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Bone and soft tissue injuries resulting from trauma, metabolic disorders, and 
tumors pose a serious threat to public health, and their treatment faces 
numerous challenges, including infection, chronic inflammation, and impaired 
vascularization. Photothermal hydrogels, a new class of biomaterials, can 
sterilize tissues via photothermal therapy (PTT) and, through intelligent material 
design, exhibit multiple biological functions such as modulating the pathological 
microenvironment in bone and soft tissues. These properties have earned them 
a reputation as a “star material” in tissue engineering. However, excessive heating 
(above 50 °C) can cause irreversible thermal damage to tissues. Therefore, 
functional hydrogels that generate a mild photothermal effect (approximately 
40 °C–45 °C) have recently become a research focus. This review provides a 
comprehensive overview of the types and fabrication strategies of photothermal 
agents used in mild photothermal hydrogels, systematically summarizes recent 
progress in their applications for bone and soft tissue injury repair, and delves 
into the underlying mechanisms by which they promote tissue regeneration. 
By summarizing current findings and outlining future perspectives on the use 
of mild photothermal hydrogels in modern regenerative medicine, we aim to 
advance the development of tissue engineering.
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 1 Introduction

Bone and soft tissue injuries caused by trauma, burns, tumors, and sports-related 
incidents have become increasingly common, representing a major global public health 
challenge (Jin et al., 2024). Functional hydrogels, one of the most promising therapeutic 
strategies, have been successfully applied in various tissue repair contexts (Enayati et al., 
2024). Among these, photothermal hydrogels have emerged as an innovative material that 
has attracted extensive research attention in recent years due to their unique biological 
advantages (Xiao et al., 2025; Zhang R. et al., 2025).

Photothermal hydrogels primarily work by converting light energy into heat in 
response to near-infrared (NIR) irradiation (e.g., wavelengths of 808 nm or 1,064 nm), 
thereby triggering biological effects in local tissues. Based on the temperature range 
achieved, photothermal hydrogels can be categorized into mild photothermal, moderate 
photothermal, and high-temperature photothermal types (He et al., 2024). Compared to
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moderate and high-temperature photothermal hydrogels, mild 
photothermal hydrogels (operating at 40 °C–45 °C) have gained 
attention for causing less thermal damage to tissues and providing 
a broader therapeutic window. They are considered to have the 
following biological advantages: 1) enhanced blood circulation: 
mild heating can dilate microvasculature, improving local blood 
flow (Wu A. L. et al., 2025). 2) Activation of heat shock proteins 
(HSPs): For example, upregulation of HSP70 and HSP27 enhances 
cellular stress resistance and promotes tissue repair (Cheng et al., 
2023; Jiang et al., 2024). 3) Regulation of cell behavior: Studies 
have shown that temperatures around 42 °C can promote fibroblast 
migration, osteoblast mineralization activity, and the angiogenic 
potential of endothelial cells (Gao et al., 2025; Zhang et al., 
2022). 4) Simplified fabrication: Mild photothermal hydrogels can 
achieve stable temperature control with simpler processes, while also 
reducing the required concentration of photothermal agents and 
light intensity (He et al., 2024).

Given their broad application prospects in tissue engineering, 
this review delves into the construction strategies and 
fabrication methods of mild photothermal hydrogel systems. 
It provides a comprehensive analysis of their biomedical 
application scenarios and underlying mechanisms, summarizes 
the therapeutic limitations of mild photothermal effects, and 
outlines future development trajectories in the field of bone and soft
tissue repair. 

2 Construction strategies of mild 
photothermal hydrogels

2.1 Inorganic photothermal materials for 
mild photothermal hydrogels

Mild photothermal hydrogels generate a controlled 
photothermal effect by incorporating functional materials with 
high photothermal conversion efficiency; thus, the choice of 
photothermal agent is crucial for system design. The main 
photothermal agents currently in use can be classified into inorganic 
and organic materials (Li W. et al., 2023) (Figure 1a). Common 
inorganic photothermal materials include metallic nanomaterials 
and carbon-based materials.

