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Renal cell carcinoma (RCC) is a common malignant tumour of the urinary
system, characterised by high heterogeneity and a tendency to metastasise,
with poor prognosis in advanced patients. Although surgical resection and
targeted therapies such as tyrosine kinase inhibitors and immune checkpoint
inhibitors have significantly improved survival outcomes in some patients,
drug resistance and recurrence remain clinical challenges. In recent years,
extracellular vesicles (EVs) and the microRNAs (miRNAs) they carry have
emerged as a research hotspot due to their critical roles in tumour initiation,
progression, immune regulation, and drug resistance. This systematic review
summarises the biological functions of EVs-derived miRNAs in renal cell
carcinoma and their potential applications in clinical diagnosis and treatment,
with a focus on their value in diagnosis, prognosis, immune regulation, and
prediction of treatment response.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most common malignant tumours of the
urinary system, with over 400,000 new cases diagnosed globally each year, making it
one of the leading causes of cancer-related deaths. The incidence of RCC is on the
rise in both developed and developing countries (Chen et al, 2023; Sun et al, 2023;
Griinwald et al., 2024). Based on histological characteristics, the most common subtypes
of RCC are clear cell type, papillary type (Type I and Type II), and chromophobe
type, accounting for 70%-90%, 10%-15%, and 3%-5% of all renal malignant tumours,
respectively. RCC accounts for 2%-3% of all cancers and is the most lethal urogenital
system cancer, with a mortality rate of 30%-40%, compared to approximately 20% for
bladder cancer and prostate cancer. The incidence of RCC continues to rise, varying
globally with higher rates in developed countries than in developing countries (Stepanovska
Tanturovska et al, 2023). Despite recent advances in surgical techniques and the
introduction of novel targeted therapies such as tyrosine kinase inhibitors (TKIs) and
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immune checkpoint inhibitors (ICIs), the prognosis for patients
with advanced RCC remains poor, with a five-year survival rate
below 15%. The primary challenges in current treatment include
the presence of drug resistance mechanisms and the lack of reliable
early diagnostic and prognostic biomarkers (Chen et al., 2020;
Motzer et al., 2022; Delcuratolo et al., 2023).

Extracellular vesicles (EVs) have been demonstrated to serve as
crucial intercellular communication mediators within the tumour
microenvironment (TME) (Kalluri and LeBleu, 2020; Urabe et al.,
2020; XiaoY. et al, 2020; Huang et al, 2021; Marar et al,
2021; Fusco et al., 2024). Enclosing diverse bioactive components
including proteins, lipids, and nucleic acids, EVs modulate recipient
cell behaviour, thereby influencing numerous physiological and
pathological processes such as TME formation and evolution
(Maacha et al., 2019; Ortiz, 2021; Kita and Shimomura, 2022;
Kumaretal., 2024; Rai et al., 2024). The mechanisms of EV-mediated
cellular communication are diverse, encompassing activation of
membrane surface receptors, Messenger RNA (mRNA) transport
and translation, transfer of microRNA (miRNAs) and target
mRNAs, delivery of functional proteins, and activation of signalling
pathways via internalisation (D'Souza-Schorey and Clancy, 2012;
Svensson and Belting, 2013; Maeda et al., 2023). Among these,
miRNAs have emerged as a current research focus due to their
crucial role in gene expression regulation and their extensive
involvement in tumour progression, metastasis, angiogenesis, and
immunomodulation. Valadi et al. were the first to demonstrate that
miRNAs can be transported between cells via extracellular vesicles
while retaining biological activity in recipient cells (Valadi et al.,
2007). miRNA constitutes one of the most abundant RNA
components within EVs, accounting for up to 40% of RNA in human
plasma EVs as revealed by RNA sequencing (Mittelbrunn et al.,
2011; Makarova et al., 2021; Yang et al., 2021; Xiong et al., 2023).
Studies have shown that miRNAs are predominantly enclosed within
extracellular vesicles (EVs), where vesicular encapsulation protects
them from nuclease degradation in body fluids, thereby facilitating
intercellular communication (Kogure et al., 2019). EVs are widely
distributed across various biological fluids, including plasma, saliva,
urine, milk, and cerebrospinal fluid. Notably, the abundance of
miRNAs carried by EVs from milk and cerebrospinal fluid may
exceed that of plasma-derived EVs (Tabatabai et al., 2025). Whether
derived from normal or tumour tissues, EVs serve as carriers for
both miRNA and pathogenic proteins, potentially contributing to
the onset and progression of certain diseases (Saeedi et al., 2021;
Doncheva et al., 2022; Kumar et al., 2024) (Figure 1).

microRNAs (miRNAs) are a class of small non-coding
RNAs that primarily suppress gene translation by targeting
messenger RNAs (mRNAs), and participate in diverse biological
processes including cell differentiation, proliferation, apoptosis,
and development (Lu et al, 2005; Filella and Foj, 2017;
Selvaskandan et al,, 2023). In malignant tumours, miRNAs may
function as either tumour suppressors or oncogenes, exhibiting
characteristic alterations in their expression levels (Guil and Esteller,
2009; Hill and Tran, 2021; LiB. et al., 2021). The differential
expression of miRNAs between normal and cancerous cells
renders them ideal candidate molecules for tumour biomarkers
(Chow etal., 2010). miRNAs within tumour-derived EV's can further
enhance the invasive and metastatic capabilities of tumour cells by
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modulating the tumour microenvironment (TME) (Nishida-Aoki
and Ochiya, 2015; Tkach and Théry, 2016).

