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Cell death plays a central role in host-pathogen interactions, as it can eliminate
the pathogen’s replicative niche and provide pro-inflammatory signals necessary
for an effective immune response; conversely, cell death can allow pathogens to
eliminate immune cells and evade anti-microbial effector mechanisms. In response
to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7
mediate apoptotic cell death, which is generally viewed as immunologically silent or
immunosuppressive. A proinflammatory form of cell death that requires caspase-1,
termed pyroptosis, is activated in response to microbial products within the host
cytosol or disruption of cellular membranes by microbial pathogens. Infection by the
bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death
and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of
NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular
basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia
immune responses remain enigmatic. Here, we discuss the role that cell death may
play in inducing specific pro-inflammatory signals that shape innate and adaptive immune
responses against Yersinia infection.
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INTRODUCTION
Cell death plays a key role in maintaining tissue homeostasis
by eliminating stressed, damaged, and infected cells. Cell death
is an evolutionarily conserved immune response to microbial
infection, as it prevents pathogen replication and can provide pro-
inflammatory signals necessary for an effective immune response.
Distinct cell death pathways that result in distinct downstream
outcomes are induced under different circumstances (Kono and
Rock, 2008; Green et al., 2009; Zitvogel et al., 2010). Apoptosis
is traditionally viewed as an immunomodulatory form of cell
death characterized by cell shrinkage, while necrosis and pyrop-
tosis are pro-inflammatory forms of death associated with rapid
loss of membrane integrity and release of intracellular contents.
How these distinct cell death pathways contribute to antibac-
terial responses remains an important unanswered question.
Recent studies indicate that caspase-1-dependent pyroptosis can
promote antibacterial responses against intracellular pathogens
independent of production of the caspase-1 dependent cytokines
IL-1β and IL-18 (Miao et al., 2010). Similarly, RIP3-dependent
necrosis, a recently described form of programmed necrosis (Cho
et al., 2009; He et al., 2009; Zhang et al., 2009; Oberst et al., 2011),
promotes control of Vaccinia and CMV viral infections (Upton
et al., 2010). Both pyroptosis and programmed necrosis can occur
in the context of pathological conditions that are not directly
associated with microbial infections (Martinon et al., 2006; Welz
et al., 2011; Inoue et al., 2012). However, how different cell death

pathways contribute to cytokine production, and orchestrate acti-
vation of innate and adaptive cells during bacterial infections
remains a major unresolved question for understanding of anti-
Yersinia immunity.

The three pathogenic Yersinia spp., Y. pestis, Y. pseudotuber-
culosis, and Y. enterocolitica, share a virulence plasmid encoding
a conserved Type Three Secretion System (T3SS) and virulence
factors, known as Yersinia outer proteins (Yops) (Viboud and
Bliska, 2005). T3SS-mediated injection of Yops into infected cells
enables Yersinia to modulate host signaling pathways and suppress
innate and adaptive immunity (Cornelis, 2006). YopJ of Y. pestis
and Y. pseudotuberculosis, termed YopP in Y. enterocolitica, blocks
NF-κB and MAPK signaling, thereby inhibiting cytokine produc-
tion and triggering death of Yersinia infected cells (Mills et al.,
1997; Monack et al., 1997; Ruckdeschel et al., 1998). Among the
sequenced strains of pathogenic Yersiniae, YopJ and YopP share
95–98% identity across the full length of the protein sequence,
but key polymorphisms have been identified that impact both
enzymatic activity and translocation of the protein, which affect
the outcome of Yersinia infection (Ruckdeschel et al., 2001b;
Zauberman et al., 2006; Brodsky and Medzhitov, 2008; Zheng
et al., 2011).