2.1.1 Metal-based inorganic photothermal agents
Noble-metal nanoparticles (e.g., Au, Ag, Cu) are well known 

to exhibit excellent photothermal performance owing to their 
localized surface plasmon resonance (LSPR) effects (Hu et al., 2024). 
By contrast, semiconductor-based photothermal agents operate 
via bandgap excitation rather than plasmonic effects. Absorbed 
photons in a semiconductor promote electrons across the bandgap, 
generating electron-hole pairs. Only semiconductors that are heavily 
doped or intrinsically defect-rich can approach the free-carrier 
densities of metals and thereby exhibit LSPR-like resonances 
(Liu et al., 2024). For this reason, metal-based nanoparticles are 
widely used as photothermal agents in applications such as cancer 
therapy, optical imaging, and solar-driven heat generation, where 
effective light-to-heat conversion is critical. In addition, these 
metal nanomaterials (especially noble metals like Au or Ag) are 
readily surface-functionalized that permit easy ligand attachment. 

For example, thiol-bearing molecules bind strongly to Au or Ag 
surfaces (forming metal–S bonds) (Cho et al., 2024), and original 
capping agents (e.g., citrate or CTAB) can be replaced by thiolated 
polymers, peptides or antibodies (ligand-exchange) (Duman et al., 
2024). Likewise, charged ligands or biomolecules can adsorb 
electrostatically onto oppositely charged NP surfaces. These covalent 
(e.g., Au-S or amine-metal bonds) and noncovalent (electrostatic, 
hydrophobic) strategies allow stable conjugation of targeting ligands, 
drugs or imaging dyes to the nanoparticle surface (Cho et al., 2024).

Gold nanomaterials are among the most extensively studied 
photothermal agents. In recent studies, gold-based photothermal 
agents are often formed into photothermal composite hydrogels 
either by in situ generation or by pre-synthesis followed by 
incorporation into the hydrogel matrix. For example, one study 
directly mixed pre-made gold nanoparticles (AuNPs) into a calcium 
alginate hydrogel, upon irradiation with 808 nm near-infrared light 
(0.1–1 W/cm2) for several minutes, this system’s temperature rapidly 
rose to about 40 °C (Wu Y. et al., 2025). Silver nanoparticles (AgNPs) 
exhibit a similar LSPR photothermal effect to that of gold and also 
have inherent broad-spectrum antibacterial activity. Silver-loaded 
photothermal hydrogels are typically constructed by embedding or 
in situ generation of silver nanomaterials (Wang K. et al., 2025). Hao 
et al. reported a “carrier-free” silver nanoparticle hydrogel in which 
evenly dispersed AgNPs were generated in situ by the reduction 
of the natural polyphenol puerarin. Under 808 nm irradiation, the 
AgNPs produced a mild photothermal effect (∼45 °C) that quickly 
killed multidrug-resistant bacteria and continuously released silver 
ions to inhibit the regrowth of residual bacteria (Hao et al., 2025). 
Copper nanomaterials are cost-effective, have a broad antibacterial 
spectrum, and possess certain biological activities. Similar to gold 
and silver, copper nanomaterials also exhibit an LSPR effect. Lin and 
colleagues incorporated copper sulfide (CuS) nanoparticles into a 
hyaluronic acid hydrogel; under 808 nm irradiation, this material 
maintained a temperature of about 43 °C (Lin et al., 2021).

In summary, metallic nanomaterials (e.g., Au, Ag, Cu 
nanoparticles) offer strong NIR light absorption and highly efficient 
photothermal conversion due to their own chemical structural 
characteristics, and they can be readily functionalized for imaging 
or targeted delivery. However, these noble metal agents are non-
biodegradable and tend to accumulate in vivo, raising concerns 
about long-term toxicity and clearance, which limits their clinical 
translation (Chen et al., 2024). 

2.1.2 Carbon-based inorganic photothermal 
agents

Carbon nanomaterials have high thermal stability and excellent 
thermal conductivity, and they are less prone to photothermal 
degradation. These materials also have a very large specific surface 
area, which allows them to carry growth factors, drugs, etc., 
and they can be functionalized through abundant surface groups 
(Cui et al., 2023; Liu et al., 2023).