Recent studies have revealed significant differences in the
expression of EVs-miRNA between healthy individuals and
RCC patients (Nawaz et al., 2014), suggesting broad application
prospects in non-invasive diagnosis and prognostic assessment.
Furthermore, engineered miRNA delivery systems based on EVs
have demonstrated potential therapeutic value (Radler et al., 2023).
The high stability of miRNAs in bodily fluids such as plasma and
urine render them ideal molecules for liquid biopsy. Nevertheless,
technical challenges persist in clinical implementation, including
standardization of isolation methods, target specificity, and potential
off-target effects. This paper aims to provide a systematic review of
research progress on EVs-miRNA in RCC, focusing on their role in
tumour biology, potential as diagnostic biomarkers, and therapeutic
applications. It also explores challenges and future directions in their
clinical translation.

2 The biological basis of EVs and
MiRNAs

Extracellular vesicles are a class of membrane-bound
nanovesicles actively secreted by cells, carrying diverse biomolecules
such as proteins and nucleic acids, particularly microRNA (miRNA),
which play crucial roles in tumourigenesis and progression. These
vesicles can be readily extracted from peripheral blood and other
bodily fluids, rendering them potential tools for non-invasive
tumour diagnosis (Raposo and Stoorvogel, 2013; Kogure et al.,
2019; Munir et al., 2020). The biological effects of extracellular
vesicles on surrounding or distant target cells are primarily
determined by their biomolecular cargo. Their lipid composition
includes sphingolipids, cholesterol, phosphatidylserine, saturated
fatty acids, and sphingosine—substances also prevalent in
the plasma membrane (Trajkovic et al., 2008; Skotland et al.,
2020). Research indicates that sphingosine plays a direct role
in the formation of internalised vesicles (ILVs) within the
lumen of multivesicular bodies (MVBs). Inhibition of neutral
sphingomyelinase significantly reduces extracellular vesicle release,
further validating this lipid’s critical function in extracellular vesicle
biogenesis (Menck et al., 2017).

The proteome of extracellular vesicles primarily comprises
proteins involved in membrane transport, such as tetramembrane
proteins (CD63, CD81, CD82, and CD9), whose recruitment
depends on the ALIX and ESCRT-III pathways (Larios et al.,
2020). Furthermore, extracellular vesicles are rich in heat shock
proteins (Hsp60, Hsp70, Hsp90), integrins, and class II major
histocompatibility complex (MHC II) molecules (Clayton et al.,
2005). Notably, extracellular vesicles do not simply represent the
protein expression profile of the parent cell; rather, they selectively
enrich certain proteins through specific mechanisms. Among these,
ubiquitination is recognised as a key regulatory step mediating
protein binding to the ESCRT complex and facilitating their
incorporation into vesicles (Larios et al., 2020).

miRNAs are regulated both by their biogenesis mechanisms
and by the sequence characteristics of the miRNAs themselves.
Although the ESCRT system plays a central role in the formation
of multi-vesicular bodies (MVBs) and EV release, studies indicate
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FIGURE 1

EV Types and Sources. Extracellular vesicles (EVs) encapsulate bioactive components like proteins, nucleic acids, and lipids—lipids act as structural
elements and reflect cellular traits. Cells across tissues use EVs for intercellular communication, releasing them into body fluids. A large share of human
EVs comes from stem cells; EVs are also actively produced and released by organisms from plants to bacteria.

that knocking down key ESCRT proteins does not affect miRNA  findings suggest that specific sequences within miRNAs may guide
content (Kosaka et al., 2010). Interestingly, while knocking down the  their incorporation into extracellular vesicles.
ESCRT-III-associated protein Alix does not affect total extracellular Extensive research indicates that miRNAs within extracellular
vesicle release, it leads to a significant reduction in miRNA content  vesicles participate in the formation of multiple tumour types
(Tavello et al., 2016). and serve as sensitive biomarkers for cancer diagnosis (Aguilar-
Certain miRNA sequences contain conserved domains known Hernandez et al., 2021; Lu et al, 2021; Romano et al.,, 2021;
as EXO-motifs, which bind to specific RNA-binding proteins such as Maruoka et al., 2022; Wang et al., 2022; Genova et al., 2024;
hnRNPA2B1 and SYNCRIP, thereby facilitating their incorporation Kural et al, 2024). Compared to free-floating miRNAs, those
into extracellular vesicles (Santangelo et al., 2016). Previous studies  derived from extracellular vesicles exhibit enhanced stability, owing
have identified short motif sequences (e.g., GGAG in miR-198 and  to the protective double-layered membrane structure that shields
UGCA in miR-601) that regulate miRNA loading into extracellular ~ them from degradation by endogenous nucleases or phagocytes
vesicles, with point mutations altering these motifs significantly =~ such as macrophages. The nanoscale dimensions and membrane
impacting miRNA efficiency (Villarroya-Beltri et al, 2013). Recent ~ protective mechanisms of extracellular vesicles prolong the half-
studies have further revealed an association between AGO2  life of miRNAs in bodily fluids, enhancing their biological
and extracellular vesicle-associated miRNAs, with AGO2 being  functionality (Sun et al.,, 2022). Upon release into bodily fluids,
identified in extracellular vesicle proteomics via mass spectrometry  extracellular vesicles may be internalised by neighbouring or
(MS) or Western blotting analyses (Goldie et al., 2014; Zhang J. etal,,  distant cells, where the encapsulated miRNAs can regulate a
2015). Knockout of AGO2 was found to reduce the types or  range of biological processes including immune evasion, tumour
abundance of preferentially exported miRNAs in extracellular microenvironment modulation, angiogenesis, metastasis, and drug
vesicles derived from HEK293T cells (Guduric-Fuchs et al., 2012).  resistance development (Sun et al., 2018). Consequently, the role
Further investigations indicate that YBX1 (Y-box protein I) also  of EVs-miRNAs in cancer progression has garnered significant
binds to miR-223 and miR-144, regulating their packaging into  attention. For instance, Fabbri (2012) demonstrated that miRNAs
vesicles (Ung et al., 2014; Shurtleff et al., 2016). Collectively, these ~ within lung cancer-derived extracellular vesicles promote tumour
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cell proliferation and metastasis by activating Toll-like receptors
(TLRs). Zhou et al. (2014) further reported that extracellular vesicles
secreted by tumour cells carrying miR-105 disrupt tight junctions
between vascular endothelial cells, compromising the natural barrier
and thereby promoting metastasis. Additionally, studies on renal
cell carcinoma (RCC) have identified circulating EV's enriched with
multiple miRNAs associated with metastasis and invasion, including
miR-200c, miR-92, miR-141,miR-19b, miR-29a, miR-29¢, miR-650,
and miR-151 (Chow et al., 2010; Grange et al., 2011). These miRNAs
hold promise as biomarkers for renal carcinoma progression,
demonstrating significant research and clinical application value.

