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The Helicobacter pylori cag pathogenicity island (cag PAI) encodes a type IV secretion sys-
tem that is more commonly found in strains isolated from patients with gastroduodenal
disease than from those with asymptomatic gastritis. Genome-wide organization of the
transcriptional units in H. pylori strain 26695 was recently established using RNA sequence
analysis (Sharma et al., 2010). Here we used quantitative reverse-transcription polymerase
chain reaction of open reading frames and intergenic regions to identify putative cag PAI
operons in H. pylori ; these operons were analyzed further by transcript profiling after dele-
tion of selected promoter regions. Additionally, we used a promoter-trap system to identify
functional cag PAI promoters. The results demonstrated that expression of genes on the
H. pylori cag PAI varies by nearly five orders of magnitude and that the organization of cag
PAI genes into transcriptional units is conserved among several H. pylori strains, includ-
ing, 26695, J99, G27, and J166. We found evidence for 20 transcripts within the cag PAI,
many of which likely overlap. Our data suggests that there are at least 11 operons: cag1-4,
cag3-4, cag10-9, cag8-7, cag6-5, cag11-12, cag16-17, cag19-18, cag21-20, cag23-22, and
cag25-24, as well as five monocistronic genes (cag4, cag13, cag14, cag15, and cag26 ).
Additionally, the location of four of our functionally identified promoters suggests they are
directing expression of, in one case, a truncated version of cag26 and in the other three,
transcripts that are antisense to cag7, cag17, and cag23. We verified expression of two of
these antisense transcripts, those antisense to cag17 and cag23, by reverse-transcription
polymerase chain reaction. Taken together, our results suggest that the cag PAI transcrip-
tional profile is generally conserved among H. pylori strains, 26695, J99, G27, and J166,
and is likely complex.
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INTRODUCTION
Helicobacter pylori is a Gram-negative bacterium that infects the
stomachs of approximately half the human population. Although
infection is typically asymptomatic throughout the lifetime of the
host, it causes peptic ulcer disease in about 10% of those infected
and gastric adenocarcinoma in about 1–3% (Kusters et al., 2006).
The best-studied bacterial factor associated with clinical sequelae
of H. pylori infection is the cytotoxin associated gene pathogenic-
ity island (cag PAI). Patients infected with H. pylori strains that
contain the cag PAI are at increased risk for both peptic ulcer
and gastric cancer (Kusters et al., 2006). Experimental studies in
gerbils (Rieder et al., 2005), mice (Arnold et al., 2011), and rhe-
sus macaques (Hornsby et al., 2008) have also demonstrated the
pro-inflammatory effects of the cag PAI.

The 40-kb cag PAI contains on average 27 genes, several of
which encode a type IV secretion apparatus that is required for
translocation of the effector molecules CagA (cag26) and pepti-
doglycan into host epithelial cells (Segal et al., 1997; Odenbreit
et al., 2000; Rohde et al., 2003; Viala et al., 2004). Of the 27 genes

on the cag PAI, 18 are required for the translocation of CagA into
host cells and 15 are required to induce transcription of the pro-
inflammatory cytokine IL-8 (Fischer et al., 2001; Shaffer et al.,
2011). CagA is reliant on the secretion chaperone protein CagF
(cag22) for recruitment to the type IV translocation channel (Pattis
et al., 2007). Upon translocation into the cell, CagA is phospho-
rylated at C-terminal tyrosine residues by c-Src and other kinases,
which results in the activation of receptor tyrosine kinase (RTK)-
like signaling pathways (Segal et al., 1997; Selbach et al., 2002).
Both phosphorylated and unphosphorylated CagA contribute to
H. pylori pathogenesis via multiple mechanisms, including the dis-
ruption of the cytoskeleton, interruption of cellular signaling, and
interference with adhesion between adjacent cells (Backert and
Selbach, 2008).

Several studies have provided a glimpse of the cag PAI tran-
scriptional unit organization. One initial study employed a urease
transcription fusion to check for promoters in nine cag PAI DNA
regions that were upstream of groups of co-directional genes
(Joyce et al., 2001). This analysis determined that there were at least
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five promoters on the cag PAI. Another early study identified the
promoters responsible for regulating cagA and cagB (Spohn et al.,
1997). A more recent genome-wide transcriptional unit analy-
sis that used RNA sequencing identified 14 transcriptional units
within the cag PAI. Additionally, they found many potential small
regulatory RNAs (Sharma et al., 2010). Other studies have sug-
gested that several cag PAI genes are differentially regulated in vivo
compared to in vitro (Joyce et al., 2001; Boonjakuakul et al., 2005;
Castillo et al., 2008b). In one such study, an in vivo induced pro-
moter called Pivi66, was internal to the cag7 gene (Castillo et al.,
2008b), which suggested that promoters may not always be within
intergenic regions.

Here we sought to determine the conservation of operon struc-
ture in the cag PAI among H. pylori strains, and to identify
promoters responsible for the transcription of cag PAI genes in
strains 26695, J99, and G27, whose genomes are sequenced (Tomb
et al., 1997; Alm et al., 1999), and in strain J166 that we and oth-
ers have used to infect rhesus macaques (Hornsby et al., 2008).
Operon structure was first predicted by a gene expression analy-
sis that used quantitative reverse-transcriptase polymerase chain
reaction (qRT-PCR) for both open reading frames (ORFs) and
intergenic regions. The predicted putative operons were further
defined by qRT-PCR after deletion of selected promoter regions.
Since our transcription analyses suggested a potentially complex
operon structure, we augmented these studies with a non-biased
promoter-trap study that identified cag PAI promoters as DNA
regions capable of directing expression of a heterologous reporter.
Our results demonstrate that there is remarkable consistency
across strains in the expression of genes in the cag PAI, which
is organized into at least 20 transcriptional units.

MATERIALS AND METHODS
BACTERIAL STRAINS AND CULTURE
Helicobacter pylori strains 26695 (Tomb et al., 1997), J99 (Alm
et al., 1999), J166 (Hornsby et al., 2008), and ACHP17 (mG27
HP0294/295::res1-aphA3-res1; Castillo et al., 2008a) were used for
these studies. DNA and RNA for qRT-PCR were prepared from
strains cultured on Brucella agar (Difco Laboratories, Detroit, MI,
USA) containing 5% bovine calf serum (Invitrogen Life Technolo-
gies, Carlsbad, CA, USA) supplemented with 5 μg/mL trimetho-
prim, 10 μg/mL vancomycin, 2.5 IU/mL polymixin B, 2.5 μg/mL
amphotericin B (TVPA, all from Sigma, St. Louis, MO, USA) and
incubated at 37˚C with an atmosphere that contained 5% CO2.
Plate grown bacteria were then transferred to Brucella broth con-
taining bovine calf serum with TVPA and incubated at 37˚C in 5%
CO2 with gentle rotation at 60 rpm. The OD600 was determined for
each culture 18–24 h after inoculation. The promoter reporter H.
pylori strain ACHP17 and strain G27 from which RNA was isolated
for RT-PCR were grown under microaerobic conditions (10%
CO2, 5% O2, and 85% N2) at 37˚C on columbia blood agar plates
with 4% (w/v) columbia agar base, 5% (w/v) defibrinated horse
blood (Hemostat labs), 0.2% (w/v) β-cyclodextrin, 10 μg/mL van-
comycin, 50 μg/mL cycloheximide, 5 μg/mL cefsulodin, 8 μg/mL
amphotericin B, 2.5 IU/mL polymyxin and 5 μg/mL trimetho-
prim. H. pylori strains were stored at −80˚C in brain heart infusion
media supplemented with 10% fetal bovine serum, 1% (w/v)
β-cyclodextrin, 25% glycerol, and 5% dimethyl sulfoxide.

