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MiR-155 regulates numerous aspects of innate and adaptive immune function.This miR is
induced in response toToll-like receptor ligands, cytokines, and microbial infection.We have
previously shown that miR-155 is induced in monocytes/macrophages infected with Fran-
cisella tularensis and suppresses expression of the inositol phosphatase SHIP to enhance
activation of the PI3K/Akt pathway, which in turn promotes favorable responses for the
host. Here we examined how miR-155 expression is regulated during infection. First, our
data demonstrate that miR-155 can be induced through soluble factors of bacterial origin
and not the host. Second, miR-155 induction is not a direct effect of infection and it requires
NF-κB signaling to up-regulate fos/jun transcription factors. Finally, we demonstrate that the
requirement for NF-κB-dependent de novo protein synthesis is globally shared by microbial
ligands and live bacteria. This study provides new insight into the complex regulation of
miR-155 during microbial infection.
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INTRODUCTION
MicroRNAs (miRs) are potent regulators of gene expression and
their dysregulation has been shown to play a critical role in numer-
ous pathogenic conditions (Bushati and Cohen, 2008; van Rooij
et al., 2008; Lee and Dutta, 2009; Jiang et al., 2010). Much of
the work regarding miR regulation and function has been done
in the context of cancer or developmental biology (Bushati and
Cohen, 2007); however, less is known about their role in bacter-
ial pathogenesis. Groups studying viral pathogenesis have already
embraced the notion that miRs regulate key host cellular processes
that influence immune response and microbial persistence (Henke
et al., 2008; Hou et al., 2009).

There are a select number of miRs identified to be respon-
sive to inflammatory stimuli and also to regulate different aspects
of the immune system (Taganov et al., 2006). One miR that
has been of great interest is miR-155, originating from the non-
protein-coding gene BIC (Eis et al., 2005), because this miR has
been shown to be induced by TLR ligands, interferon and pro-
inflammatory cytokines (O’Connell et al., 2007), and intracellular
bacteria (Cremer et al., 2009; Izar et al., 2012). Functionally this
miR is important for B-cell maturation (Thai et al., 2007; Vigorito
et al., 2007),T-cell functions (Rodriguez et al., 2007; Kohlhaas et al.,
2009), antigen presentation by dendritic cells (Rodriguez et al.,
2007), pro-inflammatory response (Cremer et al., 2009; O’Connell
et al., 2010), and oncogenesis (Costinean et al., 2006). Therefore,
understanding the regulation and function of miR-155 within the
context of microbial infections is of considerable interest.

We recently reported that miR-155 is induced by and regu-
lates host response to the intracellular Gram-negative bacterium
Francisella tularensis (Cremer et al., 2009), which is the causative
agent of the disease tularemia (Ellis et al., 2002; Santic et al., 2010).
There are different subspecies of F. tularensis with varying degrees
of virulence in humans. F. tularensis subspecies tularensis (F.t.) is
regarded as having the highest virulence in humans and exposure
to 10 colony forming units (CFUs) can be lethal if left untreated.
F. tularensis subspecies novicida (F.n.) rarely causes disease in
humans (Oyston et al., 2004) but has been a useful model for
studying tularemia in mice because it remains highly virulent in
that organism (Kieffer et al., 2003). Another benefit of studying F.n.
is to compare immune response to different subspecies (Butchar
et al., 2008), which has yielded new insight potentially accounting
for the high virulence of F.t. for example, miR-155 expression
is highly induced in human monocytes infected with F.n. but
minimally induced by the more virulent F.t. (Cremer et al., 2009).

In an earlier study we reported that miR-155 negatively
regulated the phosphatase SHIP, which limited Akt activation
(Parsa et al., 2006). In the context of Francisella infection we
found that Akt promoted NF-κB activity, the production of pro-
inflammatory cytokines (Rajaram et al., 2006), phagosome matu-
ration, inhibition of macrophage cell death (Rajaram et al., 2009),
and the survival of mice during in vivo challenge (Rajaram et al.,
2006). Thus miR-155 expression is beneficial to the host by pro-
moting the activation of Akt through the inhibition of SHIP.
MiR-155 was found to be induced through TLR2 and MyD88, and
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it required activation of NF-κB (Cremer et al., 2009). In studies
using other stimuli, pharmacologic inhibition of either NF-κB or
AP-1 resulted in marked reductions of miR-155 expression (Xiao
et al., 2009; Dai et al., 2011). However, mutation analysis of the NF-
κB and AP-1 sites within the BIC/miR-155 promoter showed that
alteration of the AP-1 site led to substantially greater reductions
in miR-155 than mutations in either or both of the NF-κB sites
(Yin et al., 2008a,b; Xiao et al., 2009). This suggests that, although
NF-κB may directly contribute to miR-155 induction by binding
its promoter, it also exerts a powerful indirect influence.