Interestingly, Yersinia-infected cells exhibit features of apop-
tosis, pyroptosis, or necrosis, depending on the state of the cells
and the cell type involved (Monack et al., 1997; Ruckdeschel
et al., 1997, 1998, 2001a; Bergsbaken and Cookson, 2007; Zheng
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et al., 2012). However, whether YopJ-induced cell death pro-
motes host defense or bacterial virulence during in vivo infec-
tion remains unclear. A number of studies have revealed key
players in cell death pathways during Yersinia infection, pro-
viding some insight into mechanisms of Yersinia-induced cell
death, but key questions about the nature and role of Yersinia
death in vivo remain. Yersinia is thought to primarily replicate
as an extracellular pathogen that evades phagocytosis by neu-
trophils and monocytic cells in lymphoid tissues. Cell death
has therefore been viewed as a strategy for Yersinia to elimi-
nate host phagocytes (Monack et al., 1998). However, several
studies suggest that host cell death during Yersinia infection
may promote anti-Yersinia immunity, although the precise mech-
anisms are not entirely clear (Brodsky and Medzhitov, 2008;
Bergman et al., 2009; Zauberman et al., 2009). An alterna-
tive possibility is that the Yersiniae are capable of intracel-
lular replication, suggesting the existence of an intracellular
stage during the Yersinia lifecycle in vivo (Grabenstein et al.,
2004).

MECHANISMS OF Yersinia-INDUCED CELL DEATH
Early studies observed that macrophages and dendritic cells
infected by Yersinia exhibit characteristics of apoptotic cells,
specifically membrane blebbing, nuclear condensation, DNA
fragmentation, and formation of large cytoplasmic vacuoles
(Monack et al., 1997; Ruckdeschel et al., 1997). Apoptosis has
been viewed as immunologically silent, but growing evidence
suggests that during infection, apoptosis may promote inflam-
matory responses (Green et al., 2009; Torchinsky et al., 2009).
Furthermore, apoptotic cells can be phagocytosed, and their asso-
ciated microbial antigens used to prime CD8+ T cell responses
(Heath and Carbone, 2001). Therefore, while cell death dur-
ing Yersinia infection is thought to be apoptotic, it may not be
immunologically silent. Below, we discuss the nature of Yersinia-
induced cell death and its contribution to bacterial virulence or
host defense.

The cysteine protease YopJ, called YopP in Y. enterocolitica,
induces cell death during Yersinia infection (Mills et al., 1997;
Monack et al., 1997, 1998). YopJ is a potent inhibitor of MAPK
and NF-κB signaling, and blocks proinflammatory cytokine pro-
duction by infected cells (Ruckdeschel et al., 1998, 2001a; Palmer
et al., 1999; Orth et al., 2000) (Figure 1). YopJ has been reported
to function as an ubiquitin-like protein protease (Orth et al.,
2000), and as a deubiquitinase (Zhou et al., 2005; Sweet et al.,
2007). YopJ is also reported to be an acyl transferase that acety-
lates serine residues in the activation loop of MKK family proteins
and prevents their activation (Mittal et al., 2006; Mukherjee et al.,
2006). A recent study has also indicated that the sensitivity of NF-
κB signaling pathways to YopJ-mediated inhibition occurs at the
level of TAK1 and is evolutionarily conserved from Drosophila to
mammalian cells (Paquette et al., 2012).

Macrophages stimulated with LPS in the presence of inhibitors
of protein synthesis or components of NF-κB signaling also
undergo cell death (Ruckdeschel et al., 2004; Zhang et al., 2005).
Consistent with this, Tlr4−/− macrophages are resistant to YopJ-
dependent apoptosis, as are cells deficient in the TLR3/4 adaptor
TRIF, but not MyD88 (Haase et al., 2003; Zhang and Bliska,

FIGURE 1 | Yops are injected into phagocytes during Yersinia infection.

YopJ/P inhibits NF-κB and MAPK signaling, preventing the expression of
pro-inflammatory cytokines and pro-survival molecules, resulting in cell
death. YopJ also activates caspase-1 processing and IL-1β and IL-18 release.
The mechanisms of cell death and inflammasome activation are not
well-understood.