Graphene and its derivatives (including graphene oxide [GO] 
and reduced graphene oxide [rGO]) have been widely studied 
due to their two-dimensional sheet structure and outstanding 
photothermal properties. A typical construction method is to 
introduce functionalized graphene into a hydrogel network 
to form a nanocomposite scaffold. For example, by grafting 
branched polyethyleneimine (BPEI) onto GO and then forming 
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FIGURE 1
(a) Classification of mild photothermal agents; (b) Loading strategies for the agents.

dynamic Schiff-base crosslinks with aldehyde-bearing polymers, 
a stable three-dimensional network was constructed. In vitro
experiments showed that an osteogenic scaffold loaded with this 
functionalized could reach 43 °C after 3 min of 808 nm laser 
irradiation (Zhang et al., 2021). Carbon quantum dots (CDs) are 
zero-dimensional carbon nanoparticles smaller than 10 nm. In 
constructing mild photothermal hydrogels, a common strategy is 
to incorporate CDs into the hydrogel network. On one hand, the 
carboxyl and amino groups on the surface of CDs can undergo 
Schiff-base reactions with multi-aldehyde polymers, achieving 
dynamic covalent cross-linking (Sharma et al., 2022); on the other 
hand, CDs can be simply dispersed in a polymer matrix and held 
inside the gel through hydrogen bonding or electrostatic interactions 

(Lu et al., 2025). Carbon nanotubes (CNTs) are one-dimensional 
hollow tubular structures made of sp2-hybridized carbon atoms. 
They possess excellent mechanical, electrical, and thermal 
properties. Common construction methods include physical 
dispersion and surface functionalization. Physical dispersion 
involves mixing CNTs uniformly in a polymer via non-covalent 
interactions (Ding et al., 2024). However, CNTs tend to aggregate, 
so dispersants or structure-directing agents (such as clay nanosheets 
or emulsifiers) are often needed. Surface functionalization improves 
the CNTs’ hydrophilicity and biocompatibility through covalent or 
non-covalent modifications (Deng et al., 2022; Ravanbakhsh et al., 
2020). For example, oxidative treatment can introduce hydroxyl 
or carboxyl groups at the ends of CNTs, enabling them to 
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form cross-links or hydrogen bonds with the hydrogel matrix
(Forero-Doria et al., 2020).

Carbon nanomaterials are photothermally stable with excellent 
thermal conductivity and large surface areas for drug loading, 
and they can be surface-tailored to improve dispersibility and 
biocompatibility. On the other hand, pristine carbon agents are 
intrinsically hydrophobic and not readily biodegradable-they tend 
to aggregate in biological media and may persist in tissues, so 
appropriate functionalization or nanoscale design is required to 
mitigate potential chronic toxicity (Wang P. et al., 2025). 

2.2 Organic photothermal materials for 
mild photothermal hydrogels

Compared to traditional inorganic materials, organic 
photothermal agents generally have better biocompatibility, 
making them suitable for long-term implantation in vivo. Their 
molecular structures are highly tunable, allowing researchers to 
adjust their optical absorption peaks via molecular design and 
functional modification to match the “NIR biological window” 
(∼650–950 nm for NIR-I; ∼1,000–1,350 nm for NIR-II), where 
absorption by hemoglobin and water is minimal, allowing 
deeper tissue penetration and thus improving the efficacy of 
photothermal tumor ablation (Guo S. et al., 2023). Typical organic 
photothermal agents include conductive polymers, and organic dyes 
(Makabenta et al., 2021; Wu et al., 2023). 