3 The function of EVs carrying miRNAs
in renal cell carcinoma

3.1 Tumorigenesis and progression

In recent years, multiple studies have progressively revealed
the pivotal regulatory role of miRNAs carried by EVs in the
development and progression of clear cell renal cell carcinoma
(ccRCC). DISA et al. discovered that PTEN serves as a common
target gene for hsa-miR-301a-3p, hsa-miR-200c-3p, and hsa-miR-
25-3p. Studies indicate that these miRNAs are significantly enriched
in plasma extracellular vesicles during the presence of primary
tumours, with their expression levels markedly decreasing following
tumour resection. This suggests that EVs-miRNAs may regulate
tumour progression at the post-transcriptional level by activating
the PI3K/AKT signalling pathway (Dias et al., 2020). Notably, hsa-
mir-301a-3p exhibited a declining trend post-tumour resection,
with its levels continuing to decrease during follow-up. However,
its expression significantly increased in the metastasis cohort,
suggesting this miRNA may play a crucial role in metastasis
and holds potential as a prognostic biomarker. In contrast, the
EV-derived levels of hsa-miR-1293 progressively increased after
tumour resection until follow-up yet were markedly reduced in the
metastatic cohort. This indicates the miRNA’s potential tumour-
suppressing function and its possibility as a biomarker for metastatic
disease in ccRCC patients (Dias et al., 2020). Among these, hsa-
miR-301a-3p exhibited a consistent decrease in expression following
surgery but was significantly elevated in patients with metastasis
during follow-up, indicating its potential involvement in metastatic
dissemination and its utility as a prognostic biomarker. Conversely,
hsa-miR-1293 displayed increased EV expression post-surgery but
was significantly downregulated in metastatic cases, suggesting
its potential tumor-suppressive role and prognostic relevance in
identifying metastatic ccRCC (Dias et al., 2020). Ding et al. using
small RNA sequencing, demonstrated that miR-181d-5p was highly
enriched in EVs derived from cancer-associated fibroblasts (CAFs)
in RCC patients. This miRNA directly suppressed RNF43 expression
in RCC cells and activated the Wnt/B-catenin pathway, thereby
enhancing cancer stemness and promoting tumor progression
(Ding et al., 2022). Additionally, RAB27 A/B has been shown to
regulate EV-miRNA secretion. Decreased RAB27A expression was
closely associated with lymph node metastasis and poor prognosis in
RCC (Chen etal., 2012; An et al., 2019). Song et al. further reported
that elevated RAB27A expression promoted RCC cell secretion
of miR-127-3p, which, through EV-mediated transfer, upregulated
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MYCN expression and enhanced tumor invasiveness (Song et al.,
2024). miR-9-5p has also been implicated in RCC progression.
Song et al. found that it was significantly elevated in serum from
advanced RCC patients and positively correlated with TNM stage
and Fuhrman grade. Functional assays demonstrated that EV-
derived miR-9-5p promoted proliferation and invasion of A-704
cells by downregulating SOCS4, both in vitro and in vivo, supporting
its role as a diagnostic and prognostic biomarker (Song et al., 2020).

Further in vitro and in vivo studies confirmed that ccRCC-
derived EVs transmit miR-27a, which suppresses its target
gene SFRP1 while enhancing vascular endothelial growth factor
(VEGF) and tumour necrosis factor-a (TNF-a) expression,
thereby promoting RCC cell viability, migration, and angiogenesis
(Hou et al., 2021). Xuan et al. observed significantly downregulated
miR-549a expression in TKI-resistant ccRCC cells and their
extracellular vesicles. Extracellular vesicle-derived miR-549a
inhibits tumour angiogenesis and reduces endothelial cell migration
by binding to the 3’-UTR region of HIF-1a, thereby suppressing its
expression (Xuan et al., 2021).

Li etal. further observed that miR-15a, upregulated in EVs,
enhances the epithelial-mesenchymal transition (EMT) capacity
of ccRCC cells by downregulating BTG2 and activating the
PI3K/AKT pathway (LiD.Y. et al, 2021). Furthermore, Wang
etal. observed that in metastatic ccRCC patients, cancer stem
cell (CSC) extracellular vesicles induce EMT by transporting miR-
19b-3p to tumour cells and suppressing PTEN gene expression.
CD103+-guided CSC extracellular vesicles target cancer cells and
organs, conferring enhanced lung metastatic potential to ccRCC.
Consequently, CD103+ extracellular vesicles also emerge as a
potential metastatic diagnostic biomarker (Wang L. et al., 2019).