In the current study we sought to understand the precise means
through which miR-155 was induced during bacterial infection.
We report that miR-155 induction by various bacterial ligands and
live bacteria requires NF-κB-dependent host cell protein synthe-
sis and thus is not a direct product of TLR stimulation/infection.
We further demonstrate that the newly synthesized protein is not
a soluble autocrine/paracrine factor but rather the intracellular
transcription factor AP-1. To our knowledge this is the first report
of the dependence on NF-κB driven de novo protein synthesis for
miR-155 induction in response to microbial stimuli.

RESULTS
MiR-155 INDUCTION BY FRANCISELLA REQUIRES NEW HOST CELL
PROTEIN SYNTHESIS
To ascertain if miR-155 induction was a direct effect or an indirect
effect of infection with F.n. we made use of the eukaryotic pro-
tein synthesis inhibitor cycloheximide. Human peripheral blood
monocytes (PBM) were infected with F.n. at an MOI of 50 for 6 h
in the presence or absence of cycloheximide. We found that cyclo-
heximide significantly impaired miR-155 induction (Figure 1A),
which was somewhat surprising since the BIC promoter contains
an NF-κB site (Gatto et al., 2008; Yin et al., 2008b). To verify the
effectiveness of cycloheximide in blocking protein synthesis we
examined the mRNA and protein production of a direct response
gene, TNFα. As anticipated TNFα mRNA was induced equally
well in the presence or absence of cycloheximide (Figure 1B).
However, cycloheximide significantly reduced TNFα protein pro-
duction (Figure 1C). Of note, cell viability was minimally affected
by cycloheximide, as assessed by Trypan blue exclusion.

MiR-155 EXPRESSION CAN BE INDUCED THROUGH SOLUBLE FACTORS
The finding that miR-155 induction requires new host-protein
synthesis presents at least two possibilities: miR-155 may be
induced through a host autocrine/paracrine-acting factor, or
through an internal factor that mediates BIC/miR-155 transcrip-
tion. To gain further insight into the induction of miR-155 we
tested if soluble factors present during the course of infection
could mediate the induction of miR-155. For this experiment we
infected PBM with F.n. at an MOI of 50 for 24 h. RNA was col-
lected to assay miR-155 expression. Conditioned media was sterile
filtered to remove bacteria and then added to new PBM for a 24 h
period. The removal of bacteria from the conditioned media was
verified by plating filtered media on chocolate agar plates. MiR-
155 expression from directly infected cells or cells treated with
conditioned media was assayed by qRT-PCR (Figure 2A). Results
showed that the filtered, conditioned media is sufficient to mediate
partial induction of miR-155. Therefore, although direct contact
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FIGURE 1 | MiR-155 induction requires de novo host-protein synthesis.

(A) PBM were infected with F. novicida (FN ) at an MOI of 50 for 6 h in the
presence or absence of 2 μM cycloheximide (CHX), and then RNA was
isolated. “R” stands for resting/uninfected cells. Mature miR-155
expression was assayed by qRT-PCR and data expressed as relative
expression from triplicate samples. (B) TNFα mRNA was assayed from the
same samples as in (A). (C) Secreted TNFα was measured from the media
of the cells in (A) by ELISA. *Designates a p value < 0.05 by Students
t -test, while N.S. designates a p value > 0.05. These data are
representative of three independent experiments.

with Francisella may induce miR-155 (likely through TLR2), it is
not required.

We and others have previously reported that miR-155 induction
is NF-κB-dependent (Tili et al., 2007; Gatto et al., 2008; Cremer
et al., 2009). Having found that miR-155 can be induced through
conditioned media from infected cells, we tested whether the
induction of miR-155 through conditioned media also required
NF-κB. For this experiment we infected PBM at an MOI of 50
of F.n. for 24 h and then sterile filtered the conditioned media.
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FIGURE 2 | MiR-155 induction can be mediated indirectly though

secreted factors. (A) PBM were infected with FN at an MOI of 50 for 24 h.
Media from infected cells was sterile filtered to remove bacteria and RNA
was isolated from the cells (R and Fn). New PBM were cultured in the
conditioned media for 24 h (CM R and CM FN) followed by RNA isolation.
Mature miR-155 expression was assayed by qRT-PCR. (B) PBM were
infected for 24 h, then the media from the infected cells was sterile filtered
to generate conditioned media. New PBM were infected with F.n. at an
MOI of 50 for 6 h or treated with conditioned media for 6 h in the presence
of BAY-7085-11 (5 μM) or DMSO control. MiR-155 expression was assayed
by qRT-PCR. These data are representative of at least three independent
experiments. *Designates a p value < 0.05.