Escherichia coli strain DH10B (Grant et al., 1990) was grown
at 37˚C in Luria–Bertani (LB) broth (1% w/v tryptone, 0.5% w/v
yeast extract, 0.5% w/v NaCl), with 100 μg/mL ampicillin. E. coli
was also grown on solid LB media consisting of LB broth with 1.5%
(w/v) agar. All antibiotics were purchased from Sigma-Aldrich,
Fisher, or ISC BioExpress. All culture media were purchased from
Remel, Fisher, or Difco unless otherwise indicated.

RNA AND DNA EXTRACTION
At OD600 0.4–0.5 (early exponential growth phase) 2 mL aliquots
were taken from H. pylori liquid cultures and centrifuged at
16,000 × g for 30 s at room temperature. Supernatants were
removed and 1 mL of TriZol (Invitrogen) was immediately added.
Samples were vortexed and RNA was extracted according to the
manufacturer’s directions. RNA was treated with DNase I (Roche
Applied Sciences, Mannheim, Germany), purified using an RNeasy
clean up kit (QIAGEN, Inc., Valencia, CA, USA), and suspended
in ultra pure water (Invitrogen) at a concentration of 20 ng/μL.

DNA was extracted from plate grown bacteria using a DNeasy
Tissue Kit (QIAGEN). DNA samples were diluted in ultra pure
water to a concentration of 5 ng/μL and stored at −20˚C.

RT-PCR TO DETECT PROMOTERS, PIII, PIX, AND PXII
Reverse-transcriptase polymerase chain reactions were carried out
using the Super Script One-step RT-PCR kit with Platinum Taq
(Invitrogen). One hundred or 250 ng of RNA was used as a tem-
plate for each RT-PCR reaction. For the reverse-transcription step
(55˚C for 30 min), only the oligonucleotide that was complemen-
tary to the putative transcript was included in the reaction, PIIIR
(5′-cctagcgaccaaaagcgatgaa-3′), PIXR (5′-gaaactgctaagaatatcagtg-
3′), and PXIIR (5′-cgtcattaatcaaatagaacaaagc-3′). The reverse-
transcriptase in these reactions was then inactivated by incu-
bation at 94˚C for 5 min. Prior to starting the PCR pro-
gram (35 cycles, 94˚C/30 s, 55˚C/30 s, 72˚C/30 s) the reactions
were briefly incubated on ice (∼1 min) while the second
oligonucleotides, PIIIF (5′-cattgtggtctttcccgaaagc-3′), PIXF (5′-
cactcttgcctataaaggcc-3′), and PXIIF (5′-ctgagacgacaagctatgatttc-
3′) were added. Oligonucleotides for our positive control were
HP188F (5′-ccactataaaagagatctttcaagcggaagg-3′) and HP187R (5′-
gcttgccctcggtgtctgcatc-3′); HP187R was present in the RT reaction
and both HP187R and HP188F were present in the PCR reaction.
As a control for amplification, each set of oligonucleotides was
used in a PCR reaction with DNA as the template. Additionally,
each set of oligonucleotides was used in an RT-PCR reaction with
the RNA template and Platinum Taq only. This control was done
to verify our RNA samples were DNA free.

qRT-PCR AND AGAROSE GEL ELECTROPHORESIS
Quantitative real time RT-PCR was performed with primer pairs
specific for each cag gene (Table A1 in Appendix) and for each
intergenic region (Table A2 in Appendix), using methods essen-
tially as described (Boonjakuakul et al., 2004, 2005). In brief,
RT and PCR were performed in a single 20 μL reaction mixture
using the thermostable recombinant Tth (rTth) DNA polymerase
(Applied Biosystems) with 100 ng RNA extracted as described
above. In the presence of Mn(OAc)2, rTth has reverse-transcriptase
activity and DNA polymerase activity. Two-step amplification was
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performed with 45 cycles at 95˚C for 20 s followed by 59.5˚C for
1 min. Accumulation of PCR product was detected during each
cycle by excitation of SYBR green at 490 nm. Relative fluores-
cence was characterized by a cycle threshold (Ct) value, which was
defined as the crossover point of the kinetic curve with an arbi-
trary fluorescence level set at 150 relative fluorescence units. The
absence of contaminating DNA was examined by performing the
RT-PCR with MgCl2, in which rTth has DNA polymerase but no
RT activity. All qRT-PCR products were electrophoresed on a 2%
agarose (Invitrogen) gel to verify correct product size. Transcript
abundance was calculated only if the observed Ct with RNA tem-
plate was less than that of the no-template control, and there was
a band of the appropriate size on an agarose gel. Otherwise, tran-
script was considered absent. All transcript copy numbers were
normalized to 16S RNA and the data presented represents the
average of duplicate wells.

CONSTRUCTION OF cag PAI PROMOTER DELETION MUTANTS
The chloramphenicol resistance conferring cat gene from plasmid
pNR9589 (Wang and Taylor, 1990) and 1–2 kb DNA fragments of
the genes directly flanking the region targeted for deletion were
PCR amplified (oligonucleotides in Table A3 in Appendix) with
compatible restriction sites. All three fragments were digested with
the appropriate enzymes and ligated with compatibly digested
pBluescript SK− (Stratagene, La Jolla, CA, USA) to generate a
shuttle plasmid with fragments of the cag PAI flanking the cat
gene. The shuttle plasmid was amplified in E. coli Top10 (Invit-
rogen, Carlsbad, CA, USA), sequence verified, and then used to
transform H. pylori strain J166 by a standard natural transfor-
mation procedure (Salama et al., 2001). H. pylori transformants
were selected on Brucella agar plates with TVPA and 4 μg/mL
chloramphenicol. Correct replacement of cag PAI DNA regions
with the cat gene was verified using PCR and DNA sequence
analyses.

GENERATING THE H. PYLORI cag PAI LIBRARY OF PUTATIVE
PROMOTERS
Genomic DNA was isolated from H. pylori J166 and mG27 (Wiz-
ard genomic prep kit, Promega). The DNA region representing the
cag PAI was amplified from each strain as a set of 13 PCR prod-
ucts of ∼2.5 kb in length with 600 bp of overlap between adjacent
PCR products (oligonucleotides in Table A4 in Appendix). For
each strain, the PCR products were pooled, partially digested with
Sau3A, and ligated to BglII digested pcat-T-tnpR (Castillo et al.,
2008a) to generate recombinant plasmids, pcat-T-caglibmG27-
tnpR and pcat-T-caglibJ166-tnpR. After ligation, the recombinant
plasmids were transformed into E. coli DH10B and the E. coli were
plated on LB agar with ampicillin. For these strains, ∼2193 (pcat -
T-caglibmG27-tnpR) or 5000 (pcat -T-caglibmJ166-tnpR) individ-
ual ampicillin resistant (AmpR) colonies were pooled, grown
overnight, and treated (Qiagen miniprep extraction kit, Qiagen)
to extract the recombinant plasmids. For a subset of colonies from
each library, individual recombinant plasmids were analyzed for
the presence and size of a H. pylori cag PAI insert. All recom-
binant plasmids analyzed contained inserts and had an average
insert size of 469 bp for pcat-T-caglibmG27-tnpR and 96 bp for
pcat-T-caglibmJ166-tnpR.

To isolate putative promoters, H. pylori strain ACHP17 was
transformed using natural transformation (Salama et al., 2001)
with either pcat-T-caglibmG27-tnpR or pcat-T-caglibJ166-tnpR,
and transformants were selected based on their resistance to chlo-
ramphenicol (Cm) on CBA plus 13 μg/mL Cm. Cm resistant
(CmR) transformants were passed twice on Cm prior to being
analyzed for kanamycin sensitivity (KmS) on CBA plus 15 μg/mL
kanamycin.