3.2 Immune regulation

Tumour-associated macrophages (TAMs) play a pivotal
role in regulating the tumour microenvironment (TME) and
promoting tumour initiation and progression (Pollard, 2004).
Increasing evidence indicates that TAMs are not only one of the
predominant cell types within the TME, but also participate in
the complex processes of cancer through multiple mechanisms
including immune suppression, promotion of tumour progression,
metastasis, and drug resistance (Pathria et al., 2019; Wei et al,,
2019). Macrophages can be categorised into pro-inflammatory
M1 and immunosuppressive M2 types based on their functional
state. TAM:s exhibit phenotypic and functional characteristics closer
to M2 macrophages, which are strongly associated with tumour-
promoting properties (Boutilier and Elsawa, 2021). Multiple
studies demonstrate that TAM infiltration correlates closely with
poor prognosis across various cancer types, including RCC
(Komohara et al., 2011; Zhou et al., 2015; Chen et al., 2017).
Consequently, targeting TAMs presents a potential therapeutic
strategy that may offer novel insights into the interactions
between the tumour microenvironment and tumour cells
(Pyonteck et al., 2013; Ries et al., 2014). In RCC, TAMs have been
demonstrated to promote tumour cell migration and tumour growth
(Kadomoto et al., 2019; Schnetz et al., 2020).

Regarding specific mechanisms, research has revealed that
upregulation of HIF-la in macrophages promotes miR-193a-5p
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expression. This microRNA is subsequently transported to RCC cells
via extracellular vesicles, targeting the 3’-untranslated region (3'-
UTR) of TIMP2 mRNA. This downregulates TIMP2 expression,
thereby enhancing tumour angiogenesis and invasive capacity.
Inhibition of miR-193a-5p in extracellular vesicles derived from
TAMs has been shown to significantly attenuate RCC progression
and metastasis, offering a novel therapeutic approach targeting
TAM-associated miRNAs (Liu et al.,, 2022). In a ¢ccRCC model,
Feng et al. discovered that extracellular vesicles derived from M2-
polarised macrophages transport miR-342-3p to target and inhibit
NEDD4L, thereby blocking the ubiquitination and degradation
of CEP55 and activating the PI3K/AKT/mTOR pathway. This
ultimately enhances the proliferation, migration, and invasive
capacity of RCC cells. This research offers fresh perspectives
for developing therapeutic targets in RCC (Feng et al., 2021).
Zhang etal. further indicated that extracellular vesicles derived
from M2 macrophages serve as key mediators enhancing RCC
cell migration and invasive potential. The miR-21-5p they enrich
promotes distant tumour metastasis by downregulating PTEN
expression and activating the Akt signalling pathway. In vitro
and in xenograft models, this miRNA consistently demonstrated
metastatic-promoting capabilities. Notably, application of miR-21-
5p inhibitors reversed these pro-metastatic effects, opening novel
pathways for intervening in TAM-mediated metastatic behaviour
and offering a novel therapeutic strategy for preventing RCC
metastasis (Zhang Z. et al., 2022). Furthermore, research indicates
that extracellular vesicles derived from ccRCC cells can transport
long non-coding RNA (IncARSR), activating the miR-34/miR-449-
STAT3 signalling pathway. This induces the transformation of M1
macrophages towards an M2 phenotype, enhancing their phagocytic
activity and promoting angiogenesis, thereby accelerating tumour
progression (Zhang W. et al., 2022).

3.3 Drug resistance

With the widespread application of multi-targeted kinase
inhibitors in the treatment of advanced ccRCC, the issue of
drug resistance has progressively become a key obstacle affecting
therapeutic efficacy. Sorafenib is a commonly used oral multi-
targeted tyrosine kinase inhibitor in clinical practice. Its mechanism
of action primarily involves inhibiting multiple angiogenesis
and tumour proliferation-related signalling pathways, including:
VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-p
(PDGFR-B), RAF-1,c-Kit, and FMS-like tyrosine kinase 3 (Flt-
3) (Yu et al,, 2015).

Research by He et al. revealed that tumour-derived extracellular
vesicles can promote sorafenib resistance by transporting miR-31-
5p. They further demonstrated that this microRNA targets the 3'-
UTR of the MLHI gene, leading to its downregulation and thereby
inducing a sorafenib-resistant response (Yu et al., 2015). Additional
studies have reported that miR-31-5p-enriched extracellular vesicles
in ccRCC models mediate resistance signals by directly targeting the
DNA mismatch repair-associated gene MutL homolog 1 (MLH1),
thereby enhancing the sorafenib-resistant phenotype. Consequently,
both miR-31-5p and its target genes may serve as predictive
biomarkers and therapeutic targets for sorafenib resistance (He et al.,
2020). Qu et al. further discovered that extracellular vesicles secreted
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by RCC cells deliver IncARSR, which promotes sunitinib resistance
by competitively binding miR-34/miR-449, thereby enhancing AXL
and c-MET expression in RCC (Qu et al., 2016).

In summary, EV-carried miRNAs exert core regulatory roles
in RCC initiation, progression, immune modulation, and drug
resistance mechanisms. By targeting multiple signalling pathways
(e.g., PI3K/AKT, Wnt/B-catenin, STAT3), they influence cancer cell
proliferation, migration, invasion, and metastatic nodule formation.
Certain miRNAs (e.g., miR-301a-3p, miR-21-5p,miR-342-3p) are
closely associated with prognosis, whilst miR-193a-5p, miR-9-5p,
and miR-127-3p play crucial roles in immune regulation and
invasive metastasis mediated by tumour-associated macrophages
(TAMs) and cancer stem cells (CSCs). Furthermore, miR-31-
5p has been demonstrated to contribute to sorafenib resistance
by downregulating MLHI1 expression, suggesting its potential for
predicting and overcoming targeted therapy resistance. As the
functional role of EV-associated miRNAs is increasingly elucidated,
their clinical value as non-invasive biomarkers and therapeutic
intervention targets becomes increasingly evident, offering broad
prospects for the early diagnosis, dynamic monitoring, and
personalised treatment of renal cell carcinoma (Figure 2, Table 1).