New PBM were infected directly with F.n. at an MOI of 50 for 6 h
or cultured in the conditioned media for 6 h. This was done in
the presence or absence of the IKK/NF-κB inhibitor BAY-11-7085.
These samples were then assayed for miR-155 expression by qRT-
PCR (Figure 2B). As in Figure 2A the conditioned media elicited a
similar induction of miR-155 to direct infection. Direct infection
and conditioned media both required NF-κB activation to induce
miR-155 expression.

TNFα AND IFNβ ARE NOT MAJOR MEDIATORS OF
FRANCISELLA-INDUCED miR-155 EXPRESSION
We first explored the possibility that miR-155 induction may
be mediated by a secreted factor given that TNFα, IFNβ, and
IFNγ have all been reported to induce miR-155 (O’Connell et al.,
2007). Macrophages have been shown to produce TNFα (Telep-
nev et al., 2003) and IFNβ (Henry et al., 2007) during Francisella

infection. Therefore, we assessed miR-155 induction in the pres-
ence or absence of neutralizing antibodies against both cytokines
to determine if either cytokine was responsible for miR-155 induc-
tion. PBM were infected at an MOI of 50 for 6 h with F.n. alone,
F.n. with TNFα neutralizing antibody, or F.n. with isotype con-
trol antibody. RNA was collected to assay miR-155 expression by
qRT-PCR. Neutralizing TNFα did not impair miR-155 induction
(Figure 3A). To examine the ability of the neutralizing antibody
to block TNFα an ELISA for TNFα was performed on the media
from Figure 3A. The neutralizing antibody impaired the ability of
TNFα to be recognized by ELISA, while the isotype control did
not (Figure 3B).

Next we examined the contribution of IFNβ to F.n. induced
miR-155 expression. In order for the neutralizing antibody against
IFNβ to be effective, media was pre-incubated with the neutraliz-
ing antibody for one hour. PBM were uninfected or infected with
F.n. at an MOI of 50 for 24 h, and then sterile filtered to remove
bacteria. New PBM then received the conditioned media (CM:R or
CM:Fn) or direct infection (R or Fn) for 6 h and were assayed for
miR-155 expression. Neutralization of IFNβ did not impair miR-
155 induction in PBM (Figure 3C). The effectiveness of the IFNβ

neutralizing antibody was shown by treating PBM with recombi-
nant IFNβ for 15 min cell lysates were probed for phosphorylated
STAT1, which is activated by IFNβ (Toshchakov et al., 2002). The
neutralizing antibody effectively blocked STAT1 phosphorylation
(Figure 3D).

Together the data show that while TNFα and IFNβ have the
ability to induce miR-155 (O’Connell et al., 2007), F.n.-induced
miR-155 expression does not require either cytokine in mediat-
ing the effect. We also tested the ability of recombinant TNFα

to induce miR-155 expression and find there is only a marginal
degree of miR-155 induction relative to the levels produced by
F.n. infected monocytes (data not shown). IFNβ has been shown
to be produced by murine macrophages (Henry et al., 2007) but
not by human monocytes. Recombinant IFNβ had minimal abil-
ity to induce miR-155 in primary human monocytes (data not
shown).

CYTOKINE RELEASE IS NOT REQUIRED FOR miR-155 INDUCTION
Although we excluded TNFα and IFNβ as the soluble secreted fac-
tors that induce miR-155 expression, other factors may be involved
and they are too numerous to test one-by-one. Hence, we used
the exocytosis inhibitor, Brefeldin A, which prevents secretion of
cytokines (Zhu et al., 1998). PBM were pre-treated with DMSO
vehicle control or Brefeldin A for 30 min, then infected with F.n. at
an MOI of 50 for 16 h. Samples were assayed for miR-155 expres-
sion by qRT-PCR and results showed that Brefeldin A did not
impair miR-155 induction (Figure 4A). We concurrently mea-
sured extra- and intra-cellular levels of TNFα and found that
Brefeldin A did effectively inhibit secretion (Figures 4B,C).

