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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) are characterized by the production of
Shiga toxins (Stx) encoded by temperate bacteriophages. Stx production is linked to
the induction of the phage Iytic cycle. Several stx variants have been described and
differentially associated with the risk of developing severe iliness. The variant named stxogq
was first identified in a STEC strain isolated from the faeces of healthy cattle. Analysis
of stxpg-positive strains isolated from humans, animals, and environmental sources have
shown that they have a close relationship. In this study, stxpgq-positive STEC isolated
from cattle were analyzed for phage and Stx production, with the aim to relate the
results to differences observed in cytotoxicity. The presence of inducible phages was
assessed by analyzing the bacterial growth/lysis curves and also by plaque assay. Bacterial
growth curves in the absence of induction were similar for all isolates, however, notably
differed among induced cultures. The two strains that clearly evidenced bacteriolysis
under this condition also showed higher phage titers in plaque assays. However, only
the phage plagues produced by one of these strains (FB 62) hybridized with a stxp-
probe. Furthermore, the production of Stx was evaluated by enzyme immunoassay (EIA)
and Western immunoblotting in overnight supernatants. By EIA, we detected Stx only
in supernatants of FB 62, with a higher signal for induced than uninduced cultures. By
immunoblotting, Stx2 could be detected after induction in all stxag-positive isolates, but
with lower amounts of Stx2B subunit in those supernatants where phages could not be
detected. Taking into account all the results, several differences could be found among
Stxpg-positive strains. The strain with the highest cytotoxic titer showed higher levels
of stxp-phages and toxin production by EIA, and the opposite was observed for strains
that previously showed low cytotoxic titers, confirming that in stxpg-positive strains Stx
production is phage-regulated.
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These authors found that this stxpg variant had high similarity

Shiga toxin-producing Escherichia coli (STEC) are important
pathogens that can cause severe human diseases, including hem-
orrhagic colitis and hemolytic uremic syndrome (Karmali et al.,
1985). STEC comprise a diverse group of E. coli strains character-
ized by the production of Shiga toxins (Stx1 and/or Stx2), which
are regarded as their main virulence factors.

The genes encoding Stx are usually carried by bacteriophages.
In general, stx genes are situated among genes controlled by the
phage late promoter suggesting that Stx production is linked to
the induction or progression of the phage lytic cycle (Neely and
Friedman, 1998; O’Loughlin and Robins-Browne, 2001). Several
variants of stx genes have been described, and have been dif-
ferentially associated with the risk of developing severe illness
(Friedrich et al., 2002; Beutin et al., 2004; Persson et al., 2007).

A probably emergent variant named Stx2g was identified by
Leung et al. (2003) in STEC isolated from faeces of healthy cattle.

with stx; genes associated with human disease, and besides, Stx2g
cytotoxicity for HeLa and Vero cells was comparable to that of
Stx2EDL933.

Other studies have also described strains carrying stxy,
isolated from cattle, wastewater, aquatic environments, and
humans (Garcia-Aljaro et al., 2005; Beutin et al., 2006; Garcia-
Aljaro et al., 2006; Beutin et al., 2007; Krtger et al., 2007;
Persson et al., 2007; Garcia-Aljaro et al., 2009; Nguyen et al.,
2011; Prager et al., 2011). Differences have been detected in
regard to toxin production, cytotoxic activity, and stx-phage
release among stxg-positive strains (Beutin et al., 2006; Garcia-
Aljaro et al., 2006; Kriiger et al., 2011; Prager et al., 2011).
Interestingly, Prager et al. (2011) demonstrated that stxps-
positive strains isolated from humans, animals, and environmen-
tal sources have a close phylogenetic relationship, reinforcing
the idea of human infections as a potential zoonotic disease. At
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present, the role of stx in human pathogenicity has not been
evaluated.

In this study, stxyg-positive STEC isolated from cattle were ana-
lyzed for phage and Stx production, with the aim to relate the
results to differences observed in cytotoxicity.

MATERIALS AND METHODS

BACTERIAL STRAINS

The stxyg-positive isolates analyzed in this study (Table 1) have
been previously described regarding the serotype and other vir-
ulence factors (Padola et al., 2004; Kriiger et al., 2007; Granobles
Velandia et al., 2011). Cytotoxic activity was evaluated in a previ-
ous study showing differences among these isolates (Krtiger et al.,
2011). One of the strains, belonging to O2:H25 serotype had a
high basal titer comparable to those obtained from strains car-
rying the stxyppross subtype, but the others showed low basal
cytotoxicity. All these stxyg-positive strains showed a low response
to mitomycin C induction.

As a positive control of phage lysis the strain E. coli EDL933
(stx1EDLY33/StX2EDLY33, O157:H7) was used. This strain was kindly
provided by Dr. J. Blanco (Laboratorio de Referencia de E. coli,
Spain). The strain E. coli DH5a was used as host strain for phage
detection.