4 EVs-miRNA serves as a biomarker
for RCC

In recent years, liquid biopsy has garnered significant attention
in both clinical practice and fundamental research as a non-
invasive tool for tumour detection. Particularly in the early diagnosis
of renal tumours, accurately distinguishing between benign and
malignant small renal masses (SRMs) is crucial for determining the
need for surgical intervention. Although the diagnostic accuracy
of tissue biopsy continues to improve (Marconi et al., 2016), its
invasive nature and procedural limitations remain obstacles to
widespread clinical adoption. In contrast, miRNAs carried by EVs
possess inherent protective mechanisms due to their membrane-
enclosed structure, exhibiting enhanced stability and detection
reproducibility in biological fluids such as plasma, serum, and urine.
This offers promising clinical application prospects. Consequently,
liquid biopsy strategies based on EVs-miRNA hold potential as
a safer, more sensitive, and reproducible diagnostic approach for
renal cancer. Simultaneously, identifying ccRCC patients at high
metastatic risk is crucial for developing personalised monitoring
plans, optimising adjuvant treatment decisions, and enabling early
intervention against metastatic lesions. However, clinically validated
molecular biomarkers for risk stratification in this patient cohort
remain scarce. Notably, despite advances in targeted therapies such
as TKIs and ICIs, predictive indicators for treatment efficacy remain
limited (Linxweiler and Junker, 2020). Consequently, exploring
EVs-miRNAs with high stability, specificity, and reproducibility as
liquid biopsy biomarkers has become a core research direction for
precision diagnosis and treatment of RCC. Previous studies have
demonstrated that EV-associated miRNAs remain stable without
degradation in preservation solutions under hypothermic ischemia
conditions (4 °C) during liver transplantation (Vidal-Correoso et al.,
2024). Ma etal. further showed that glycosylated extracellular
vesicles preserve their miRNA cargo without degradation under
storage at —80 °C and remain stable for up to 7 days at 4 °C (Ma et al.,
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2023). In addition, Muth et al. evaluated the effects of freeze-thaw
cycles and room temperature incubation on plasma EV-miRNAs,
and found that appropriate pre-analytical processing (e.g., platelet
removal) markedly improves the stability and accuracy of EV-
miRNA analysis (Muth et al., 2018). Collectively, these findings
suggest that EV-associated miRNAs are feasible candidates for
use as routine biomarkers. Numerous studies have reported that
miRNAs in extracellular vesicles demonstrate significant potential
in RCC diagnosis, prognostic assessment, and treatment response
prediction (Butz et al., 2016; De Palma et al., 2016; Zhang et al., 2018;
Song et al,, 2019; Wang X. et al., 2019).

miR-210 and miR-1233, isolated from serum extracellular
vesicles, have been validated as diagnostic biomarkers for clear
cell renal cell carcinoma (ccRCC), exhibiting sensitivities of
70% and 81%, respectively, alongside specificities of 62.2% and
76.0%. Notably, these biomarkers demonstrate a significant
decline following nephrectomy. Furthermore, Wang and colleagues
reported that miR-210 could identify RCC with 82.5% sensitivity
and 80.0% specificity. In this context, higher miR-210 levels
were observed in more advanced cases and those with higher
Fuhrman grading, independent of gender or age (Zhang et al,
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2018; Wang X. et al,, 2019). Fujii et al. further demonstrated that
high expression of Exo-miR-224 correlates strongly with poor
prognosis in ccRCC patients, manifesting as reduced survival
times and accelerated tumour progression. Compared to the low-
expression group, the high-expression Exo-miR-224 group exhibited
significantly shorter progression-free survival, cancer-specific
survival, and overall survival. In multivariate analysis, elevated Exo-
miR-224 levels emerged as a significant prognostic risk factor across
all studies. Co-incubation of primary renal cell carcinoma (RCC)
cell lines with extracellular vesicles derived from metastatic RCC
cell lines enhanced cellular proliferation and invasive capacity while
markedly reducing apoptotic cell proportions. Intracellular miR-224
levels were significantly upregulated in primary renal carcinoma
cell lines. Extracellular miR-224 in extracellular vesicles influences
patient prognosis and represents a potential prognostic biomarker
in ccRCC patients (Fujii et al, 2017). Dias etal. confirmed that
multiple miRNAs (miR-301a-3p, miR-200c-3p, miR-25-3p) play
a crucial role in sustaining ccRCC cell proliferation by targeting
PTEN and activating the PI3K/AKT pathway. The expression
level of hsa-miR-301a-3p derived from EVS was again elevated
in metastatic patients, highlighting its potential as a biomarker for
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TABLE 1 Functions of EV-carried miRNAs in RCC.