An alternative means to examine the contribution of host
cytokines in inducing miR-155 is to test the ability of con-
ditioned media from responsive versus non-responsive cells to
induce miR-155. It is known that the production of inflammatory
mediators in response to F.n. is TLR2/MyD88-dependent.
MyD88−/− macrophages do not produce pro-inflammatory
cytokines (Cole et al., 2007; Cremer et al., 2009) or induce
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FIGURE 3 | F. novicida induction miR-155 expression is not mediated by

TNFα or IFNβ. (A) PBM were treated with TNFα neutralizing antibody or
isotype control antibody, then infected with F.n. at an MOI of 50 for 6 h. RNA
was collected and assayed for miR-155 expression. (B) The media from the
samples in (A) was assayed for human TNFα by ELISA. (C) Conditioned media
(CM) was obtained as in Figures 2B. Conditioned media from monocytes
uninfected (CM:R) or infected (CM:Fn) with F.n. at an MOI of 50 was sterile
filtered and incubated with neutralizing antibody or isotype control antibody at

37˚C for 1 h. New PBM were then cultured in the conditioned media
conditions, uninfected (R), or direct infection (FN) for 6 h. RNA was collected
and miR-155 expression was assayed by qRT-PCR. (D) Effective neutralization
of IFNβ was demonstrated by pre-treating media with recombinant IFNβ

(500 U/ml) with or without neutralizing antibody or isotype control antibody.
Then PBM were cultured in media alone, IFNβ, IFNβ plus neutralizing
antibody, or IFNβ plus isotype control for 15 min. Cells were lysed and subject
to western blot for phosphorylated STAT1, followed by Actin re-probe.

miR-155 expression (Cremer et al., 2009). Bone marrow-derived
macrophages from wild-type and MyD88−/− mice were unin-
fected or infected with F.n. at an MOI of 50 for 24 h (Figure 4D).
The conditioned media was sterile filtered and used to stimulate
new wild-type macrophages. Wild-type macrophage infected with
F.n. (Bars 1, 2) or the conditioned media of wild-type macrophages
(Bars 3, 4) show a strong induction of miR-155 as expected. How-
ever, wild-type macrophages treated with the conditioned media
of infected MyD88−/− macrophages also showed strong induction
(Bars 5, 6), even though the MyD88−/− macrophages do not have
the ability to produce pro-inflammatory cytokines through TLR2
activation (Li et al., 2006; Cole et al., 2007). Finally as expected the
MyD88−/− macrophages did not respond to F.n. infection (Bars
7, 8). Therefore, induction of miR-155 can be separated from the
production of host inflammatory cytokines.

Although filtering the media removes bacteria, soluble bacterial
factors could be preserved and these may play a role in miR-155
induction. To test this we cultured F.n. in RPMI-1640 for 24 h at

a density of 3.5 × 108 bacteria/ml (comparable to MOI of 50 for
5 × 106 cells in 1 ml), and then sterile filtered the media. PBM
were isolated and then either directly infected with F.n. at an
MOI of 50 or cultured with the filtered bacterial media for 24 h
(Figure 4E). MiR-155 was highly induced following both treat-
ments. Thus we conclude that miR-155 expression can be induced
through filterable factors, yet they are of bacterial and not host
origin.

FOS AND JUN TRANSCRIPTION FACTORS ARE UP-REGULATED BY
NF-κB AND CONTROL miR-155 EXPRESSION
Our data suggest that miR-155 induction is mediated through
soluble bacterial factors and not host-produced factors. However,
there is still a requirement for new host-protein synthesis. Since
the newly produced protein is not a secreted cytokine, it is likely a
transcription factor. Fos and Jun transcription factors act at AP-1
sites (Karin et al., 1997). Their expression is induced by inflamma-
tory stimuli and they are transiently expressed (Hambleton et al.,
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FIGURE 4 | MiR-155 induction is not mediated through host cytokines,

but rather by soluble bacterial factors. (A) PBM were infected with F.n. at
an MOI of 50 for 16 h in the presence of Brefeldin A (BFA) or DMSO vehicle
control. RNA was isolated and mature miR-155 expression was assayed by
qRT-PCR. (B) Extracellular TNFα levels were measured by ELISA. (C)

Intracellular TNFα levels were measured by ELISA from the cell lysate. (D) WT
and MyD88−/− BMMs were infected for 24 h at an MOI of 50 and then sterile
filtered to remove bacteria to generate conditioned media (CM). RNA was
collected from the infected cells for qRT-PCR (Bars 1, 2, 7, 8). The conditioned
media was then placed on new wild-type BMM for 24 h and RNA was

subsequently collected for qRT-PCR (Bars 3, 4, 5, 6). These data are
representative of three independent experiments. *Designates a p value <

0.05. (E) F.n. was suspended in RPMI-1640 with 10% heat-inactivated fetal
bovine serum at a concentration of 3.5 × 108 bacteria/ml (comparable to
5 × 106 PBM infected at MOI 50 in 1 ml) and incubated at 37˚C for 24 h. The
media was sterile filtered to remove bacteria. PBM were directly infected
with F.n. at an MOI of 50 or treated with the filtered media that previously
contained F.n. for 16 h. RNA was isolated and miR-155 expression assayed by
qRT-PCR. These data are representative of three independent experiments.
*Designates a p value < 0.05.