2003; Ruckdeschel et al., 2004). Moreover, infection of dendritic
cells with Yersinia leads to the formation of a FADD/caspase-
8/RIP1 complex and caspase-8 activation (Figure 1) (Grobner
et al., 2007). Cytochrome-c release and caspase-9 cleavage were
observed downstream of Yersinia-induced cleavage of the pro-
apoptotic Bid protein (Denecker et al., 2001). Additionally,
treatment with broad-spectrum caspase inhibitors reduced the
number of TUNEL+ cells during Yersinia infection (Monack
et al., 1998; Denecker et al., 2001). Collectively, these data indi-
cate that Yersinia activates an extrinsic pathway of apoptosis.
Interestingly, Yersinia infection of dendritic cells exposed to a
pan-caspase inhibitor still induced a cell death that is presum-
ably caspase-independent and exhibited morphological features
of necrosis (Grobner et al., 2006). Recent studies have described a
caspase-independent pathway of programmed necrosis linked to
TRIF that involves signaling through the RIP1 and RIP3 kinases
(Vandenabeele et al., 2010; Feoktistova et al., 2011; Tenev et al.,
2011), but how this pathway functions during Yersinia infection
and the link between programmed necrosis and other forms of
Yersinia-induced death is not known.

Pathogens express pore-forming toxins and virulence pro-
teins that disrupt membrane integrity and modulate signaling
networks (Vance et al., 2009). Consequently, mammalian hosts
have evolved mechanisms, including the activation of a multi-
protein complex called the inflammasome, that detect these vir-
ulence activities (Schroder and Tschopp, 2010). Inflammasomes
are activated by Nod-like Receptors (NLRs) that contain a
leucine-rich-repeat (LRR) sensor domain, a nucleotide-binding
oligomerization domain (NOD) and a pyrin- or CARD-
containing signaling domain (Davis et al., 2011). Inflammasome

Frontiers in Cellular and Infection Microbiology www.frontiersin.org | 2 November 2012 | Volume 2 | Article 149

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Philip and Brodsky Cell death in Yersinia immunity

activation is thought to require two signals, the first one involv-
ing sensing of conserved PAMPs that induce expression of certain
inflammasome components and cytokines, and a second signal
involving disruption of cellular membranes or signaling path-
ways (Mariathasan and Monack, 2007). Inflammasomes form a
platform for the autoprocessing and activation of the cysteine
protease caspase-1, resulting in caspase-1-dependent secretion
of IL-1α, IL-1β, and IL-18, and caspase-1-dependent cell death
termed pyroptosis (Mariathasan et al., 2004; Martinon et al.,
2006; Sutterwala et al., 2006; Bergsbaken et al., 2009; Hornung
et al., 2009). Yersinia expresses a conserved T3SS that activates
the NLRP3 and NLRC4 inflammasomes, triggering pyropto-
sis (Brodsky et al., 2010). However, the virulence factor YopK
prevents this inflammasome activation, and promotes bacterial
replication and dissemination in vivo (Brodsky et al., 2010). In
the presence of YopJ, YopK-sufficient bacteria still induce cell
death. Thus, a key question is how these two seemingly contra-
dictory outcomes are controlled during Yersinia infection. Yersinia
expressing YopK but lacking YopJ, do not induce T3SS-dependent
inflammasome activation or cell death. Thus, YopK likely limits
inflammasome activation under conditions where YopJ expres-
sion or translocation is reduced, as may happen during infec-
tion of systemic sites (discussed further below). Nevertheless,
macrophages primed by inflammatory stimuli still undergo
pyroptosis in response to YopJ-deficient Yersinia (Bergsbaken and
Cookson, 2007), which is greatly enhanced in the additional
absence of YopK (Brodsky et al., 2010). As LPS priming upreg-
ulates NLRP3 inflammasome components (Bauernfeind et al.,
2009), the threshold for NLRP3 inflammasome activation could
be lowered, even in the presence of YopK.