To examine the diversity of the cag PAI library clones in H.
pylori, 10–30 CmR clones were selected from each library and the
region upstream of tnpR was sequenced using primers rrnB1 and
tnpRbk75 (Castillo et al., 2008a). The average insert size was 232 bp
for pcat-T-caglibmG27-tnpR and 100 bp for pcat-T-caglibJ166-
tnpR. PCR amplicons were sequenced and compared to the 26695
and G27 genomes to assess randomness of the cloned regions.
The number of transformants needed to obtain 100% coverage
of the cag PAI for each library was determined using the formula
N = ln[1 − P/ln(1 − I/G)] (N = number of independent clones,
I = size of averaged cloned fragment, G = size of target genome,
and P = probability). These calculations suggested that 791 pcat-
T-caglibmG27-tnpR and 1840 pcat-T-caglibJ166-tnpR transfor-
mants would be required for complete coverage of the cag PAI.

RESULTS
We used both transcription profiling and a functional genetic
approach to define cag PAI operons and the putative promoters
that regulate them. First, we performed qRT-PCR to determine
the mRNA copy number within each ORF and each intergenic
region on the cag PAI. Our assumption was that contiguous genes
transcribed in the same direction, with the presence of intergenic
message and similar mRNA copy number, would likely form an
operon. Selected putative operons were then further analyzed by
deletion of the promoter region and reanalysis of mRNA copy
number of downstream genes. We then augmented these analy-
ses by using a non-biased promoter-trap system to find active
promoters within the cag PAI.

CO-EXPRESSION OF cag PAI GENES BASED ON GENE AND INTERGENIC
TRANSCRIPT COPY NUMBER
We first calculated the transcript copy number for each gene and
intergenic region within the cag PAI of H. pylori J99, 26695, and
J166, using methods described previously (Boonjakuakul et al.,
2004, 2005). Briefly, three factors were used to calculate copies per
cell: (a) a 10-fold change in starting template concentration corre-
sponds to a 3.3-cycles change in Ct (23.3 = 10); (b) 100 ng of RNA
equals 106 H. pylori cells, and (c) the empirically derived obser-
vation that a Ct of 19 corresponds to 1 × 105 copies of starting
DNA template (assuming 1 copy per bacterial chromosome). We
have previously shown that calculation of mRNA copies/cell using
Ct corrected for primer efficiency yields values that are essentially
identical to those obtained by the more conventional method using
standard curves (Boonjakuakul et al., 2004).

Transcript levels for all genes on the cag PAI for each H.
pylori strain are shown in Figure 1. For clarity, intergenic tran-
script is shown only as present (adjacent bars representing gene
transcript levels are shaded identically) or absent (adjacent bars
are shaded differently). For example, intergenic transcript was
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FIGURE 1 | Expression level of each gene on the cag PAI (mRNA

copies/cell; normalized to 16S rRNA) for H. pylori strains J166 (top

panel), J99 (middle panel), and 26695 (bottom panel). Our data
represents the average of duplicate reactions. Adjacent genes for which
intergenic transcript was detected are indicated with the same shading
(black or gray). Direction of transcription is shown by arrowheads below the
bottom panel. Since cag26 (cagA) is not contiguous with the PAI in H. pylori
J166, the cag25-26 intergenic message was not measured, but presumed
to be absent because cag25 and cag26 transcription is in opposite
directions.

detected between cag1 and cag2 (both black bars) and between
cag10 and cag9 (both gray bars), but not between cag15 (gray
bar) and cag14 (black bar). Transcript levels varied within each
strain by as much as five orders of magnitude, ranging from about
10 copies/cell to as low as 1 copy per 10,000 cells. These esti-
mates are consistent with our previous studies (Boonjakuakul
et al., 2004, 2005) and with estimates of gene expression lev-
els in Saccharomyces cerevisiae (Kang et al., 2000) and E. coli
(Young and Bremer, 1975). The highest transcript abundance was
found for cag26 and for cag25. Since cag26 encodes an effec-
tor protein, CagA, secreted via the type IV secretion system, and
cag25 encodes a virB2 ortholog that is thought to encode a pilin
protein that forms a multimeric structure (Andrzejewska et al.,
2006), it is not surprising that these genes are highly expressed.
Although in general, the expression level of genes on the cag PAI
was similar across the three strains analyzed, there is some varia-
tion that appears to occur within the operons predicted by these
experiments (Figure 2).

We reasoned that adjacent genes transcribed with ORFs in the
same direction, with the presence of intergenic transcript, might
represent a single transcriptional unit, particularly if the tran-
script abundance was similar across genes. Therefore, we initially
considered the possibility that the following may represent cag
PAI operons (numbered in the direction of transcription): cag1-4,
cag10-5, cag11-12, cag16-17, cag21-18, and cag25-22 (Figure 1).
However, there were sometimes marked differences in transcript
abundance of genes within these putative operons (e.g., cag25-
22, Figures 1 and 2). This might occur due to differential decay
of the transcript or possibly because the gene is part of more
than one transcriptional unit. To address these possibilities, we
deleted the genomic region immediately upstream of the trans-
lational start of the first gene in each of six putative operons
in H. pylori strain J166, a region likely to contain the promoter,
and then measured cag PAI gene transcript abundance. We rea-
soned that deletion of this region should decrease the expression
level of all genes in the transcriptional unit, and leave others
unchanged.

Deletion of the putative promoter regions upstream of cag1,
cag10, cag11, cag16, cag21, and cag25 had differential effects on
the expression of downstream genes when compared to the iso-
genic wild type H. pylori J166 strain (Figure 3). Deletion of the
region upstream of cag1 reduced expression of cag1-3 by three
orders of magnitude and cag4 by only 1.5 orders of magnitude.
By contrast, expression of cag5, a gene transcribed in the opposite
direction of this putative operon, remained essentially unchanged.
Deletion of the region upstream of cag10 reduced expression of
both cag10 and cag9 by similar levels and had no effect on expres-
sion of cag8-7. Deletion of the putative promoters upstream of
cag11, cag16, and cag21 reduced expression of the downstream
genes, cag11-12, cag16-17, and cag21-18, but in each case to dif-
ferent levels, ranging from 1 to 3 orders of magnitude (Figure 3).
Finally, deletion of the region upstream of cag25 reduced expres-
sion of the downstream genes cag25-23 to different levels and had
no effect on the expression of cag22. In some cases, these results
make clear predictions about operon structure. For example, our
original prediction of cag10-5 and cag25-22 as operons was incor-
rect, since in each case one or more downstream genes did not
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FIGURE 2 | Composite gene expression (mRNA copies/cell, normalized to 16S rRNA) for each gene on the cag PAI of H. pylori strains J166 (open

circles), J99 (closed circles), and 26695 (open triangles). Our data represents the average of duplicate reactions.

change appreciably in the promoter knockouts. Thus, cag10-5 con-
sists of at least two operons, cag10-9 and cag8-7, which also may
be organized into one or more transcriptional units. Similarly,
cag25-22 appears to have only cag25-24 on one transcriptional
unit, with cag22 and perhaps cag23 on separate transcripts. The
variable change we observed in cag PAI gene expression after
deletion of the predicted upstream promoter again suggests that
either the transcripts are being degraded or that there are addi-
tional promoters controlling expression of these genes. To identify
additional promoters that may contribute to the more complex
expression pattern we observed here, we undertook a non-biased
promoter-trap approach.

NON-BIASED PROMOTER-TRAP IDENTIFIES ADDITIONAL cag PAI
PROMOTERS
We next employed a functional identification of cag PAI promoters
strategy based on the ability of short cloned regions of the cag PAI
to direct expression of a heterologous promoter. We used a tnpR
transcriptional reporter developed for Vibrio cholerae (Camilli
et al., 1994) that had been previously modified to function in H.
pylori (Camilli et al., 1994; Castillo et al., 2008b). We constructed
libraries of putative cag PAI promoters using both H. pylori strains
J166 and G27 as template for PCR; we cloned the Sau3A-digested
fragments upstream of the promoterless tnpR gene in pCT-tnpR.
If the cloned cag PAI region contained a promoter, we predicted
it would direct tnpR expression and the creation of the TnpR pro-
tein. TnpR in turn would catalyze the removal of an unlinked
kanamycin resistance (KmR) cassette and convert the H. pylori
reporter strain ACHP17 from KmR to KmS.

