, and even between distinct lesions within 
the same patient, limits the establishment of uniform biomarkers. 
Furthermore, many reports remain at the correlation level, with 
insufficient in-depth investigation into the mechanisms of action of 
EVs-miRNA, particularly regarding their roles in tumour immune 
regulation and drug resistance pathways.

Future research should prioritise multicentre, large-scale, 
prospective clinical studies to systematically evaluate the accuracy 
and clinical utility of candidate EVs-miRNA in RCC diagnosis, 
prognosis, and treatment response prediction. Integrating 
multi-omics data—including transcriptomics, proteomics, and 
metabolomics—holds promise for enhancing biomarker screening 
precision. Furthermore, artificially synthesised or engineered 
extracellular vesicles offer technical feasibility for targeted miRNA 
delivery, potentially emerging as novel therapeutic strategies against 
drug resistant and metastatic RCC. Combining artificial intelligence 
to construct multi-factor models could further elevate the clinical 
utility of EVs-miRNA in personalised management.

In summary, EVs-miRNA, as a stable, specific, and reproducible 
molecular biomarker, is progressively emerging as a crucial 
breakthrough for precision diagnosis and treatment of RCC. With 
ongoing technological advancements and deepening mechanistic 
research, its clinical translational application in renal cancer holds 
considerable promise.
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