Interestingly, YopJ-dependent apoptosis is also associated with
caspase-1 activation (Lilo et al., 2008; Brodsky et al., 2010; Zheng
et al., 2011), and the extent of YopJ-mediated NF-κB inhibi-
tion correlates with the degree of caspase-1 activation (Zheng
et al., 2011), consistent with the finding that deletion of IKKβ

in macrophages induces spontaneous inflammasome activation
(Greten et al., 2007). Although NLRP3 and the adaptor ASC are
required for YopJ-dependent secretion of IL-1β and IL-18 (Zheng
et al., 2011), the mechanism by which YopJ activates caspase-1 is
unclear, as caspase-1 processing and YopJ-dependent cell death
still occur in cells lacking ASC, NLRC4, or NLRP3 (Brodsky
et al., 2010). Distinct inflammasome complexes with different
functions have been identified, and could potentially account for
these observations (Figure 1). Caspase-1 could be recruited to an
NLRP3/ASC complex that regulates IL-1β and IL-18 production,
and to a separate complex that activates cell death. A complex
containing catalytically active caspase-1, but not ASC triggers cell
death but not cytokine secretion, while a distinct ASC-containing
focus mediates caspase-1 processing and cytokine secretion, dur-
ing Salmonella infection (Broz et al., 2010). NLRP12 was also
recently found to induce inflammasome activation in response
to Y. pestis infection, and both NLRP3 and NLRP12 contributed
to host defense against Yersinia infection, presumably via induc-
tion of caspase-1-dependent IL-1β and IL-18 (Vladimer et al.,
2012). YopJ may activate this NLRP12 inflammasome, although
this remains to be demonstrated. Finally, a non-canonical inflam-
masome pathway involving caspase-11, TRIF, and type I IFN

signaling has been described that responds to Gram-negative
intracellular bacteria independently of T3SS activity (Kayagaki
et al., 2011; Sander et al., 2011; Broz et al., 2012; Rathinam et al.,
2012). Whether this pathway contributes to anti-Yersinia host
defense remains unknown.

THE ROLE OF YopJ-INDUCED DEATH In vivo
A number of studies indicate that YopJ/P promotes Yersinia
virulence. Oral infection with Y. pseudotuberculosis and Y. ente-
rocolitica demonstrate that YopJ/P contributes to systemic disease
and barrier dysfunction (Monack et al., 1998; Jung et al., 2012;
Meinzer et al., 2012). YopJ is dispensable for colonization of the
Peyer’s patches (PPs) and mesenteric lymph nodes (mLNs), espe-
cially at higher infectious doses; however, YopJ-deficient Yersinia
had significantly reduced levels of spleen colonization (Monack
et al., 1998). Furthermore, spleens and mLNs from mice infected
with YopJ-sufficient bacteria had a higher percentage of Mac1+
TUNEL+ and total TUNEL+ cells compared to YopJ-deficient
bacteria, consistent with the role of YopJ in apoptosis in vivo.
Furthermore, in competitive index experiments, YopJ-deficient
Yersinia showed colonization defects in PPs, mLNs, and spleen.
YopJ-deficient Yersinia were not defective for splenic replication
following intraperitoneal infection, indicating that YopJ primarily
regulates dissemination from mucosal tissues, rather replication
at systemic sites (Monack et al., 1998) (Figure 2). Consistently,
YopJ-deficient Y. pestis are still able to cause systemic infection
in a rat model of bubonic plague, despite a defect in induc-
tion of apoptosis and cytokine inhibition (Lemaitre et al., 2006).
These initial findings thus implied that apoptosis may be uti-
lized by Yersinia to eliminate immune cells and dampen anti-
Yersinia immunity during infection of peripheral or mucosal
tissues.