For promoter identification, H. pylori strain ACHP17 bear-
ing the res1-kan-res1 marker was transformed with pcat-T-
caglibmG27-tnpR or pcat-T-caglibJ166-tnpR to CmR, followed
by screening for retention or loss of the res1-kan-res1 cassette.

We screened 1060 H. pylori pcat-T-caglibmG27-tnpR transfor-
mants and 1274 H. pylori pcat-T-caglibmJ166-tnpR transformants,
representing 100 and 71% coverage, respectively. This analysis
identified 34 and 27 transformants, respectively, that were sen-
sitive to kanamycin and thus had expressed tnpR. After remov-
ing redundant clones, we determined that the DNA sequences
upstream of tnpR in these KmS transformants correspond to 14
unique loci (Table 1). Eleven and four promoters were identified
through the screening of our pcat-T-caglibmG27-tnpR and pcat-
T-caglibmJ166-tnpR libraries, respectively; one promoter, PIII
(Table 1; Figure 4), was isolated from both libraries.

PROMOTER-TRAP-IDENTIFIED PROMOTERS
We next mapped our promoter-trap-identified promoters onto
the cag PAI map and compared these promoters to those found
in by our initial qRT-PCR analysis and also to the work of others.
Several of the promoter-trap-identified promoters were located in
cag PAI regions that were either predicted by the qRT-PCR or pro-
moter deletion analyses (Table 1). These include the promoters
upstream of cag10 (PVIII), cag11 (PII), cag 21 (PI), and cag25 (PV;
Figures 3 and 4; Table 1). The promoter-trap approach also iden-
tified several possible promoters that were located within operons
that might account for the variable gene expression observed after
deleting the main promoter (Figures 3 and 4). These include PIV,
PX, and PXIII that are located in genomic positions to suggest
they contribute to the expression of cag4, cag8-7, and cag23-22
(Figures 3 and 4).

The other putative promoters identified in our promoter-trap
study are either consistent with cag PAI transcripts predicted by
other groups, or as of yet, unique. We identified a promoter that is
upstream of cag26 (PXI) and one that is within, and in the same
direction as, cag26 (PXIV). The promoter upstream of cag26 was
identified in work done by Spohn et al. (1997) and more recently
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FIGURE 3 | Change in cag PAI gene expression (log 10 change mRNA)

between wild type H. pylori J166 and isogenic deletions of DNA

upstream of the translational start codon in cag1 (416 bp, top left),

cag10 (498 bp, top right), cag11 (498 bp, middle left), cag16 (532 bp,

middle right), cag21 (615 bp, bottom left), and cag25 (706 bp, bottom

right). Filled arrows indicate direction of transcription and open arrows
indicate putative operons.

by Sharma et al. (2010) as a promoter that drives expression of
cag26 (Figure 4; Spohn et al., 1997; Sharma et al., 2010). We also
identified a unique putative promoter (PVI) that overlaps cag3
and the adjacent upstream region and is in the correct direction
to promote expression of a polycistronic mRNA including cag3
and cag4 (Figure 4). Two of our putative promoters were located
within cag7, one in the same direction (PVII) and one antisense
(PIX) to cag7 (Figure 4). We hypothesize the promoter located
within cag7 contributes to expression of cag6-5 and the promoter
that is antisense to cag7 may direct expression of a regulatory
sRNA. Neither of these promoters has been identified by other
studies. Finally, the last two putative promoters we identified, PIII
and PXII, were within and antisense to cag23 and in the 3′ end
of cag18 and may direct expression of sRNAs that are antisense to
cag23 and cag17, respectively. These promoters are also unique to
this study.

Although our transcription, promoter deletion and promoter-
trap analyses do not completely overlap, they show reasonable
agreement in predicting transcripts and operon structure and
are generally consistent with operon structure predicted by oth-
ers (Table 1, discussion). Taken together our data suggests the
existence of at least 20 cag PAI transcripts (Figure 4).

PIII AND PXII DIRECT EXPRESSION OF ANTISENSE TRANSCRIPTS
To determine if the promoters PIII, PIX, and PXII direct expres-
sion of transcripts that are antisense to cag23, cag7, and cag17,
respectively, we carried out additional RT-PCR reactions on RNA
isolated from H. pylori strain G27. The oligonucleotides (PIIIR,
PIXR, and PXIIR) used in the reverse-transcription reactions were
located ∼100–150 nt downstream of PIII, PIX, and PXII and were
antisense to the putative transcripts. For the subsequent PCR
reactions in which reverse-transcriptase had been inactivated, the
sense oligonucleotides, PIIIF, PIXF, and PXII were added. Ampli-
cons were detected downstream of PIII and PXII in the RT-PCR
reactions and were absent in the corresponding polymerase only
controls, suggesting that these promoters do in fact direct expres-
sion of transcripts (Figure 5). We did not detect a transcript
downstream of PIX in our experiments; while it is possible that
PIX is not a promoter, it is more likely that the transcript is reg-
ulated or is in very low abundance. The promoter-trap system by
which PIX was identified was designed to capture low abundant
and transient expression events.

DISCUSSION
In this study we used transcript profiling coupled with puta-
tive promoter deletion and a non-biased promoter-trap system
to analyze expression of cag PAI genes and their organization into
transcriptional units across several H. pylori strains. We found that
cag PAI gene expression varies by nearly five orders of magnitude
across the cag PAI, and that expression of cag PAI genes is similar
across strains 26695, J99, and J166. Based on transcript profiling
of cag PAI ORFs and intergenic regions, we initially placed cag
PAI genes into six polycistrons and four monocistrons. However,
subsequent promoter deletions coupled with transcript profiling
and promoter-trap promoter identification studies suggested cag
PAI operon structure was much more complex. Our data suggests
that there are at least 11 operons: cag1-4, cag3-4, cag10-9, cag8-
7, cag6-5, cag11-12, cag16-17, cag19-18, cag21-20, cag23-22, and
cag25-24, as well as five monocistronic genes (cag4, cag13, cag14,
cag15, cag26). Additionally, the location of four of our promoter-
trap-identified promoters suggests they direct expression of, in
one case, a truncated version of cag26 and in the other three, tran-
scripts that are antisense to cag7, cag17, and cag23. Using RT-PCR
we verified the presence of transcripts that are antisense to cag17
and cag23.

CONSERVATION OF cag PAI GENE EXPRESSION AMONG H. PYLORI
STRAINS
Our transcript profiling of cag PAI ORFs and intergenic regions
of three H. pylori strains, 26695, J99, and J166, suggested that
cag PAI expression is generally conserved among strains. There
were some genes, however, whose expression showed appreciable
differences across strains. Potential reasons for these differences
may be attributed to one or a combination of the following: (1)
difficulty in accurate quantitation of low abundance transcripts,
(2) differential stability of the transcripts, and (3) differential
strength of the promoters. We suspect that the differences in cag15
expression between strains may be due to its very low expres-
sion in vitro (Joyce et al., 2001). The reduced expression of cag12,
cag13, and cag19 in H. pylori strain 26695 compared to that of
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Table 1 | Chromosomal location of putative cag PAI promoters.

Putative promoter

(length; nt) ± strand

Cag PAI library,

genome source

G27 genome

position

26695 genome

position

Sharma et al. (2010)a,

transcription start site (TSS)

Joyce et al.