1996; Hao and Baltimore, 2009). A detailed study of the BIC/miR-
155 promoter showed that there are AP-1, NF-κB, and Ets sites but
only the AP-1 site is critical for BIC/miR-155 transcription in B
cells (Yin et al., 2008b). Fos and Jun can be controlled by NF-κB
(Anest et al., 2004) and/or through MAPK (Yin et al., 2008b).

To test if Fos and Jun were responsive to infection, PBM were
infected with F.n. at an MOI of 50 for 4 h in the presence or absence
of the NF-κB inhibitor (BAY-11-7085). C-Fos (Figure 5A) and c-
Jun (Figure 5B) were almost undetectable by Western blot under
resting conditions, yet both were strongly up-regulated by infec-
tion. Additionally, their up-regulation was NF-κB-dependent.
Thus this accounts for the dependence of miR-155 induction on
new host-protein synthesis and indirect NF-κB activity. We next
examined AP-1 activity by a luciferase reporter. Macrophages were
transiently transfected with the reporter and infected with F.n. at
an MOI of 50 for 1, 4, 8, or 24 h (Figure 5C). The pattern of
AP-1 activity matched that of miR-155 induction over the same
time course (Cremer et al., 2009). Lastly we confirmed that AP-1
activity had a dependence on NF-κB. Macrophages expressing the

AP-1 reporter were pre-treated with vehicle control, IKK/NF-κB
inhibitor (BAY-11-7085), or ERK inhibitor (U0) and then infected
with F.n. at an MOI of 50 for 8 h. Inhibition of NF-κB signifi-
cantly impaired AP-1 activity, and inhibition of ERK disrupted
AP-1 activity as expected (Figure 5D). Together the data pro-
vide evidence that NF-κB controls AP-1, which is responsible for
BIC/miR-155 transcription.

FOS EXPRESSION IS REQUIRED FOR miR-155 INDUCTION
To directly test the role of Fos/Jun transcription factors as media-
tors of miR-155 induction during F.n. infection we used siRNA to
knock down Fos expression. Macrophages were transfected with
siRNA control or siRNA against c-Fos. We had found that Fos
and Jun were expressed at very low to undetectable levels basally
and induced by F.n. infection. Thus we transfected cells with the
siRNA and 30 min post-transfection infected them with F.n. at an
MOI of 50 for 4 h. The siRNA was highly effective at knocking
down induced c-Fos expression (Figure 6A). We next assayed
miR-155 expression in macrophages that had been infected with
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FIGURE 5 | Fos and Jun expression is highly up-regulated by infection in

an NF-κB-dependent mechanism to control AP-1 activity. (A) PBM were
pre-treated with DMSO or BAY-11-7085 (5 μM; designated as BAY in the
figure) for 30 min then infected with F.n. at an MOI of 50 for 4 h. Cells were
lysed and subject to western blotting for c-Fos, followed by actin re-probe. (B)

Protein-matched lysates were probed for c-Jun and re-probed with actin
antibody. (C) RAW264.7 macrophages were transfected with an AP-1
luciferase reporter. 14 h post-transfection cells were uninfected or infected

with F.n. at an MOI of 50 for 1, 4, 8, or 24 h. Cells were lysed and luciferase
activity was measured by a luminometer in triplicate. Data are represented as
% increase over uninfected control. (D) RAW264.7 macrophages were
transfected with the AP-1 reporter as in (C). Fourteen hours post-transfection
cells were pre-treated with DMSO vehicle control, BAY-11-7085, or U0126
then infected for 8 h. Data are represented as % increase over uninfected
samples. These data are representative of three independent experiments.
*Designates a p value < 0.05.

F.n. at an MOI of 50 for 16 h (Figure 6B). Macrophages trans-
fected with control siRNA displayed a robust induction of miR-
155 as expected, whereas in cells where c-Fos had been knocked
down miR-155 expression was significantly reduced. Thus, c-Fos
is essential for mediating miR-155 induction in response to F.n.

NF-κB-DEPENDENT DE NOVO PROTEIN SYNTHESIS IS GLOBALLY
REQUIRED FOR miR-155 INDUCTION IN RESPONSE TO MICROBIAL
STIMULI
Next, to determine whether the dependence on de novo protein
synthesis for miR-155 induction was common to other innate
immune stimuli, we tested the responses of monocytes to two
TLR agonists and two additional pathogens. Monocytes were incu-
bated with LPS (TLR4), R848 (TLR7/8), B. cenocepacia (B.c.), or
M. smegmatis (M.s.). M.s. has been shown to up-regulate miR-
155 expression and decrease the expression of the downstream
target SHIP in human macrophages (Rajaram et al., 2011). As
shown in Figure 7, all stimuli led to significant induction of
miR-155 expression, and a concomitant reduction in SHIP expres-
sion, as measured by real-time RT-PCR. This suggests a common
mechanism of induction,and is in line with a central role of NF-κB.