Sample

Number of

Dysregulated

Physiological

Target genes

10.3389/fcell.2025.1694257

miRNA

source samples miRNAs effect profiling
Plasma-derived Evs 32 ccRCC patients miR-301a-3pTmiR- miR-301a-3p PTEN Small RNA-seq, Dias et al. (2020)
with localized disease | 1293] activates PI3K/AKT RT-qPCR
(before and after to promote
surgery) and in 37 progression and
patients with metastasismiR-1293
metastatic disease acts as a tumor
suppressor
Cell-derived Evs 3 RCC patient pairs miR-181d-5pT Promotes tumor cell RNF43 Small RNA-seq, Ding et al. (2022)
(tumor tissues: proliferation, qRT-PCR
CAFs/adjacent migration, and
normal tissues: NFs) invasion
Cell-derived Evs N/A miR-127-3pT Promotes tumor cell MYCN RT-qPCR. Next- Song et al. (2024)
migration, invasion, Generation
and metastasis and is Sequencing
associated with poor
prognosis
Serum-derived EVs 35 ccRCC patients miR-9-5pT Promotes tumor cell SOCS4 qRT-PCR Song et al. (2020)
(high expression)/31 proliferation and
ccRCC patients (low migration, positively
expression) associated with TNM
stage and Fuhrman
grade
Cell-derived Evs N/A miR-549a Enhances vascular HIF-1a RT-qPCR, Small Xuan et al. (2021)
endothelial RNA-seq
permeability and
angiogenesis and
promotes lung
metastasis formation
Tissue-derived Evs 53 paired ccRCC miR-15aT Promotes tumor cell BTG2 Microarray, Lietal. (2021b)
tissues and adjacent proliferation, RT-qPCR
normal tissues (31 migration, invasion,
stage [-11/22 stage and EMT and
III-1V patients) aggravates ccRCC
progression via
PI3K/AKT activation
Tissue-derived Evs 133 CCRCC patients miR-19b-3pT Enhances tumor cell PTEN RT-qPCR, Small Wang et al. (2019a)
(stage I-I, migration, invasion, RNA-seq
non-metastatic)/76 and metastasis and
CCRCC patients CD103" exosomes
(stage III-1V, preferentially target
metastatic) lung tissue to
promote metastasis
Tissue-derived Evs 51 histologically miR-193a-5pT Enhances tumor cell TIMP2 RT-qPCR Liu et al. (2022)
confirmed ccRCC migration and
tissue samples angiogenesis and
(including 23 paired promotes tumor
adjacent progression and
non-cancerous metastasis
tissues)
Cell-derived Evs N/A miR-342-3pT Promotes tumor cell NEDDA4L, CEP55 RT-qPCR Feng et al. (2021)

proliferation,
migration, invasion,
and metastasis by
inhibiting NEDD4L
and stabilizing
CEP55 to activate
PI3K/AKT/mTOR
signaling
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TABLE 1 (Continued) Functions of EV-carried miRNAs in RCC.

Sample
source

Number of
samples

Dysregulated
miRNAs

Physiological
effect

Target genes

10.3389/fcell.2025.1694257

miRNA
profiling

Cell-derived Evs

N/A

miR-21-5pT

Promotes tumor cell
proliferation,
migration, invasion,
and distant
metastasis by
downregulating
PTEN and activating
Akt signaling to
induce EMT.

PTEN

RT-qPCR

Zhang et al. (2022b)

Cell-derived Evs

N/A

IncARSRT->miR-
34/miR-449

Induces macrophage
polarization from M1
to M2 and promotes
phagocytosis,
angiogenesis, and
tumor progression

STAT3

RT-qPCR

Zhang et al. (2022a)

Plasma-derived Evs

40 metastatic RCC
patients (sorafenib
treatment)

miR-31-5pT

Promotes sorafenib
resistance and
enhances tumor cell
proliferation and
survival under drug

MLH1

RT-qPCR, TagMan
miRNA probes

He et al. (2020)

pressure

metastatic disease (Dias et al., 2020; Alves et al., 2024). Findings by
Alves et al. further support hsa-miR-200c-3p, hsa-miR-25-3p, and
hsa-miR-301a-3p in extracellular vesicles as potential biomarkers
for monitoring disease aggressiveness. Experiments revealed that
co-inhibiting these EVs-miRNAs significantly increased PTEN
expression, reduced tumour cell proliferation and migration in 2D
models, and diminished spheroid size and metabolic capacity in 3D
models. These EVs-miRNAs demonstrate potential as biomarkers
for monitoring disease invasiveness and as therapeutic targets
for ccRCC, potentially enabling more effective and personalised
treatments for patients (Alves et al., 2025). Song et al. identified
miR-9-5 as highly expressed in renal cancer patients serum,
correlating with advanced TNM staging (tumour size, lymph
node metastasis) and Fuhrman grade. Both in vitro and in
vivo studies suggest its utility as a diagnostic biomarker and
treatment response monitor (Song et al, 2020). Furthermore,
Xiao etal. reported upregulation of miR-149-3p and miR-424-
3p alongside significant downregulation of miR-92a-1-5p in
plasma EVs, suggesting their combination holds potential for RCC
screening. Plasma extracellular vesicles containing hsa-miR-92a-1-
5p,hsa-miR-149-3p, and hsa-miR-424-3p in plasma extracellular
vesicles may serve as potential biomarkers for detecting RCC
(Xiao C. T. et al., 2020).