(2001)b

This studyc

I (244)− G27 542756-542513 574379-574136 TSS575200− Y Y (P)

II (38)+ G27 530249-530286 563751-563788 TSS564140+ Y Y (P)

TSS564347+
III (91)+ G27 and J166 544137-544227 575760-575850 None N N

IV (104)+ G27 515270-515371 548689-548790 TSS549427+ N Y (T)

V (71)− G27 547735-547665 579357-579287 TSS579114− Y (P)

VI (314)+ G27 514575-514888 547996-548307 None N N

VII (234)− G27 525984-525661 558996-558763 None N N

VIII (635)− G27 530667-530918 564409-563785 TSS564078− Y Y (P)

TSS564329−
IX (132)+ G27 521375-521506 554800-554931 None N N

X (269)− G27 528142-527874 561644-561372 TSS561595− N Y (T)

XI (419)+ G27 547665-548083 579287-579744 TSS579817+ N N

XII (54)− J166 539314-539259 570937-570882 None N N

XIII (68)− J166 546797-546736 578420-578359 None N Y (T)

XIV (70)+ J166 548866-548927 580539-580604 None ND N

aTranscription start sites (TSS) predicted by Sharma et al. (2010) that are downstream of, or within, the promoter-trap-identified promoter.The 26695 genomic position

and DNA strand (+ or −) of theTSS are indicated. None, noTSS near the functionally identified promoter. bY, promoter was previously identified by Joyce et al. (2001).

N, promoter was not previously identified by Joyce et al. (2001). cP, the promoter-trap-identified promoter was within the genomic region deleted in our promoter

deletion analysis; T, it is in a location that is consistent with the changes we observe in cag gene expression; N, it was not within a genomic region deleted in our

promoter deletion analysis or indicated by changes in cag PAI gene expression.

FIGURE 4 | Promoter-trap-identified promoters and proposed transcript

map on the H. pylori cag PAI. Each gene on the cag PAI is represented by a
thick black arrow, oriented in the direction of transcription, whose length and
spacing are approximately proportional to the annotated gene length and
intergenic spacing. DNA segments represented in the promoter library that
contained functional promoters (numbered I–XIV) to correspond withTable 1

and sequences inTable A5 in Appendix) are shown as small gray flags

pointing in the direction they direct transcription and positioned in their cag
PAI location. Thin black arrows represent 17 of the 20 proposed transcripts
and gray arrowheads represent the three potential antisense transcript start
points. All arrows point in the direction of transcription. Transcription start
sites identified in Sharma et al. (2010) are indicated by an asterisk (∗); black
asterisks indicate the transcription start site is on the plus strand and gray
asterisks indicate the minus strand.

J99 and J166 is more likely attributed to transcript instability
and differences in promoter strength. Our expression findings
should allow researchers to more confidently apply our and other
cag PAI expression data to unique clinically isolated H. pylori
strains.

DIFFERENT STUDIES PREDICT SIMILAR cag PAI OPERON STRUCTURE
Our findings are generally consistent with previous predictions
of cag PAI promoters, expression and operon structure. First, our
promoter-trap and promoter deletion studies identified four of
the five cag PAI promoters, upstream of cag1, cag10, cag21, and
cag25 (not cag15), that were predicted by Joyce et al. (2001) in

the H. pylori Alston strain. However our transcript profiling of
cag PAI ORFs and intergenic regions did predict the promoter
upstream of the cag15 (Figure 1). The failure of our promoter-trap
to identify the promoter upstream of cag15 was not surpris-
ing, as Joyce et al. (2001) found that this promoter was only
induced in co-culture with epithelial cells or in mice. A sim-
ilar profile of promoters between the clinically isolated Alston
strain and 26695, J99, J166, and G27 again supports conserva-
tion of cag PAI operon structure and expression between H. pylori
strains.

Our promoter analyses also identified promoters upstream of
cag25 (cagB) and cag26 (cagA) that were in positions similar to
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FIGURE 5 | Reverse-transcriptase polymerase chain reaction (RT-PCR)

identifies transcripts downstream of promoter-trap-identified

promoters PIII and PXII. RT-PCR was carried out for the three promoters
that potentially directed expression of antisense transcripts, PIII, PIX, and
PXII. Three reactions were included for each promoter, a DNA
template + DNA polymerase (DNA), an RNA template + DNA polymerase
(T) and an RNA template + reverse-transcriptase and DNA polymerase (RT).
Amplicons of the correct size were detected for PIII and PXII in the RT
reactions but not in the T reactions. An amplicon was not detected for PIX
in the RT or T reactions. This supports expression of transcripts
downstream of PIII and PXII, but not PIX. The ∗ indicates the 100-bp marker
of the 100-bp ladder.

those previously reported by Spohn et al. (1997) for H. pylori strain
G27, and by Sharma et al. (2010) for H. pylori strain 26695. Spohn
et al. (1997) identified two transcription start points upstream of
cag25 that are ∼200 bp upstream of what we and Sharma et al.
(2010) found for cag25. All three studies predicted the same start
point that is upstream of cag26, but we found an additional pro-
moter that is located within cag26. The significance of multiple
start sites upstream of cag25 and within cag26 are,as of yet,unclear.
However, a recent study suggests discreet roles for the amino- and
carboxy-terminus of Cag26 (CagA) and it is interesting to spec-
ulate this promoter could separate Cag26 function by creating a
truncated protein (Pelz et al., 2011).

Our transcript profiles obtained from our work were also con-
sistent with many of the 14 cag PAI operons identified in the H.
pylori genome-wide transcript analysis conducted by Sharma et al.
(2010). In common, we predicted five polycistrons: cag1-4, cag6-
5, cag8-7, cag11-12, and cag16-17, and the three monocistrons:
cag4, cag13, and cag26. Our promoter locations are consistent with
their transcripts that start at cag10, cag14, and cag25, but our data
did not predict that the transcripts extended to cag7, cag13, and
cag18, respectively. We also did not find functional promoters
upstream of cag17 and cag18 that would suggest they were also
expressed as monocistrons. However, in addition to the truncated
cag26 transcript mentioned above, we also identified the follow-
ing set of transcripts that were not identified by Sharma et al.
(2010), including the polycistrons cag3-4, cag21-20, cag19-18 and
three transcripts that were antisense to cag7, cag17, and cag23.
A transcript for cag15 was also not identified by Sharma et al.
(2010), likely due to its very low abundance in vitro (Joyce et al.,
2001). We speculate that these discrepancies are due to potential
issues with transcript abundance and stability here and in Sharma
et al. (2010) and incomplete screening of our cag PAI promoter
libraries.

INCOMPLETE SCREENING OF cag PAI PROMOTER LIBRARIES
Outstanding observations in our screening of the pcat-T-
caglibJ166-tnpR and pcat-T-caglibG27-tnpR libraries in H. pylori
ACHP17 were that we only identified four promoters grouped at
the 3′-end of the cag PAI from pcat-T-caglibJ166-tnpR and that
we did not identify promoters from the central region of the cag
PAI from pcat-T-caglibG27-tnpR. We hypothesize that this was
due to a combination of two things: (1) incomplete represen-
tation of the cag PAI region in both of our libraries and then
(2) restriction modification system differences that were appar-
ent in transforming our G27 based reporter strain ACHP17 with
J166 cag PAI DNA. Although our library screening calculations
(see Materials and Methods) suggested that we had screened
100% of the H. pylori G27 cag PAI and 71% of the H. pylori
J166 cag PAI, our control experiments with 10 or 30 randomly
selected H. pylori transformants, respectively, suggested that our
libraries were biased; the H. pylori caglibG27-tnpR library was
biased toward the left and right ends of the cag PAI and the
H. pylori caglibJ166 library was biased toward the right side of
the cag PAI. Nonetheless, this methodology was very effective
at identifying promoters in positions where we observed slight
differences in expression of adjacent genes. Specific amplifica-
tion of cag PAI regions (e.g., cag12-17 ) that were underrepre-
sented in our cag PAI libraries will ensure better representation
of the G27 cag PAI region in our library for future in vivo
analyses.