2.2.1 Conductive polymer photothermal agents
Conjugated conductive polymers such as polypyrrole (PPy), 

polyaniline (PANI), and poly (3,4-ethylenedioxythiophene) 
(PEDOT) usually have broad absorption in the near-infrared 
region. These materials also possess electrical conductivity and 
thermal stability, and they easily integrate with hydrogel networks 
to form composites. Polypyrrole (PPy), due to its dark conjugated 
structure, exhibits excellent photothermal performance. One study 
constructed a three-dimensional porous hydrogel containing PPy 
and loaded with a heat-sensitive nitric oxide donor (BNN6). After 
10 min of 808 nm laser irradiation (1.0 W/cm2), the PPy component 
achieved an approximately 80% photothermal conversion efficiency 
and triggered the release of NO from the donor, combining 
mild photothermal effects with chemical antimicrobial action 
(Guo W. et al., 2023). Polyaniline (PANI) is another typical 
conductive polymer photothermal agent. Researchers have prepared 
methacrylate-terminated polyaniline nanoparticles (Me-PANI NPs) 
and used the vinyl groups as chemical crosslinking points to 
construct a PANI-crosslinked conductive photothermal hydrogel. 
In vitro experiments showed that the introduction of Me-PANI NPs 
enabled the hydrogel to exhibit mild photothermal antibacterial 
activity under NIR irradiation, while also endowing the hydrogel 
with excellent mechanical properties (Pang et al., 2022).

Conjugated polymers exhibit broad NIR absorption and 
can achieve high photothermal efficiencies while generally 
showing good biocompatibility, importantly, many can be 
engineered to be biodegradable, addressing long-term safety to 
a degree. A key limitation, however, is that maintaining optimal 
photothermal performance and assured biodegradability can be 
challenging-polymer nanostructure and doping chemistry influence 

stability and heat conversion, and incomplete degradation or 
byproducts could still pose biocompatibility issues that require 
careful design (Bao et al., 2025). 

2.2.2 Organic dye photothermal agents
Organic dye photothermal agents include both naturally derived 

pigments and synthetic small-molecule dyes that strongly absorb 
NIR light. Compared to inorganic nanomaterials, these organic 
agents generally exhibit superior biocompatibility and avoid heavy-
metal-associated toxicities (Zhou et al., 2025). Natural pigments 
(e.g., phycocyanin, a blue phycobiliprotein from Spirulina) offer 
excellent biocompatibility and even possess inherent bioactive 
properties (immune-regulatory, antioxidant, anti-inflammatory) 
(Bai et al., 2023). However, as proteinaceous pigments they are prone 
to degradation under heat or light, which can reduce photothermal 
stability. This limits their standalone photothermal efficacy, and 
thus they are often combined with nanomaterials to enhance light-
to-heat conversion. Synthetic dyes (e.g., indocyanine green (ICG) 
and other indocyanines like IR780/IR820) provide high molar 
absorption in the NIR and effective photothermal conversion. 
Indeed, ICG is an FDA-approved imaging agent that has also been 
widely explored as a photothermal agent (Cai et al., 2025). Their 
key drawback is instability in physiological conditions - ICG and 
its analogues tend to photobleach, aggregate, and clear rapidly 
from the body. Moreover, certain dyes, such as IR780 and IR820, 
are highly hydrophobic, necessitating encapsulation in carriers 
(polymers, liposomes, proteins, etc.) to improve water dispersibility 
and stability (Fialho et al., 2025). Such methods have been shown 
to prevent dye aggregation/photobleaching and prolong circulation, 
thereby significantly improving the photothermal performance of 
these organic dye agents.

Generally speaking, organic dye photothermal agents are 
typically low-cost, biocompatible, and readily excreted, with 
strong NIR absorption profiles, but they generally have lower 
photothermal conversion efficiency and limited photostability 
(e.g., photobleaching and rapid clearance), constraining their 
effectiveness in sustained photothermal therapy (Teng et al., 2024). 