In urinary EVs, researchers developed a nanowire-based EV
enrichment technique capable of capturing over 99% of EVs and
detecting approximately 2,500 miRNAs. This approach revealed
a miRNA profile similar to that in serum, with urine being a
more suitable sampling source due to its proximity to the kidneys
(Yasui et al., 2024). Small extracellular vesicles secreting distinct
miRNA combinations, including miR-126-3p + miR-449a, miR-
126-3p + miR-34b-5p, miR-126-3p + miR-486-5p, miR-25-3p +
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miR-34b-5p,miR-21-5p + miR-34b-5p, and miR-150-5p + miR-
126-3p, have been reported as diagnostic biomarkers for clear cell
renal cell carcinoma (ccRCC),with sensitivities of 60.6%, 67.3%,
52.9%, 73.1%, 74%, and 61.5%, and specificities of 100%, 82.8%,
95.8%, 79.3%, 72.4%, and 82.8% respectively (Butz et al., 2016). Qin
et al. demonstrated that miR-224-5p was significantly upregulated
in urine EVs from RCC patients compared to healthy volunteers.
Overexpression of miR-224-5p inhibited RCC cell proliferation
and induced cell cycle arrest. Urinary EVs containing miR-224-
5p were identified as a potential biomarker for RCC (Qin et al.,
2021). Butz etal. observed significant downregulation of miR-
126-3p (P = 0.004) in urinary EVs, alongside upregulation of
miRNA-150-5p, suggesting potential for tumour diagnosis using
these miRNAs in SRMs.Moreover, several distinct EVs-miRNA
combinations (including miR-126-3p, miR-486-5p, and miR-34b-
5p) not only differentiated general ccRCC patients and SRMs
from healthy participants but also distinguished benign tumour
patients from ccRCC patients. These data are highly promising
and may improve future surgical management decisions for SRMs
(Butz et al., 2016). Moreover, Song et al. discovered that miR-30c-
5p in urinary extracellular vesicles targets heat shock protein 5
(HSPA5) and inhibits ccRCC progression, exhibiting a sensitivity of
68.57% and specificity of 100%, demonstrating significant potential
as a diagnostic biomarker for ccRCC (Song et al., 2019). Crentsil
et al. identified miR-205 and miR-150 in extracellular vesicles as
significantly differentially expressed in 786-O cells compared to
controls, suggesting their utility as ccRCC extracellular vesicle
biomarkers. Results from in vitro models corroborated this finding,
though only miR-205 achieved statistical significance (Crentsil et al.,
2018). Consequently, miR-224-5p, miR-126-3p, miR-150-5p, miR-
30c-5p, miR-205,miR-486-5p, and miR-34b-5p have been reported
to exhibit altered expression in urinary EVs, showing promise
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for the early diagnosis and differentiation of RCC and SRMs
(Butz et al., 2016; Crentsil et al., 2018; Song et al., 2019). Notably,
miR-224-5p demonstrates novel predictive value in immunotherapy
by influencing the stability of Cyclin D1 and PD-L1 (Qin etal., 2021).

Several candidate miRNAs detected in RCC have also been
implicated in other renal disorders, which challenges their disease
specificity. For instance, miR-9-5p has been proposed as a non-
invasive biomarker for idiopathic membranous nephropathy (IMN)
(Guo et al,, 2022), and miR-210 has shown diagnostic relevance in
IgA nephropathy (IgAN) (Zhao et al., 2022). Such evidence indicates
that single miRNAs may lack sufficient specificity for RCC diagnosis.
However, their clinical value remains promising, particularly when
applied as part of multi-marker panels or in combination with imaging
and clinicopathological features to enhance diagnostic precision.

In summary, EVs-miRNAs in serum and urine have demonstrated
favourable specificity and stability, offering broad prospects for non-
invasive detection, prognostic assessment, and treatment response
prediction in RCC. Future large-scale prospective studies and technical
standardisation are required to advance their clinical translation,
thereby providing more personalised and precise management
strategies for RCC patients (Table 2).

5 The potential of EVs-miRNA in the
treatment of RCC

With ongoing innovations in treatment strategies, the clinical
management of RCC, particularly metastatic renal cell carcinoma
(mRCC), is progressively shifting towards individualisation.
However, the lack of stable therapeutic predictive biomarkers,
coupled with significant tumour heterogeneity, substantially
increases uncertainty regarding treatment response. In recent
years, the role of miRNAs within EVs in regulating RCC biological
behaviour and guiding therapy has garnered considerable attention,
offering novel avenues for clinical intervention.

Indeed, for stage I tumours confined to the kidney, the five-year
survival rate exceeds 90%. However, this rate drops to approximately
72.5% in stages II/III. More concerning is that around 30% of RCC
patients are already at stage IV at diagnosis, with a five-year survival
rate of merely 12% (Padala et al., 2020). RCC exhibits widespread
resistance to conventional chemotherapy and radiotherapy, with
radical or partial nephrectomy remaining the standard treatment
approach (Yang and Liao, 2018). However, radical surgery may
lead to renal insufficiency, increased cardiovascular event risk, and
elevated mortality (Alam et al., 2019). Surgical approach must be
balanced against factors including tumour stage, size, and grade
(Padala et al., 2020; Marchioni et al., 2021; Spadaccino et al., 2021).
Despite aggressive treatment, approximately 20%-50% of patients
will progress to advanced disease (Padala et al., 2020).

In recent years, combination therapy with ICIs and anti-
angiogenic TKIs has significantly improved treatment response in
mRCC (Borchiellini and Maillet, 2022). Nevertheless, therapeutic
efficacy remains highly variable, potentially constrained by the
absence of a unified molecular classification, intratumoural
heterogeneity, and differences between RCC subtypes. Currently,
the IMDC risk scoring model is the only prospectively validated
prognostic indicator for mRCC (Dudani et al., 2020). Concurrently,
a substantial proportion of patients develop primary or acquired
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resistance to targeted therapies (Makhov et al., 2018). Consequently,
identifying novel, highly effective, and predictable molecular
biomarkers is imperative.

EVs-miRNA, as key information molecules secreted by tumour
cells and released into body fluids, participate in regulating multiple
tumour biological processes, particularly in remodelling the
tumour microenvironment (TME) (D'Souza-Schorey and Clancy,
2012). EVs modulate the state of local fibroblasts, macrophages,
and vascular endothelial cells, inducing their transformation
into pro-tumour subtypes that support tumour progression
(Kosaka et al.,, 2016; Madeo et al., 2018; Ringuette Goulet et al.,
2018). Furthermore, tumour derived EVs exert remote effects,
inducing the formation of ‘pre-metastatic niches’ in target organs,
enhancing vascular permeability, recruiting mesenchymal stem
cells, and reprogramming the local matrix (Hoshino et al., 2015;
Zhang L. et al.,, 2015). Conversely, EVs released by stromal cells
can influence tumour cell behaviour, either enhancing their
invasive capacity or inducing a dormant state (Roccaro et al., 2013;
Ono et al, 2014). EVs also transmit drug resistance signals between
primary and metastatic sites, participating in the establishment and
maintenance of resistance (Qu et al., 2016; Lobb et al., 2017).