COMPARING cag PAI EXPRESSION IN VITRO AND IN VIVO
This and previous studies have contributed to building a more
complete expression profile of the clinically important cag PAI of
H. pylori grown in vitro (Spohn et al., 1997; Joyce et al., 2001;
Sharma et al., 2010). The promoters identified by these in vitro
studies can now be analyzed for their potential regulation during
H. pylori infection of a host. It is clear in at least two cases that
in vitro predicted promoters, those upstream of cag15 and cag21,
are expressed at higher levels when co-cultured with an epithelial
cell monolayer and in mice (Joyce et al., 2001). While we antic-
ipate that a subset of our in vitro identified promoters will be
regulated in vivo and may contribute to virulence, other studies
suggest that there is a set of promoters or transcripts uniquely
expressed in vivo (Scott et al., 2007; Castillo et al., 2008b); analysis
of H. pylori transcripts isolated from gerbil stomachs predicted
that cag25 is expressed as a monocistron in vivo (Scott et al., 2007)
and a promoter-trap study identified a unique promoter, Pivi66,
within cag7 (Castillo et al., 2008b). Analysis of our H. pylori cat-
T-caglibmG27-tnpR library in rodents has the potential to identify
additional in vivo induced cag PAI promoters.
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APPENDIX

Table A1 | Open reading frame primer pairs selected for real time RT-PCR.

Primer Straina Forward primer (5′-3′) Reverse primer (5′-3′)

Cag1 U GCTATGGGGATTGTTGGGATAA GCTTCAGTTGGTTCGTTGGTAA

Cag2 A TGTAAGGGCGTTTTACGAGAA TTTGGGATATTTAGGATTTTGTGAA

Cag2 B ACTGTAAGGGCGTTTTACGAGAA GGGCGTGTTTTCACAATGTAA

Cag2 C GAATTTGTCCAATAGGGGATTTTTA AACAGAGAGATTGCCTTTTTTTGTA

Cag3 A, C GACACCTTGAATGTGAATGACAAA GTTGTAATACCCATTGACTTGCTCTAA

Cag3 B AAACAAGAGCGATGGGAACTTA TAGGGGCGAACACACTTCA

Cag4 A, B GCGAGAAAAATCCCTTAAAGACA GTGTTTCATTCCCCCATTGTAA

Cag4 C CCATCACTTTCAAGCAATACGA GAGCGTTTTAGAATAGGTAGGGTAGAA

Cag5 A, C CGGACTAGAGATATAGGAGCGAATAA GCCACTGCCTGCCTACAA

Cag5 B TAGTAGGAGCAATCAAGCCAATAAA TAGGGACATAGGAGCGAATAAAAA

virB11 U CCTCTAAGGCATGCTACTGAAGAA TCGCTAAATTGCTGCTCAAAA

Cag6 U GAAAGCACGTATCAAAAATGAACTAA CAGATAAGAAGCCACTAGGTCTGAA

Cag7 U AAGTCAGAAGAAATAACTGACGACTCTAA TCACGATAAGAACAGCGACTACAA

Cag8 U AGCAATGAACAGATTATCAACAAAGA GTAGTAGTTGTAGTTTCTAGGCACGG

Cag9 U TCTCATTGTTCCTAATTGGTTGAAA CTTGTGGCTAATGGTGTGCTAA

Cag10 U AACGAAGAAGTCTTGATTGATGAAA CTGTGTATCGATCAATGCCATAA

Cag11 U CACCTAGCAACTCACAGAGCAA CCCACCCATACACAATCCTAA

Cag12 A, C TGTTTTAATCGGTGCGACAA GAGCGTAATCTTTTTAGAATGGTGAA

Cag12 B CAAACTCAAAGACACACCATTCA TTGTTGTTGGGATTATCATTGTAGTTA

Cag13 U AATAACATGCGAAAACTCTTCTCAA CTCCATAGTCTCACTCTCAAGCAA

Cag14 U ACGCATTAGAGATCCGAACAA CCATTCTTCAACACTTCTGCCATAA

Cag15 U CAGGGGTGATTTTAGTTTATCCAA TATGCTGAGAGAAACGAGTAGCAA

Cag16 U GAAGAAGTGGCTGCAAAAGAA CATAGGCATAAGGGTTAGGAAGAA

Cag17 A, C TCAAAGACATGACGACGAAGAA GCTCTTGCCCTATCATTTCGTAA

Cag17 B TCGCTCTTTATTCTTTGGTTGTTTA TGCTCTACTCTCGCCCTATCA

Cag18 U CCAACCAACAAGTGCTCAAAAA TCAATAACGCTAAATCTCCTCTCAA

Cag19 A, C GACTTTTTGTGGTTTGTCTCTGAA CGCCAAGCAAGATGTCTGAA

Cag19 B GAATGGCTTTTTCTTTGGCA TTTTTGTGGCTTGTCCTTGAA

Cag20 U GCTGCTAACCAACAATACAACCAA CTAAGATACCGCTCATCATTTCAA

Cag21 U GGGGCTTGTTTCTAGAGATCAACTAA GAAAGGATTGTTTGGACCGTAA

Cag22 A CTTGCCCATCGTTTATTTCCTTA ACCTTACCGCTCTTTATGATTTTTCTA

Cag22 B, C TTTATGTTTATGCTTACTTCATGCTAGAA CGCTCATATCAATCTGAATCCAA

Cag23 U GCTAGTCATAGAGCAAGAGGTTCAAAA CACAATAACAATCGCTACAATCAAA

Cag24 U GTATGGGTTAGCAAATGACGATAAA TTAAGGACTCTATTGACAATCACGAA

Cag25 U CAAGAATCACTGACAGCTACAAGAA ATACCGCCTGCCACCGCTAA

Cag26 U ATAAAGCGATCAAAAATCCTACCAA GGGGGTTGTATGATATTTTCCATAA

aStrain specificity: A-26695, B-J99, C-J166, U-universal.
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Table A2 | Intergenic primer pairs selected for real time RT-PCR.

Primer paira Strainb Forward primer (5′-3′) Reverse primer (5′-3′)