2.3 Photothermal agent loading strategies 
in hydrogels

Constructing a stable, efficient, and responsive mild 
photothermal hydrogel system is closely related to the method of 
incorporating photothermal agents into the hydrogel. Common 
loading strategies include: 1) Physical encapsulation: this method 
directly embeds photothermal agents into the hydrogel network 
through electrostatic adsorption, hydrophobic interactions, or 
van der Waals forces (Hu et al., 2024). The construction process 
is simple and requires mild reaction conditions. For example, 
GO or CuS nanoparticles can be mixed with sodium alginate, 
gelatin, etc., and crosslinked with Ca2+ or glutaraldehyde to form 
composite hydrogels (Huang et al., 2023). Physical encapsulation 
is straightforward, but lacking covalent bonds, the photothermal 
agents may “leak” or migrate over time with prolonged use. 2) 
Covalent conjugation: specific chemical reactions are used to 
covalently bind photothermal agents to the hydrogel network, 
enhancing system stability and sustained responsiveness. For 
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instance, GO bearing surface carboxyl groups can be grafted onto 
an amino–functionalized gelatin backbone via EDC/NHS coupling, 
or polymer–photothermal agent covalent networks can be built 
through thiol–ene “click” chemistry (Degirmenci et al., 2024; 
Zhang W. et al., 2025). 3) In situ self–assembly: a newer strategy 
is to form a three-dimensional network via the self–assembly 
of the photothermal agent itself or its non-covalent interactions 
with polymers. For example, ICG and a gelatin/PEG matrix 
can be co–assembled into a self-healing photothermal hydrogel 
via a freeze–dry–rehydration approach, yielding a material with 
responsiveness, moldability, and biodegradability (Li et al., 2022). 
In addition, certain natural small molecules (such as tannic acid) 
have dual abilities to chelate metal ions and stack π–π bonds, 
allowing them to induce gelation in situ under mild conditions, 
which is an important direction for green self-assembly strategies 
(Zhou et al., 2024) (Figure 1b). 

3 Biomedical applications of mild 
photothermal hydrogels

3.1 Applications in wound healing

Both chronic and acute wounds are often accompanied 
by pathological changes such as disruption of the skin 
barrier, persistent infection, high oxidative stress, and chronic 
inflammation, which make healing difficult. There is an urgent 
need for novel multifunctional therapeutic strategies to address 
these multiple challenges simultaneously (Byun et al., 2024). In 
recent years, many researchers have achieved significant results 
in combating infection and controlling pathogens in wounds by 
combining mild photothermal effects with multimodal antibacterial 
strategies (Figure 2). For example, Gao et al. prepared a chitosan 
hydrogel containing ZIF–8 nanoparticles coated with polydopamine 
(PDA). Under 808 nm laser irradiation, the temperature of this 
hydrogel was maintained at 40 °C–45 °C. This system, through 
Zn2+-mediated bacterial membrane rupture combined with local 
mild heating, was highly effective against methicillin-resistant S. 
aureus (MRSA), achieving a 99.5% kill rate (Gao et al., 2025). 
In a burn infection model, Yu et al. prepared a gelatin–oxidized 
dandelion hydrogel containing natural black currant extract. Under 
808 nm irradiation (2.5 W/cm2, temperature controlled at 45 °C), 
10 min of treatment could kill 99% of S. aureus, 98% of E. coli, 
and 82% of P. aeruginosa (Yu et al., 2024). Mild photothermal 
therapy (PTT <45 °C) exerts broad antibacterial effects through 
multiple mechanisms. First, sub-lethal photothermal heating 
damages bacterial membranes, increasing their permeability and 
causing leakage of cytoplasmic contents, which leads to cell lysis 
(Zhang et al., 2022). Second, heat stress can denature bacterial 
proteins (including enzymes and structural proteins), impairing 
essential cellular functions. Third, mild PTT may elevate bacterial 
reactive oxygen species (ROS) levels, inducing oxidative damage 
to lipids, proteins, and DNA within the microbes (Chen et al., 
2025). Fourth, localized photothermal heating can disrupt biofilm 
structures by weakening the extracellular polymeric matrix 
and enhancing the susceptibility of biofilm-encased bacteria to 
treatment. Finally, mild hyperthermia can modulate the host 
immune response at the wound site–for example, by promoting 

immune cell recruitment and activation, which aids in clearing 
the infection (Zhao et al., 2023). Collectively, these mechanisms 
enable mild photothermal therapy to effectively reduce bacterial 
burden and facilitate wound healing while minimizing damage to 
healthy tissue.