BACTERIAL GROWTH/LYSIS CURVES

Bacteria were grown overnight in Luria Bertani (LB) medium at
37°C with shaking at 100 rpm. An aliquot was inoculated into
fresh LB medium and incubated at 37°C and 180 rpm up to an
optical density at 600 nm (ODggpg) ~ 0.2—0.3. In that moment
(named 0 h), each culture was subdivided into two flasks and mit-
omycin C was added to one of them to a final concentration of
0.5 pg/ml. The cultures were incubated overnight and monitored
spectrophotometrically every hour for the first 5h, and when
necessary, dilutions of the samples were performed. Bacterial enu-
meration was also conducted by plating appropriate dilutions in
duplicate by using LB agar plates. The assays were done at least
three times.

Table 1 | Characteristics of STEC strains.

Strain Serotype stx Verotoxicity

genotype
Uninduced Induced Increase
conditions® with (l7ue)
mitomycin CP
FB 62 02:H25 Stxog High | 16
FB 11 0O15:H21  stxyq Low | 16
FB 40 0O175:H8  stxog Low | 8
FB46 0175:H8  stxog Low | 8

@Mean titers classified in three categories: (low) <16, (medium) 32-128;
(high) >256.

bMean titers classified in three categories: (I) <4,096; (ll) 8,192-65,536;
(1) >131,072.

¢I/U fold change: mean induced titer/mean uninduced titer.

EVALUATION OF PHAGE PRODUCTION

To evaluate phage production, we followed the methodology
described by Muniesa et al. (2004), with some modifications.
At 3h after mitomycin C induction, an aliquot of each culture
was centrifuged for 10 min at 10,000 x g. The supernatants were
filtered through low-protein-binding 0.22 pm membrane filters
(Millex-GV, Millipore) and tenfold serially diluted. One hundred
pl of each dilution were then mixed with 500 L1 of an exponential
phase culture of E. coli DH5a (ODggg ~ 0.6—0.8) and incubated
for 30 min at 37°C with shaking (180 rpm). The suspension was
then mixed with 3 ml of LB soft agar supplemented with 3.2 mM
CaCl, and 0.5-1 pg/ml ampicillin (Muniesa et al., 2004; Santos
et al., 2009), and poured onto LB agar plates. The plates were
examined for the presence of lysis plaques following incubation
for 18 h at 37°C. The assays were done at least three times.

PLAQUE HYBRIDIZATION

Plaques were transferred onto nylon membranes positively
charged (Roche Diagnostics GmbH) according to a standard
procedure (Sambrook and Russell, 2001) and hybridized at
68°C with a stx, specific probe. The probe was synthesized by
PCR using stx; generic primers (Paton and Paton, 1998), and
labeled by incorporating digoxigenin 11-deoxyuridine triphos-
phate (Roche Diagnostics, Germany).

EVALUATION OF EXTRACELLULAR SHIGA TOXIN PRODUCTION

Stx production was evaluated in the supernatants of stxyg-positive
strains after overnight incubation with or without mitomycin C,
by using an enzyme immunoassay (EIA, Ridascreen® Verotoxin,
R-Biopharm, Germany). The results were analyzed spectrophoto-
metrically at 450 nm. The supernatant of the E. coli DH5a culture
was included as negative control besides the negative control of
the kit. Test results were recorded as weak positive (1+) if the
extinction was >0.1-0.5 above the negative control, moderate
(2+4) (extinction > 0.5-1.0 above negative control) and strongly
positive 3+ (>1.0-2.0) to 44 (>2.0). The assays were done at
least three times.

The supernatants of stxyg-positive strains after overnight
incubation with mitomycin C were also evaluated by Western
immunoblotting. Briefly, 12 ] of supernatants were separated
by 12.5% SDS-PAGE (under reducing conditions) and trans-
ferred onto a nitrocellulose membrane (Hybond ECL, Amersham
Pharmacia Biotech). The membrane was blocked overnight at
4°C with 5% skimmed milk in PBS-Tween 0.1%, and incubated
with a 1:500 dilution of anti-Stx2B rabbit IgG in PBS-Tween 0.1%
for 1hat37°C (Parma et al., 2011). After washing, the membrane
was incubated with horseradish peroxidase-conjugated goat anti-
rabbit IgG (1:5000) for 1h at 37°C. Finally, membranes were
revealed using DAB/H,0, system (Pierce). As positive controls,
recombinant Stx2B protein and the supernatant of an overnight
culture of a stx,ppr933-positive E. coli strain were used.