To test directly the role of NF-κB, we treated or infected mono-
cytes as above, but this time with or without pretreatment with the

300 *Control    c-Fos siRNA
BA

150

200

250

ge
 (m

iR
-1

55
)

R
F

R     Fn     R     Fn

IB: c-Fos

0

50

100

Fo
ld

 C
ha

ng Fnc os

IB: Actin

0
Ctrl siRNA c-Fos siRNA

FIGURE 6 | MiR-155 induction is dependent upon c-Fos. (A) RAW 264.7
macrophages were transfected with 4.0 μM siRNA control or siRNA against
c-Fos. Thirty minutes post-transfection cells were left uninfected or infected
with F.n. at an MOI of 50 for 4 h. Cells were then lysed and subject to
western blotting for c-Fos. An antibody against Actin was used to re-probe
the blots to ensure equal loading. (B) RAW 264.7 macrophages were
transfected as done in part A and infected for 16 h. RNA was collected and
miR-155 expression was assayed by qRT-PCR. These data are
representative of three independent experiments. *Designates a p value
< 0.05.

NF-κB inhibitor Bay-11-7085. The inhibitor reduced basal miR-
155 and prevented its induction following treatment/infection
(Figure 8).
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(designated as Bc in the figure) at MOI 5, or M. smegmatis (designated as
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data are representative of six independent experiments. *Designates a p
value < 0.05.

800

1000

1200

ir-
15

5

800

1000

1200

ir-
15

5

1200
1400
1600
1800
2000

ir-
15

5
A C

0

200

400

600

R
C

N
 fo

r m

0

200

400

600

R
C

N
 fo

r m

0
200
400
600
800

1000
1200

R
C

N
 fo

r m

*

600
700
800
900

r-1
55

UT BAY LPS LPS+BAYUT BAY LPS LPS+BAY

1200
1400
1600
1800
2000

m
ir-

15
5

UT BAY Bc Bc+BAY
B D

0
100
200
300
400
500
600

R
C

N
 fo

r m
ir

0
200
400
600
800

1000

R
C

N
 fo

r m

* *
0

UT BAY Ms Ms+BAY UT BAY R848 R848+BAY

FIGURE 8 | MiR-155 induction by microbes/microbial ligands is
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We then examined the induction of c-Jun and c-Fos following
exposure to these agonists and bacteria. Monocytes were incubated
with LPS, R848, B.c., or M.s., each with or without pretreatment
with the NF-κB inhibitor. As shown in Figure 9, each induced
both c-Jun and c-Fos, but NF-κB inhibition very effectively pre-
vented this. Collectively, these results provide evidence that innate
immune stimuli lead to c-Jun and c-Fos expression, and that this
requires NF-κB.

Finally, to confirm that it is NF-κB-mediated expression of de
novo protein synthesis that drives miR-155, we treated/infected
monocytes with or without cycloheximide pretreatment and mea-
sured miR-155. Results showed that cycloheximide blocked miR-
155 induction (Figure 10). Parallel experiments testing the expres-
sion of c-Jun and c-Fos demonstrated that, as expected, cyclohex-
imide treatment inhibited protein expression of these molecules
(data not shown).
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A C

B D

FIGURE 9 | c-Jun and c-Fos are induced by microbes/microbial

ligands in an NF-κB-dependent manner. (A–D) Human PBM were
pre-treated with or without the NF-κB inhibitor (BAY-11-7085, designated as
BAY in the figure), and subsequently treated with (A) LPS (500 ng/ml), (B)

R848 (1 uM), or infected with (C) B. cenocepacia (Bc) at MOI 5, or (D) M.

smegmatis (Ms) at MOI 5. Cell lysates were collected 16 h later.
Protein-matched lysates were analyzed by Western blotting with c-Jun or
c-Fos antibodies. All membranes were re-probed with Actin antibody to
ensure equal loading of protein in all lanes. These data are representative
of four independent experiments.