Cag1/2 A CGTTACCAACGAACCAACTGA TCATTGAGCCATTTATTTCTCGTAA

Cag2/3 A GTGTAAATGGACTGCTAGTGTGGA AGCGATACAGCGGTTGCTA

Cag2/3 B ATGTCCCAAATGCAACAGATTAA CGGCTTCACTTATTTCTTTAGCATAA

Cag2/3 C TTCACTCCCAATGAGTTTTTTACA CGGCTTCACTTATTTCTTTAGCATA

Cag3/4 A GTGTGGTTATGAGAGCGTTCAA ATTTTTCTCGCCTGTTGTTCAA

Cag3/4 B AACTGCTTTCACCACTAAGGGA GGATTTTTCTCGCTTGTTGTTCA

Cag3/4 C TGTGTGGTTATGAGAGCGTTCA GGTGAGATTTTCGTATTGCTTGA

Cag4/5 A TTCTCAAGTGCGATATAACGAGTAGA TCTTTAGTGCCTGTGGGTTCAA

Cag4/5 B CTAAGAGCGATGGTTGGCAA AAAATATGATCTTTGTCTTGCATGAA

Cag4/5 C GGGGAATGAAACACAACCCTAA GAAGGCAAAAAGCCTATTCCAA

Cag5/virB1 1 U ACCCTTTCTTTCAGCCCATCTATAA TGTCCATATCAACCACCACAA

virB11/Cag 6 U AGGATTTAATGCCGCTTCTTTTAA CAATGAGATGGTCCAAGATATAGGGA

Cag6/7 U GTTCCATTGCTGTTTCCTTTCA AATCACCACAAGCCCCAAA

Cag7/8 A, B GGTGAATCTTGTTGGGCTTTTTTA AGGATTGAGATGGTATAGAGTTAATGAAA

Cag7/8 C TTCAAGTTTATCGTTTTCTTCATTCA ATGGTATAGAGTTAATGAAATTGCAGAA

Cag8/9 U AATAACCAAGACAGAAACAGCCAA GATGGTAGCAGAATGGATAGAGAAA

Cag9/10 U AATAGCTTTCAACCAATTAGGAACAA AACTCTTCTCAAGAAAATCTTATCATCAA

Cag10/11 U CCCAACCAAATTTTCATCAATCA GTTTGAAGCAATCCGCTACTTACA

Cag11/12 A, B AAACAAGGCGGTGCAGAA GGTGTGTCTTTGAGTTTGTCATTTAA

Cag11/12 C GCTTCATAGGTATGGGCTATTTGA TGTTTCACCACTTTTTTCGCATA

Cag12/13 U AAATCAGAAGTTTGCTCAGTGGTAA CGCTAATCTAAAAACCATTGAACAA

Cag13/14 U AGCGGTCATAATTCAAAGAGCAA CAACAAGGCAATAGATTACTAGCT GAA

Cag14/15 U ACCAATCGCAAACAAATCAAA GATATGGTGGTGGTTTTCCAA

Cag15/16 A, C AATACCAACAAGCCGCATACAA CTCCAAACGCAACCAATGA

Cag15/16 B AATACCAACAAGCCGCATACAA TGGATCAGATTAGGGATTATTGGAA

Cag16/17 U CGATCCTATGATGAGCGACAA GATAGCGTTTAAGCCCCCATAA

Cag17/18 U GCTCTAAATCTGAACTGCCCAATA GAACAAAGTAAGCGACAATACCTACA

Cag18/19 U GGCTAGTGGTTGAAAAAATCTCATCTA AAAGAGAAACGACAGCAAGAAACA

Cag19/20 U ATAACGCCATTAGCCCCTTTTAA GGGTGCAAACTAAAATAATCGTGAA

Cag20/21 A, B GATTAGTAAATCCCACAACAATAGGAATAA TTTTTACCACCGATCTTAGGGTATTAA

Cag20/21 C GCGGTCATTTGCGGATTAGTA GGCGATTACGGTCCAAACA

Cag21/22 U AGCGTTAAACATGCCAATGATAA GATATGAGCGTTGAAGCTAAAAAGAA

Cag22/23 U TCACCTTCCATTTCTTCTTCTATGAA GTTTTAATTTGAGGGGCATTCCTA

Cag23/24 U CGCTTTTGAACCTCTTGCTCTA TCAGCACGACCAACAAACAA

Cag24/25 U CATACGAACTGAAAACAACGAGACTTA ATATTGGCGAGAGTGGAGGA

aOne primer was in the intergenic space and the other was sometimes located in an adjacent gene. bStrain specificity: A-26695, B-J99, C-J166, U-universal.
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Table A3 | Primer pairs used to construct promoter knockouts.

Primer pair Forward primer (5′-3′) Reverse primer (5′-3′)

Cag1-U TATGCGGCCGCCGCTTTCACTAACGCTTCCACTA GCACTGCAGGCGCAAGAATACAGCATTGGGC

Cag1-D AGTGGATCCATGGCTGACACAATCAATACAACTG CTGCTCGAGCTTCATCATCCACATTCTTGTTGAAG

Cag10-U ACACTCGAGTCCACTCACATCATAGCCATGCA ACACTGCAGCCTAGCAACTCACAGAGCAATGA

Cag10-D ACAGGATCCGCCCTTGATAGATTGGCTAAACTCA ACAGCGGCCGCCGACAAAAGCAAGCATGGCTGTA

Cag11-U ACAGCGGCCGCCGACAAAAGCAAGCATGGCTGTA ACAGGATCCGCCCTTGATAGATTGGCTAAACTCA

Cag11-D ACACTGCAGCCTAGCAACTCACAGAGCAATGA ACACTCGAGTCCACTCACATCATAGCCATGCA

Cag16-U AACCTCGAGGAGTCTTACTTGTGGGACACTC AACGGATCCATAGGCTGTTCAATATCAGCTCTATC

Cag16-D AACCTGCAGAGCTCATTGGTTGCGTTTGGAG AACGCGGCCGCTTCTCTCAAAGCGTTAGTGGCG

Cag21-U AACGCGGCCGCAACCTTATCACAGGAGATATGAACC AACGAGCTCTAGCATTGAGACTATCTATGAGACC

Cag21-D AACGGATCCGCTTGGTGTCTTATCATTGGCATG AACCTCGAGGATGTAATCAAGGTAAGTCAAATGCG

Cag25-U AGTGCGGCCGCCTTGTCTAAAGCCAAATTCATGCC AGTCTGCAGCCTTCCAATACAGCTTGATTGTCA

Cag25-D AGTGGATCCCGCACAAGAATCACTGACAGCTACAAGA AGTCTCGAGGAGAATAGTTGTTAGTAAGGATCAC

CAT-1a AACGGATCCGCGGACAACGAGTAAAAGAG AACCTGCAGGCAGGACGCACTACTCTCG

CAT-2b AACGGATCCGCGGACAACGAGTAAAAGAG AACGAGCTCGCAGGACGCACTACTCTCG

CAT-3c AACCTGCAGGCGGACAACGAGTAAAAGAG AACGGATCCGCAGGACGCACTACTCTCG

U, upstream arm; D, downstream arm.
a,b,cKnockouts were constructed with amplification of the CAT gene using primer pairs CAT-1 (cag1, cag10, cag25), CAT-2 (cag21), or CAT-3 (cag11, cag16), which

differed only in the 5′ restriction sites (underlined).

Table A4 | Primer pairs used to generate amplicons for cag PAI libraries.

Oligo upstream Sequence Oligo downstream Sequence

J166 J166

MWG268 cgctcaaacctgaaagatcaa MWG653 taggggcgaacacacttca

MWG607 ctaaagagaccaagaaagaggctaaa MWG18571 cactatggagacttgcggaaa

MWG406 ctaagagcgatggttggcaa MWG463 cctctaaggcatgctactgaagaa

MWG103 tggacaatcatatcaatcaaatcttta MWG1198 gtttgagcgatgaagagaagc

MWG988 acaagagggagctttttaatcaca MWG19145 tctcattgttcctaattggttgaaaa

MWG1008 aacgagctccatagaatctttgaaccaatctag aacga MWG028 tgcggttttgttttttggattagaa

MWG410 aatgtaagtagcggattgcttcaa MWG19155 acgcattagagatccgaacaa

MWG416 agcggtcataattcaaagagcaaa MWG657 tgctctactctcgccctatca

MWG063 cagcttcaattttgatacccaatc MWG475 gactttttgttgtttgtctctgaa

MWG476 cgccaagcaagatgtctgaa MWG436 gttttaatttgaggggcattccta

MWG18880 ctagcatgaagtaagcataaacataaactaa MWG17626 gctaatgacatccacttaaatccaaa

MWG734 aacctcgagaccttgagatacaagtcttttctgttg MWG807 gacagattttcaaagacagcttca

MWG17643 aacctcgaggctttactttatggtgagccataac MWG9165 ttagaataatcaacaaacatcacgccat

G27 G27

A-cag gcgagcggcgatgtgatctggc B-cag ggaacgccaccgttggttataaagac

C-cag gattggatcgtaatgcttcaaatcc MWG9165 ttagaataatcaacaaacatcacgccat

D-cag cctgtatctgtccctagctc MWG807 gacagattttcaaagacagcttca

F-cag ggactccattgttcctaatgg E-cag gatgatggggtgatccttactaacaac

Q-cag gacccgttagggaattataatc R-cag cctatcaataacaacataagcgag

O-cag cagagcagtcataattcaaagagc P-cag tgctctgctctcgccctatca

M-cag gtaaggtagcggattgcttcaaacaag N-cag cacgcattagagatccgaacaagc

L-cag gctttaagactctctttagcttc I-cag gatgggaaattgagcatgactg

J-cag gaagctaaagagagtcttaaagc K-cag gtaaagaaccgagtttggtaaac

G-cag ccttagcaccattcctgccataacc H-cag gaaggaagctcaatgagattgtc

Several additional oligonucleotide pairs were required to amplify the entire H. pylori G27 strain cag PAI region, due to poor or no amplicon presence in some PCR

reactions.
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Table A5 | Putative promoter sequences that direct expression of the reporter tnpR.