Specific studies indicate that elevated serum or plasma
expression of miR-1233, miR-221, and miR-210 correlates
significantly with RCC-specific mortality risk (Wulfken et al., 2011;
Dias et al., 2017),with miR-1233 further proposed as a potential
therapeutic target. Yoshino etal. discovered that EVs-miR-1
significantly inhibits RCC cell proliferation, migration, and invasion.
Its downregulation in RCC tissues correlates with reduced patient
survival, suggesting therapeutic potential (Yoshino et al.,, 2022).
Furthermore, upregulation of HIF-1a expression in TAMs induces
high expression of miR-193a-5p, which is transported to RCC cells
via extracellular vesicles. This miRNA inhibits TIMP2 expression by
targeting its 3'-UTR, thereby enhancing angiogenesis and tumour
invasiveness. Notably, suppressing miR-193a-5p in TAM-derived
extracellular vesicles significantly slows RCC progression and
metastasis, offering a novel therapeutic direction targeting TAM-
associated miRNAs (Liu et al., 2022). Regarding RCC resistance
mechanisms, studies reveal that resistant RCC cells secrete EVs
carrying long non-coding RNAs (IncRNAs). These IncRNAs
competitively bind miR-34 and miR-449, activating MET and AXL
pathways to mediate distant dissemination of sorafenib resistance
(Quetal., 2016). He et al. further demonstrated that tumour-derived
extracellular vesicles promote sorafenib resistance by transporting
miR-31-5p. This miRNA binds to the 3'-UTR of the MLH1 gene,
suppressing its expression and inducing the formation of a resistant
phenotype (Yu et al,, 2015). Similar studies revealed that miR-31-
5p enriched in extracellular vesicles within ccRCC models directly
targets the DNA mismatch repair gene MLH1, acting as a key factor
in resistance signalling. This suggests miR-31-5p and its target gene
MLH1 may serve as important biomarkers for predicting sorafenib
resistance and therapeutic targets (He et al., 2020). Furthermore,
Song etal. reported that elevated RAB27A expression promotes
miR-127-3p secretion by RCC cells. This miRNA, delivered
via extracellular vesicles, enhances MYCN expression levels,
thereby increasing tumour invasiveness. Consequently, engineered
disruption of miR-127-3p’s extracellular vesicle transport holds
promise as an effective therapeutic intervention strategy for
metastatic RCC (Song et al., 2024).
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In summary, the role of EVs-miRNAs in regulating therapeutic
response to RCC is becoming increasingly evident. Their
involvement in processes such as angiogenesis, immune regulation,
and drug resistance signalling confers significant potential as
predictive and therapeutic biomarkers, offering new avenues for
achieving precision treatment in RCC.

6 Summary

MicroRNAs (miRNAs) derived from extracellular vesicles (EVs)
play a pivotal regulatory role in multiple aspects of renal cell
carcinoma (RCC), including its initiation and progression, immune
modulation, and the development of drug resistance. Extensive
research confirms that miR-210, miR-1233, miR-224, miR-301a-
3p, and miR-31-5p are significantly enriched in RCC-associated
EVs, exhibiting strong correlations with tumour staging, metastatic
potential, and therapeutic response. These miRNAs regulate tumour
cell proliferation, migration, and immune evasion by participating
in signalling pathways such as PI3K/AKT, MET/AXL, and Wnt/f-
catenin. Furthermore, they influence tumour-associated fibroblasts,
macrophages, and vascular endothelial cells through extracellular
vesicle-mediated intercellular communication, thereby shaping
the tumour microenvironment. Moreover, EVs-miRNA persist
stably in bodily fluids such as blood and urine, exhibiting
excellent reproducibility and detection reliability, making them
highly promising non-invasive biomarkers in the liquid biopsy
field.

Nevertheless, current research faces several challenges. Firstly,
standardisation of EVs extraction, identification, and miRNA
analysis methods remains elusive, compromising the comparability
and reproducibility of research outcomes. Secondly, the inherent
high heterogeneity of RCC, with miRNA expression across distinct
subtypes, different patients, and even between distinct lesions within
the same patient, limits the establishment of uniform biomarkers.
Furthermore, many reports remain at the correlation level, with
insufficient in-depth investigation into the mechanisms of action of
EVs-miRNA, particularly regarding their roles in tumour immune
regulation and drug resistance pathways.

Future research should prioritise multicentre, large-scale,
prospective clinical studies to systematically evaluate the accuracy
and clinical utility of candidate EVs-miRNA in RCC diagnosis,
prognosis, and treatment response prediction. Integrating
multi-omics data—including transcriptomics, proteomics, and
metabolomics—holds promise for enhancing biomarker screening
precision. Furthermore, artificially synthesised or engineered
extracellular vesicles offer technical feasibility for targeted miRNA
delivery, potentially emerging as novel therapeutic strategies against
drug resistant and metastatic RCC. Combining artificial intelligence
to construct multi-factor models could further elevate the clinical
utility of EVs-miRNA in personalised management.

In summary, EVs-miRNA, as a stable, specific, and reproducible
molecular biomarker, is progressively emerging as a crucial
breakthrough for precision diagnosis and treatment of RCC. With
ongoing technological advancements and deepening mechanistic
research, its clinical translational application in renal cancer holds
considerable promise.
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