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is consensual due to the dissimilar genetic 
characteristics or discriminatory power of 
the loci enrolled in each of those.

Although it is assumed that the typing 
schemes should ideally ensure that the cho-
sen loci are stable over the course of evo-
lution, this issue is of difficult assessment. 
Labiran et al. (2012) have now presented a 
study where they have assessed the stability of 
some regions of the C. trachomatis genome 
by using innovate approaches. They have 
used the genetic markers from the described 
typing schemes that provide the highest 
Simpson index of diversity: the multi-
sequence typing (MST) system described by 
Klint et al. (2007) and the multi locus varia-
ble number tandem repeat (VNTR) analysis 
(MLVA-ompA) described by Pedersen et al. 
(2008). Labiran et al. (2012) have initially 
evaluated the stability of those genetic mark-
ers through the first stages of adaptation of 
C. trachomatis to cell culture. This is interest-
ing as the first attempt to study mutational 
patterns over adaptation to cell culture had 
been performed back in 1998 (Stothard 
et al., 1998), by studying solely the stabil-
ity of ompA over 20 in vitro passages. Now, 
by analyzing three VNTR besides ompA, the 
authors undoubtedly increase the chances 
of observing genetic alterations, as these 
loci possess a high discriminatory power. 
Furthermore, as the repeated sequences of 
VNTR loci are generated as a consequence of 
an increased error rate during DNA replica-
tion at these regions, they are hypothetically 
more prone to additional variation. In this 
first approach, the authors found no altera-
tions in those genomic regions by studying 
seven clinical isolates over eight passages. 
The initial inoculations were properly 
done from primary swabs in order to avoid 
previous contact of the strains with the in 
vitro system. Interestingly, the eight passages 
represent about 16 days in culture aiming 
to reflect the in vivo estimated period for 
appearance of symptoms for C. trachomatis 
infection of both genitalia and conjuncti-
vae (Black, 1997). There is no doubt that 
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Chlamydia trachomatis is an obligate 
intracellular human pathogen that 
infects columnar epithelial cells of ocu-
lar or genital mucosae, and mononuclear 
phagocytes. More than 50 fully sequenced 
genomes are publically available (Harris 
et al., 2012), and despite low polymor-
phic character when compared with most 
bacteria, these data allow a better under-
standing of C. trachomatis chromosomal 
dynamics. Indeed, it revealed not only 
the chromosome regions more prone to 
genetic mutations, but also that recombi-
nation is highly chromosome dispersed, 
although the frequency and relative weight 
of recombination and mutation events 
undoubtedly posits C. trachomatis as a 
low recombining bacterium (Joseph et al., 
2011; Ferreira et al., 2012).

In order to understand the epidemiol-
ogy and pathogenesis of the highly preva-
lent chlamydial diseases, the classification 
of clinical isolates has been a priority of 
researchers for decades. However, the tra-
ditional typing system, which is based on 
the polymorphism of the gene (ompA) 
encoding the major outer membrane pro-
tein (Yuan et al., 1989) has been jeopard-
ized in the last years as it does not group 
the isolated strains according to their cell- 
appetence or virulence. Thus, with the 
progressive release of sequenced genomes, 
several typing systems have been developed 
(Klint et al., 2007; Pannekoek et al., 2008; 
Pedersen et al., 2008; Dean et al., 2009; 
Bom et al., 2011), although none of them 

there is a radical change of environmental 
conditions when transiting from the in vivo 
to the in vitro system, mostly because the 
latter lacks immune system, competing 
flora, pH alterations, hormonal fluctua-
tions, etc. Nevertheless, although the paral-
lelism between these two scenarios remains 
speculative for these reasons, the impossibil-
ity to perform this evaluation in vivo and 
under controlled conditions makes this an 
 interesting approach.

In a second stage, the authors went even 
further by studying the “long-term” genome 
stability under influence of in vitro envi-
ronmental conditions. To achieve this, they 
used the MLVA-ompA and also the five-
locus MST system to monitor the stability of 
the enrolled loci throughout 72 passages in 
tissue culture. The coverage and the runtime 
of this approach make it an unprecedented 
evaluation of genome stability. In this study 
Labiran et al. (2012) used the so called 
“Swedish new variant,” a C.  trachomatis 
isolate that, besides the higher number of 
pseudogenes than most sequenced genital 
isolates (Jeffrey et al., 2010), shows both a 
deletion and duplication within the plas-
mid, which are genomic changes that had 
never been described before (Unemo et al., 
2010). These kind of genomic alterations 
are infrequent as C. trachomatis presents a 
nearly identical core and pan genome and 
a DNA sequence similarity of >98% (Harris 
et al., 2012). So, this isolate could hypotheti-
cally be considered as genomically unstable, 
making this a valuable strain to test stability 
over a long time in vitro passage. Similarly to 
the previous approach, no genetic changes 
were observed throughout the long-term 
in vitro maintenance, suggesting that the 
MLVA-ompA and MST systems are, on a 
genetic stability basis, highly accurate for 
both short-term (such as partner tracing) 
and long-term molecular epidemiology.

Moreover, the results from the Labiran 
et al. (2012) study indirectly bring to light 
a major controversy in the field, which is 
the uncertainty of whether the prototype 
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strains that have been used worldwide lead-
ing to thousands of papers, accurately rep-
resent current circulating clinical strains. In 
fact, the former are laboratory adapted for 
decades but at this stage one cannot know 
the extent of genomic alterations that may 
occur due to laboratory adaptation. On 
one hand, the results from Labiran et al. 
(2012) point to specific genomic stability, 
which, together with the C. trachomatis 
transmission bottlenecks (Andersson and 
Hughes, 1996) and the high doubling time 
of 2.5–4 h (Borges et al., 2010), disfavors 
genetic variability. On the other hand, it is 
known that some loci are prone to generate 
multi-alleles, such as the putative virulence 
factor CT135 (Sturdevant et al., 2010), and 
that Chlamydia undergoes adaptive changes 
when subjected to specific environmental 
alterations (Kutlin et al., 2005; Suchland 
et al., 2005). Ultimately, unless the entire 
genome is analyzed (at the stage of the strain 
isolation and after long-term in vitro pas-
sage), the controversy will certainly remain.
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