Promoter Length (nt) Sequence

I 244 GATCAAAAAAATCAAAACAAAAATAACGATTGAGTGGCGTTAATGCGCTAGAATAGTGCTAAAAATAAGAATAAAGGAATCAAAA

GTATGAAAACGAATTTTTATAAAATTAAATTACTATTTGCTTGGTGTCTTATCATTGGCATGTTTAACGCTCCGCTTAACGCTGACC

AAAACACTGATATAAAAGATATTAGTCCTGAAGATATGGCACTAAATAGCGTGGGGCTTGTTTCTAGAGATC

II 38 GATCGTTTGACAATTTTAAATTCTCCTGTGTATCGATC

III 91 GATCTGTTGCTTTATTGTCAAAAAGCCATTGAAATTCACCATTGGTTGATTTGCAAAAA GGCGCTAATCGCGCGACAAGCCCAT

TAGGATC

IV 104 GATCCCAATGCCCACACGCTTGATAAGGGAGCGTCAATTGATGAGAACAAGCTTTTT GAACAACAAAAACGCGCGTATTTCAA

CTACGCCAACGATGTGATC

V 71 GATCAGCTTGGGTTTGTTTCTGCTTGTTTTTAGGTTTCAACCTGAGACGATTAAAAAA TACATCAAAGATC

VI 314 GATCCTAAATATCCCAAATGCAATGGATTGATGAAAAGAAAAAAGAATTTCAAAAACAATGAGTTTTTTACAGCTGCATTACTT

ACCTTAAATGCAATGGAATTTTGTCTCTATATCAATTCTGAAAAAAAAGGAAACTAATGTTTAGAAAACTAGCAACCGCTGTATC

GCTCATAGGCTTACTAACCTCTAACACTCTTTATGCTAAAGAAATAAGTGAAGCCGATAAGGTCATTAAGGCCACTAAAGAAACT

AAAGAGACCAAGAAAGAAGTTAAACGACTCAAAAAAGAAGCTAAACAGCGCCAACAGATC

VII 234 GATCAAGAGATTATCAAAGGAAGCAAAAAAAAATACATTATTAGTGGCATTGTAGTCGCTGCTCTTATCGTGATTATTTTATTTTCT

AGAAGCATTTTTCACTACTTTATACCTTTGGAAGATAAAAGCTCTCGTTTTAGCAAAGACAGGAATCTTTATGTCAATGATGAAATC

CAAATAAGGCAAGAGTATAACCGATTGCTGAAAGAACGGAATGAAAAAGGCAATATGATC

VIII 635 GATCCATGATGCTCTGTTGTATCGTTCATGAAATTCCTTTCAAGAATTAAATTGAGAAATTGTTTTGATATTATACCATTCTCTCTCT

GAGTTGTGATTGTCTTATCTCTTTGAATTAGGCGCTTCTAAAATTTCATTACTGATTACGACTGCTTACTTATTGCTCTTACTTTTTG

AGTTGCATCGTGTTTCATCTTGCTTCTTGTTTGAAGCAATCCGCTACCTTACATTTATTATAAGGAATCTTTGTTCAACGCCTTATCC

AAAAAGGTTTTTATTAAAGGTTTTTTCAAATATATATTTTTACAGAAATTTTGCTATACTATAACTGAAATTGTTTTAAGGAGTTTTTG

ATGAAAAAATTTCTCAAGTATTTCTCAAGTTTTGCAACCAACAAACCAATAACTAAACAATAAAGCTGTCGCATGTTAGGGAAAA

AAAACGAGGAAGTCTTGATTGATGAAAATTTGGTTGGGGGTGTGATAGCCCTTGATAGATTGGCTAAACTCAATAAGGCCAATA

GGACTTTCAAAAGGGCTTTTTATCTCTCTATGGCGCTCAATGTCGCCGCTGTAACGAGTATTGTGATGATGATGCCTTTGAAGAA

AACGGATATATTTGTTTATGGCATTGATC

IX 132 GATCATAGTGCCGTTCATGTTCCATACATCTTTGGCTACAACCCCACTCACTATACCT GTGAGAGTGGCATCTACTTTAGAAGTCA-

GAGTGATTTCAATAGGGGTGTATTGCGCT AAAACAAATGTGGGATC

X 269 GATCTATGTTTAAAGGCTAGCCGCTTTATTCTTGTGTTACAATTACAAATATTTTTTAAGAGGAATTGTTGATGGGGCGGGCATTG

TTTAAAAAAATTGTTGGCTGTTTCTGTCTTGGTTATTTATTTTTATCTAGCGTAATAGAAGCAGCACCTGACATTAAAAATTTTAATC

GTGGTAGGGTGAAAGTGGTGAATAAGAAGATTGCTTATTTGGGAGATGAAAAACCTATTACGATTTGGACTTCATTAGACAATGTT

ACTGTGATC

XI 419 GATCTTTGATGTATTTTTTAATCGTCTCAGGTTGAAACCTAAAAACAAGCAGAAACAAACCCAAGCTGATCAGAGTGAGAATAAA

GCTCCATTTTAAGCAACTCCATAGACCACTAAAGAAACTTTTTTTGAAGCTGTCTTTGAAAATCTGTCCTATTGATTTGTTTTCCATG

TGAATCACAAACGCTTAATTGCAAATATATACTTTATGGTAAGCATGACACACAAACCAAACCATTTTTAGAACGCTTCATGCACTC

ACCTTGATTCCAACTATATTTAAGCATTGCATTTGATTTATTCTTGAAGGTTCATTTCTTATTTCTTTTCTTTGTTAAAATTCGTTCATT

TTAGCAAATTTTTGTTAATTGTGGGTAAAAATGTGAATCGTTCCTAGCCTTTAGACGCCTGCAACGATC

XII 54 GATCCCTAGAACAAAGTAAGCGGCAATACCTACAAGAAAGGCAATCAAGTAAGATC

XIII 68 GATCCAATCATTGAAAAAATCTTTGATGAAAAGGGTAAAGAAATGGGATTGAATGTAG AATTACGATC

XIV 70 GATCCTACTGGTGGGGATTGGTTGGATATTTTTCTCTCATTTATATTTGACAAAAAACA ATCTTCCGATC
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Table A6 | Key to cag PAI gene names.

26695 ORF Gene number Gene name T4SS homolog

HP0520 cag1 cagC

HP0521 cag2/hypothetical Hypothetical

HP0522 cag3 cagA

HP0523 cag4 cagy VirB1

HP0524 cag5 cagβ VirD4

HP0525 cagα VirB11

HP0526 cag6 cagZ

HP0527 cag7 cagY VirB10

HP0528 cag8 cagX VirB9

HP0529 cag9 cagV VirB6

HP0530 cag10 cagW VirB8

HP0531 cag11 cagU

HP0532 cag12 cagT VirB7

HP0533 Hypothetical Hypothetical Hypothetical

HP0534 cag13 cagS

HP0535 cag14 cagQ

HP0536 cag15 cagP

HP0537 cag16 cagM

HP0538 cag17 cagN

HP0539 cag18 cagL VirB5

HP0540 cag19 cagI

HP0541 cag20 cagH

HP0542 cag21 cagG

HP0543 cag22 cagF

HP0544 cag23 cagE VirB3/VirB4

HP0545 cag24 cagD

HP0546 cag25 cagC VirB2

HP0547 cag26 cagA
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