Beyond efficient antibacterial activity, using the inherent 
biological activities of materials to correct the wound 
microenvironment’s oxidative stress and chronic inflammation 
is equally crucial. Ma et al. reported a composite hydrogel 
containing black phosphorus (BP) nanosheets and quaternized 
chitosan (QCS). Upon NIR irradiation, this hydrogel significantly 
reduced the expression of pro-inflammatory cytokine IL-6 and 
increased the expression of anti-inflammatory IL-10. This anti-
inflammatory effect is attributed to the synergistic action of QCS 
itself and the mild photothermal stimulation mediated by BP 
(Ma et al., 2025). Li et al. used dopamine-modified hyaluronic 
acid and PDA-coated Ti3C2 MXene nanosheets to prepare an 
injectable, self-catalyzing cross-linked hydrogel. Leveraging the 
non-enzymatic antioxidant properties of the MXene photothermal 
agent, this system efficiently scavenges reactive oxygen species 
(ROS) and maintains cellular redox homeostasis (Li et al., 2022). 
Simultaneously, the HA-DA (hyaluronic acid-dopamine) scaffold 
induces macrophages to polarize toward the anti-inflammatory 
M2 phenotype. Together, these effects allow the hydrogel to 
effectively improve the pathological microenvironment of infected 
diabetic wounds.

Adequate angiogenesis is also essential for wound healing. 
Huang et al. reported a copper/Zn-MOF composite hydrogel with 
photothermal functionality. This hydrogel precisely modulated 
the M1/M2 balance of macrophages at the wound site, skewing 
macrophages toward the M2 phenotype, thereby promoting neural 
tissue and blood vessel regeneration and accelerating chronic 
wound healing (Huang K. et al., 2022). Gao et al. constructed 
a tri-component crosslinked hydrogel made of carboxymethyl 
chitosan (CMCS), gelatin, and oxidized sodium alginate (OSA), 
into which PDA-modified ZIF-8 nanoparticles were embedded. 
Under mild NIR irradiation, this material promoted endothelial cell 
proliferation and the expression of angiogenic markers (VEGF and 
CD31), enhancing blood vessel formation and collagen alignment, 
which together accelerated wound closure (Gao et al., 2025). In 
addition, other studies have incorporated growth factors (such as 
VEGF and bFGF) or nanoparticles (such as Au nanoparticles or 
PbS quantum dots) into mild photothermal hydrogels (Guo et al., 
2024; Xia et al., 2021; Zhu et al., 2023). The mild heating from 
NIR irradiation stimulates controlled release of these factors, and 
combining the system with immunomodulatory molecules (such as 
IL-10 or TGF-β) can further enhance angiogenesis and immune-
mediated healing. 

3.2 Applications in bone and soft tissue 
tumor therapy

Conventional tumor treatments (including surgical resection 
and radiotherapy) often face issues such as residual tumor cells 
post-surgery, local recurrence, cancer cell drug resistance, and 
systemic toxicity from high-dose chemotherapy. High-temperature 
photothermal therapy has been shown to directly lyse cancer cells, 
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FIGURE 2
Current main biomedical applications of mild photothermal hydrogels.

but excessively high temperatures (>50 °C) can cause damage to 
normal tissues and elicit inflammatory responses (Xia et al., 2021). 
Therefore, a series of recent studies have focused on designing and 
applying mild photothermal systems (Figure 2). Luo et al. reported 
an HTA hydrogel constructed from hydroxypropyl chitosan, 
tannic acid, and Fe3+ complexes. Under 808 nm laser irradiation 
(1 W/cm2), the hydrogel temperature stabilized at 42 °C–43 °C, 
significantly inducing apoptosis in osteosarcoma cells and causing 
tumor-associated macrophages to shift from the M2-type to the 
M1-type phenotype (Luo et al., 2023). This confirmed that a mild 
photothermal effect can achieve both immune microenvironment 
remodeling and antitumor effects. Chen et al. developed a composite 
hydrogel of silk fibroin, sericin-dopamine, tannic acid, and Cu2+. 
Under 808 nm laser irradiation (0.75 W/cm2, 20 min), the hydrogel 
temperature was maintained at approximately 44 °C; it was able 
to inhibit the proliferation of osteosarcoma cells and induce 
apoptosis, while the Cu2+ and polyphenols exerted antioxidant 
effects that improved the tissue repair environment (Chen et al., 
2025). In another study, Zhang et al. developed an injectable 