DISCUSSION
MiR-155 has been reported to be induced by various fac-
tors including TLR ligands, interferon, and pro-inflammatory
cytokines (O’Connell et al., 2007). However, the mechanisms of
induction are not fully understood. The human BIC promoter
contains c-Ets, AP-1 and NF-κB binding sites. Previous studies
have demonstrated that NF-κB activation is necessary for miR-
155 induction (Gatto et al., 2008; Cremer et al., 2009), however,
studies in B lymphocytes demonstrated, by mutational analysis

of the BIC promoter, that of the three transcription factor bind-
ing sites only the AP-1 binding, not NF-κB binding site, site was
necessary for miR-155 induction (Yin et al., 2008b). These stud-
ies together suggest that although NF-κB activation is necessary
for miR-155 induction, it may only be indirectly involved per-
haps through the transcription of intermediate molecules. Here
we report that NF-κB-dependent de novo synthesis of c-Jun and c-
Fos is necessary for miR-155 induction by innate immune stimuli
in monocytes.
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FIGURE 10 | MiR-155 induction by microbes/microbial ligands

requires de novo protein synthesis. (A–D) Human PBM were
pre-treated with or without the protein synthesis inhibitor (CHX), and
subsequently treated with (A) LPS (500 ng/ml), (B) R848 (1 uM), or

infected with (C) B. cenocepacia (Bc) at MOI 5, or (D) M. smegmatis (Ms)
at MOI 5. mRNA was isolated from the cells 16 h later and assayed for
miR-155 by qRT-PCR. These data are representative of six independent
experiments. *Designates a p value < 0.05.

Our finding that miR-155-inducing factors could be transferred
though sterile filtered media presented two possibilities: the first
possibility was that a cytokine such as TNFα, IFNβ, IFNγ, or even
IL-1β was inducing miR-155 through autocrine/paracrine signal-
ing (O’Connell et al., 2007; Pottier et al., 2009). We neutralized
TNFα and IFNβ, and found that blocking either cytokine alone
did not impair miR-155 induction. Monocytes/macrophages are
not considered major sources of IFNγ, though we have also used
neutralizing antibodies against IFNγ and found no effect on miR-
155 induction (data not shown). In our earlier study we found that
miR-155 was induced independently of caspase-1 (Cremer et al.,
2009), so IL-1β would not be implicated either (Henry et al., 2007).
The second possibility was that there are soluble factors originating
from the bacterium that lead to miR-155 induction. This possi-
bility is supported by the data in Figure 4E. We believe that it
is unlikely that LPS is mediating the induction of miR-155 since
Francisella LPS is a poor TLR4 agonist (Gunn and Ernst, 2007) and
we previously found the response to be TLR2-dependent (Cremer
et al., 2009). On the other hand, Francisella is known to express
multiple lipoproteins that activate TLR1/2 or TLR2/6 (Thakran
et al., 2008) and thus these are more likely to be the soluble bacte-
rial factors that induce miR-155 expression. Identification of the
bacterial factors is a focus for future investigation.

Much work has gone into identifying targets of miR-155. Of
the targets identified and verified to date, the most well studied
is the inositol phosphatase SHIP. We and others have demon-
strated that miR-155 induction leads to SHIP downregulation
and results in enhanced activation of the PI3K/Akt pathway. Acti-
vation of the PI3K/Akt pathway is beneficial in the context of
bacterial infections, as it promotes host-protective inflammatory
cytokine production. Attesting to the importance of miR-155 in

host-protection against bacterial infection, we have found that
virulent strains of F. tularensis (Cremer et al., 2009) and M. tuber-
culosis (Rajaram et al., 2011) do not support the induction of
miR-155 in infected cells. It is unclear as yet whether the attenuated
miR-155 induction in human monocytes/macrophages infected
with these virulent strains represents active suppression of induc-
tion by the bacteria or an inability of the host to sense the virulent
bacteria to mount a miR-155 response.

In summary we have uncovered new details on the molecular
mechanisms of miR-155 induction by innate immune stimuli. We
report that c-Fos and c-Jun are induced during infection in an
NF-κB-dependent manner, and are necessary to form the AP-1
complex that is required for miR-155 transcription. Thus NF-κB
is indirectly required for miR-155 induction. This study highlights
the complexity in the regulation of this immunoregulatory miR.