RESULTS AND DISCUSSION

In this study, stx,g-positive STEC isolates belonging to serotypes
02:H25, 0O15:H21 and O175:H8, which have previously shown
differences in cytotoxicity titers, were analyzed for phage and Stx
production, under inducing and non-inducing conditions.
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The presence of inducible phages was assessed by analyzing the
bacterial growth/lysis curves constructed for each strain and also
by plaque assay using E. coli DH5a as host strain. The bacterial
growth curves in the absence of mitomycin C were similar for all
stxag-positive isolates and also similar to that of E. coli EDL933.
However, the bacterial growth/lysis curves notably differed when
cultures were exposed to mitomycin C (Figure 1). Only two of
the isolates (FB 62 and FB 11) clearly evidenced bacteriolysis
under this condition. The strain FB 62 (serotype O2:H25), which
had the highest cytotoxicity titer among stxg-positive isolates
(Kriiger et al., 2011), showed an ODggg pattern with a maximum
of 2.5 at 2 h after mitomycin C induction, followed by a signifi-
cant decrease typical of host cell lysis, which reached the baseline
ODgoo at 5h of culture. The FB 11 strain also showed a bacte-
riolytic pattern, but the maximum ODggg value, which occured
2 h after mitomycin C induction, was lower than 2.0. On the con-
trary, the other stxg-positive isolates (FB 40 and FB 46) did not
show a marked bacteriolytic pattern and their growth/lysis curves

were similar to that of the stx;-negative strain E. coli DH5a. These
two STEC isolates reached a maximum ODg earlier (1h after
mitomycin C induction) with a lower value (1.0), and along the
following 4 h of culture the ODgp decreased gradually.

The different patterns were related to differences in the viable
bacterial counts. In the FB 62 and FB 11 cultures, the bacte-
rial counts remained stable comparing 0-1h after mitomycin C
induction, and then a drop was observed between 1 and 2h (a 2
log for FB 62 and a 1.5 log for FB 11). In contrast, bacterial counts
diminished earlier in FB 40 and FB 46, reaching a 2 log decrease
in the first hour after the addition of mitomycin C.

We could only observe lysis plaques with the supernatants
of FB 62 and FB 11 cultures, and the phage titers were higher
from induced than from uninduced cultures (pfu increased from
1.0 x 10 to 3.0 x 10° for FB 62 and from 5.0 x 10° to 2.3 x
10* for FB 11). However, only the phages produced by FB 62
strain were stxag-phages (as these phage plaques hybridized with a
stxy-probe). The production of extracellular Stx was evaluated by
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FIGURE 1 | Growth/lysis curves of the isolates studied in presence and absence of mitomycin C (solid and dashed lines, respectively).
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FIGURE 2 | Stx2B detection by Western immunoblotting.
Anti-Stx2B 1gG was used as first antibody. Lanes 1-5: supernatants of
isolates FB 11, FB 40, FB 46, FB 62, and positive control (026:H11
STEC strain, harboring stx,gpL o33 subtype), respectively.

Lane 6: recombinant Stx2B protein.

EIA and Western immunoblotting in overnight supernatants. By
EIA, we detected the toxin only in supernatants of FB 62 (with
values of 3+ and 44 for uninduced and induced cultures, respec-
tively). By Western immunoblotting (using anti-Stx2B subunit
antibodies), toxin production after mitomycin C induction was
detected in all stxys-positive isolates (Figure 2). Despite the same
volume of supernatant form each culture was loaded onto the gel,
a faint band was observed in strains FB 40 and FB 46 compar-
ing to strains FB 11 and FB 62, evidencing the presence of lower
amounts of toxin (B subunit) in those supernatants.

Taking all the results into account, several differences could
be found among the four stxyg-positive strains. The strain with
the highest cytotoxic titer (FB 62) presented a bacteriolytic pat-
tern when the growth curve under mitomycin C treatment was
analyzed. As we expected, this strain also had high levels of Stx
and stx,-phage production, and both were higher under inducing
conditions. Therefore, it can be concluded that FB 62 strain has
an inducible stx;-phage, and produces high amounts of Stx2, bio-
logically active on Vero cells. Noticeably, this strain belongs to the
same serotype (O2:H25) as the strain 7v isolated by Leung et al.
(2003) from cattle, which is the reference strain for stxag.

Regarding FB 11 strain, we observed that it carries one or
more inducible phages because of both the presence of infec-
tive particles in the supernatants and the bacteriolytic pattern
observed by monitoring the ODgqg of the culture. These phages
do not seem to encode stxyg, as no signal was obtained when
the plaque hybridization assay was performed. Possible explana-
tions could be that stxyg either is not phage encoded in this strain
or is encoded in a defective stx-phage, or that lytic cycle of the
stxag-phage is repressed by other phage/s. Indeed, there are studies
demonstrating that not all stx; genes are associated with inducible
prophages as well as studies that suggest the existence of regu-
latory mechanisms when two stx;-phages are present in a same
strain (Teel et al., 2002; Muniesa et al., 2003; Zhang et al., 2005;
Karama and Gyles, 2008).

The apparent absence of lytic cycle induction of stxzg-phages in
FB 11 strain correlates with the low cytotoxic titer under inducing
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