gelatin-dopamine hydrogel composite with magnesium peroxide 
(MgO2) nanoparticles. Under 808 nm laser irradiation (0.5 W/cm2, 
10 min), the hydrogel temperature reached about 43 °C. This 
hydrogel not only suppressed osteosarcoma cell activity through 
the mild photothermal effect but also released Mg2+ to promote 
bone regeneration, demonstrating a dual “antitumor and osteogenic 
repair” function (Zhang R. et al., 2025). These results indicate that by 
precisely adjusting the concentration of photothermal agents and the 
irradiation conditions, hydrogels can stably generate a mild heating 
effect. This enables dual therapeutic effects of antitumor activity and 
tissue repair without damaging normal tissues.

Mild photothermal therapy (heating tissues to <45 °C) can itself 
impede tumor growth via multiple mechanisms. Even moderate 
hyperthermia (≈42 °C–45 °C) induces partial protein denaturation, 
membrane disruption, and oxidative stress in cancer cells. These 
sub-lethal injuries trigger mitochondrial dysfunction-elevated 
temperature increases mitochondrial membrane permeability 
and ROS generation-which in turn activates intrinsic apoptosis 
pathways (Cai et al., 2025). Consequently, mild photothermal 
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heating can promote tumor cell apoptosis without reaching ablative 
temperatures (Huang Q. et al., 2022). On the other hand, many 
hydrogel-based systems combine mild photothermal effects with 
additional therapies to achieve synergistic antitumor activity. The 
photothermal agents (e.g., polydopamine, gold nanomaterials) 
embedded in the hydrogel convert NIR into heat, raising the 
local temperature above a critical transition. This can induce a 
volume phase change in thermo-responsive polymers or break 
thermosensitive linkages, freeing the payload. For example, Liu 
et al. reported a chitosan-based hydrogel that remains stable at 
37 °C but, upon NIR irradiation, undergoes rapid network collapse 
into a porous state, thereby releasing its drug load on-demand 
(Liu et al., 2021). Likewise, Kong et al. designed an injectable 
liposomal hydrogel in which an NIR photothermal dye generates 
mild heat to rupture encapsulated thermosensitive liposomes, 
instantly releasing gemcitabine at the target site. Immune checkpoint 
inhibitors (such as anti-PD-1/PD-L1 antibodies) or cytokines (e.g., 
IFN-γ, IL-12) can be co-encapsulated in injectable hydrogels for 
sustained, localized delivery to the tumor (Kong et al., 2021). 
The hydrogels protect these biomolecules and concentrate them 
in the tumor microenvironment, improving therapeutic index 
(Mohammadzadeh et al., 2025). Mild photothermal therapy 
(sub-ablative hyperthermia) further enhances their efficacy by 
stimulating immunogenic tumor cell death and promoting immune 
cell infiltration. For instance, a recent alginate hydrogel loaded with 
anti-PD-L1 antibodies and Fe3O4 nanoparticles showed that NIR 
irradiation induced tumor cell apoptosis and the release of tumor 
antigens, while simultaneously releasing anti-PD-L1 in situ; this led 
to robust T-cell activation and tumor regression in vivo compared to 
antibody or PTT alone (Mohammadzadeh et al., 2025). In general, 
the heat from mild PTT can “prime” tumors for immunotherapy-
increasing dendritic cell maturation and cytotoxic T-lymphocyte 
activity and upregulating checkpoint ligand expression on cancer 
cells-thereby transforming an immunosuppressive tumor into 
an “immunologically hot” state more responsive to checkpoint 
blockade therapy. 

3.3 Applications in bone defect repair

Like wound healing, the treatment of bone defects faces many 
challenges. Firstly, due to limited donor availability, autograft bone 
transplantation is constrained and can lead to immune rejection and 
complications. In addition, bone infection—especially that caused 
by drug-resistant bacteria secondary to trauma or surgery—often 
complicates treatment. Bone defect and infection sites also often 
suffer from poor circulation, hypoxia, and an excessive local 
immune response (Wu A. L. et al., 2025).