EXPERIMENTAL PROCEDURES
CELLS AND REAGENTS
RAW 264.7 macrophages were obtained from ATCC and cul-
tured in RPMI-1640 (Gibco-BRL, Rockville, MD) supplemented
with 5% heat-inactivated fetal bovine serum (FBS; HyClone,
Logan, UT) and L-glutamine (Invitrogen, Carlsbad, CA) as pre-
viously described (Parsa et al., 2006). The BAY-11-7085 IKK
inhibitor was a generous gift from Dr. Denis Guttridge (The
Ohio State University). U0126 ERK inhibitor was obtained from
Calbiochem (DMSO vehicle control (0.2%) was obtained from
Sigma-Aldrich (St. Louis, MO)). Cycloheximide was obtained
from Sigma-Aldrich (St. Louis, MO) and dissolved in sterile
endotoxin-free water. Brefeldin A dissolved in DMSO was obtained
from BioLegend (San Diego, CA) and used at the concentrations
recommended by the manufacturer. Brefeldin A was tested for
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antimicrobial activity against F.n. and we found no effect on
CFUs at the concentration used in the experiments with up to
20 h of exposure (data not shown). Likewise no significant effect
of Brefeldin A was observed on host cell viability. Recombinant
human IFNβ was purchased from PBL Interferon Source (Piscat-
away, NJ). Passive lysis buffer and luciferase assay reagent was
obtained from Promega (Madison, WI). 0.22 μm sterile filter-
ing units were obtained from Millipore (Bedford, MA). R848
(Resiquimod, TLR7/8 ligand) was purchased from Alexis Bio-
chemicals; LPS from E. coli strain 0127:B8 was obtained from
Sigma.

ANTIBODIES
Antibodies against phospho-Stat1, c-Fos, and c-Jun were pur-
chased from Cell Signaling (Beverly, Massachusetts). The anti-
body against actin was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Anti-human TNFα neutralizing antibody was
obtained from R&D systems (Minneapolis, MN). Anti-human
IFNβ neutralizing antibody was obtained from PBL Interferon
Source (Piscataway, NJ).

Peripheral blood monocyte isolation
Human PBM were isolated as previously described (Butchar et al.,
2008) using centrifugation through a Ficoll gradient followed by
CD14-positive selection by Magnet-Assisted Cell Sorting (MACS,
Miltenyi Biotec, Auburn, CA).

BACTERIAL INFECTIONS
Francisella novicida U112 (JSG1819) was generously provided by
Dr. John Gunn (OSU), and grown on Chocolate II agar plates
overnight (Becton, Dickinson and Company, Sparks, MD) at
37˚C. Bacteria was suspended in RPMI-1640 culture media with-
out antibiotic and quantified by a spectrometer at 600 nm wave
length. Burkholderia cenocepacia K56-2 isolate was grown in L.B.
broth (Sigma, St. Louis, MO) for 12–14 h to post-logarithmic
phase. Prior to infection, cultures were centrifuged, washed,
and re-suspended in macrophage culture media. Lyophilized
Mycobacterium smegmatis was obtained from ATCC (#700084),
reconstituted and used as single suspension.

REAL-TIME QRT-PCR
Cells were lysed in TRIzol® reagent (Invitrogen, Carlsbad, CA)
and RNA isolation was completed according to the manufacturer’s
instructions. Reverse transcription was done with 10–100 ng of
total RNA. Mature miR-155 expression was assayed with Taq-
Man® Universal PCR Master Mix, No AmpEraseH UNG (Applied
Biosystems, Branchburg, NJ) by qRT-PCR and normalized to
RNU44 internal control (Applied Biosystems, Foster City, CA)

as previously described (Cremer et al., 2009). Data are expressed
as relative expression = 2−(CTmiR-155−CTRNU44) or relative copy
number (RCN). RCN for human TNFα mRNA was calculated as
previously described and primed for cDNA synthesis with 0.8 nM
random hexamer (Applied Biosystems, Foster City, CA; Butchar
et al., 2008).

WESTERN BLOT ANALYSIS
Cells were lysed in TN1 buffer (50 mM Tris pH 8.0, 10 mM EDTA,
10 mM Na4P2O7, 10 mM NaF, 1% Triton-X 100, 125 mM NaCl,
3 mM Na3VO4, 10 μg/ml each aprotinin and leupeptin). Proteins
were separated by SDS/PAGE, transferred to nitrocellulose mem-
branes, and then probed with antibody of interest. Detections were
performed using HRP-conjugated secondary antibodies followed
by development with enhanced chemiluminescence western blot-
ting substrate (Pierce, Rockford, IL) as previously described (Parsa
et al., 2006).

TRANSFECTIONS
12 × 106 RAW 264.7 cells were transfected by electroporation
using Amaxa solution V with program U-14 as previously
described (Parsa et al., 2006). 2 μg of AP-1 luciferase reporter was
used for each transfection (Stratagene, La Jolla, CA).

siRNA
Commercially available siRNA against c-Fos was purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). RAW 264.7 cells were
transfected with 4.0 μM target or control siRNA via electropora-
tion. After transfection cells were centrifuged and re-suspended
in fresh media to remove excess transfection solution and siRNA.
Effective knockdown of protein expression was verified by Western
blotting for c-Fos.
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