Studies have shown that mild heat stimulation (in the range 
of 37 °C–45 °C) can upregulate heat shock proteins (e.g., HSP70, 
HSP90) and indirectly or directly activate osteogenic signaling 
pathways such as Wnt/β-catenin, PI3K/AKT/mTOR, BMP/Smad, 
and MAPK (ERK1/2), thereby promoting the expression of 
bone markers (ALP, OCN, COL-I) (Yao et al., 2024) (Figure 2). 
Wang et al. reported a photothermal hydrogel system based on 
silk and calcium phosphate composites. By near-infrared (NIR) 
irradiation (808 nm, 1 W/cm2 for 5 min), the local temperature 
was raised to 42 °C. The mild photothermal effect activated heat 

shock proteins and osteogenesis-related genes (Runx2 and ALP), 
promoting the proliferation and osteogenic differentiation of bone 
marrow mesenchymal stem cells (BMSCs) (Wang et al., 2023). 
Li et al. designed a photothermal hydrogel system containing 
gold nanoparticles; using 808 nm NIR light (1 W/cm2 for 6 min), 
they generated a mild photothermal effect (∼40 °C) in the 
hydrogel. This promoted the osteogenic differentiation of BMSCs 
and also enhanced bone mineralization by releasing dissolved 
calcium ions (Li X. et al., 2023).

In addition, antibacterial activity, immune regulation, and 
pro-angiogenic effects are also considered crucial in bone 
defect treatment. Wei et al. combined copper nanoparticles 
with a photothermal hydrogel; under NIR irradiation (808 nm, 
1.5 W/cm2, 5 min), the copper nanomaterials and the mild heat 
effectively killed bacteria in a bone infection model, accelerating 
the healing of the bone defect (Wei et al., 2024). Sun et al. 
designed a photothermal hydrogel system using 808 nm NIR laser 
irradiation (1 W/cm2, 5 min) to achieve a mild photothermal 
effect that raised the local temperature to 42 °C. This thermal 
stimulation not only promoted polarization of macrophages to 
the M2 anti-inflammatory phenotype, reducing inflammation, 
but also increased the expression of angiogenic factors such 
as VEGF and bFGF, promoting new blood vessel formation
(Sun et al., 2025). 

4 Concluding and perspectives

To date, researchers have successfully constructed various 
composite hydrogels with mild photothermal functionality and 
have achieved precise control over temperature elevation in space 
and time. However, several challenges and bottlenecks remain. 
Technically, the shallow penetration of NIR light in tissue (typically 
only a few millimeters to ∼1 cm) limits the treatment of deep lesions. 
Furthermore, current platforms lack real-time thermal feedback 
mechanisms, making it difficult to precisely control the local 
temperature during therapy; the long-term safety of repeated NIR 
irradiations also remains to be fully evaluated. A delicate balance 
must be struck between photothermal efficacy and biocompatibility-
high laser powers or photothermal agent doses can produce effective 
heating but may injure surrounding healthy tissue. Translationally, 
there are substantial hurdles in scaling up the production of 
photothermal hydrogel systems while maintaining reproducibility 
and regulatory compliance, which complicates their path to 
clinical use. Indeed, despite encouraging preclinical outcomes, most 
reported mild photothermal hydrogel therapies have yet to progress 
into clinical trials, highlighting the gap between laboratory research 
and clinical translation (Sun et al., 2024).

To address these issues, future improvements could include: 
1) Developing new NIR-II responsive materials: enhancing tissue 
penetration by using materials activated by the second near-
infrared window. 2) Introducing self-regulating thermal elements 
or degradable thermal buffering layers: Achieving a smoother 
and more stable heat output. 3) Exploring combinations with 
non-optical stimulation methods: Incorporating stimuli such as 
ultrasound or electrical stimulation, which can penetrate deeper 
into tissues, to complement photothermal therapy and overcome the 
limitations of light penetration (Xie et al., 2022; Zhu et al., 2024).
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In summary, as a biomedical material with immense potential, 
mild photothermal hydrogels are poised to play an increasingly 
important role in future tissue repair and regeneration. Through 
interdisciplinary collaboration and continuous innovation, we can 
anticipate that mild photothermal hydrogels will offer patients more 
effective, safer, and more personalized treatment options.
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