Paradoxically, ectopic expression of a hypercytotoxic YopP
from Y. enterocolitica in Y. pseudotuberculosis results in its atten-
uation in oral mouse infection (Brodsky and Medzhitov, 2008)
(Figure 2). While both Y. pseudotuberculosis and Y. enteroco-
litica cause cell death in cultured macrophages and infected
tissues, infection with YopJ- vs. YopP-expressing Y. pseudotu-
berculosis showed a significant increase in TUNEL+ CD11b+,
CD11c+ and B220+ cells in mLNs in mice infected with the
YopP-expressing strain (Brodsky and Medzhitov, 2008). Similarly,
Y. pestis strains expressing YopP had higher cytotoxic potency
than strains expressing YopJ, both in vitro and in tissues of
infected mice; furthermore, expression of YopP in Y. pestis also
resulted in lower virulence following subcutaneous, but not
intranasal or intravenous routes of infection (Zauberman et al.,
2009). Interestingly, subcutaneous administration of Y. pestis
expressing YopP protected against infection with virulent Y. pestis,
regardless of the route of challenge. These observations suggest
that YopJ contributes to dissemination of Yersinia from barrier
surfaces, but may be less important once bacteria have spread
to systemic sites. Whether YopJ or additional immunosuppres-
sive virulence mechanisms play a role in dampening the early
inflammatory response to Yersinia infection in pneumonic plague
(Lathem et al., 2007) also remains to be determined.

Consistent with observations that YopJ promotes systemic
dissemination following oral infection, YopJ contributes to gut
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FIGURE 2 | (A) Injection of YopJ/P activates caspase-1 and the release
of the caspase-1- dependent cytokines. However, the hypercytotoxic
YopP-expressing Y. pseudotuberculosis induces enhanced levels of cell death
and promotes bacterial control, relative to infection with YopJ-expressing Y.

pseudotuberculosis. (B) Conversely infection with YopJ-deficient Y.
pseudotuberculosis results in robust cytokine production, intact barrier
function and control of bacterial spread. Abbreviations: DC, dendritic,
iMo/iDC, intestinal macrophage/intestinal DC.

barrier disruption (Jung et al., 2012; Meinzer et al., 2012).
Specifically, YopJ can induce TLR2-dependent IL-1β secretion in
PPs, which was associated with increased barrier permeability,
suggesting that TLR2 signaling mediates YopJ-dependent gut dis-
ruption (Jung et al., 2012). However, the actual bacterial loads in
these mice were not measured. Conversely, TLR2-deficient mice
have been reported to be more susceptible to oral infection by
Y. pseudotuberculosis, due to a loss of TLR2-dependent Reg3β

expression in the gut epithelium (Dessein et al., 2009). Thus, the
precise role of TLR2 in Yersinia infection remains to be further
dissected. Notably, IL-1α is associated with pathological intesti-
nal inflammation and increased dissemination of Y. enterocolitica
(Dube et al., 2001), but the role of YopP or TLR2 in this context
has not been examined.

In contrast to cell death induced by the activity of a bacte-
rial virulence factor, CD8+ cytotoxic T cells also induce death
of Yersinia-infected cells, and are important for control of
Yersinia infection, as demonstrated by the more severe disease
in infected β2m−/−, anti-CD8α-treated, or perforin-deficient
mice (Bergman et al., 2009). CD8+ T cell-mediated killing
of bacteria-associated cells targeted them for phagocytosis by
uninfected macrophages, and could bypass the anti-phagocytic
activity of Yersinia Yops (Bergman et al., 2009). Notably, CD8+
T cells were not responsible for resistance to YopP-expressing
Y. pestis, (Zauberman et al., 2009). The more cytotoxic YopP
may bypass the requirement for CD8+ T cell-mediated killing
due to elevated cytotoxicity induced by the bacteria themselves.
These studies collectively suggest that regulation of cytotoxicity
during Yersinia infection impacts virulence, and that a balance
between the cytokine-blocking and death-inducing functions of

YopJ is required for optimal virulence. Specifically, absence of
YopJ results in failure of Yersinia to suppress cytokine pro-
duction or induce cell death and causes a defect in dissemi-
nation. However, Y. pseudotuberculosis expressing YopP, which
enables stronger inhibition of cytokine production and elevated
levels of cell death, are also significantly attenuated in vivo
(Figure 2). Thus, while the relative contributions of bacteria-
induced and T cell-induced cell death during Yersinia infection
in vivo are not yet defined, activation of cell death in vivo either
in response to YopJ activity, or as a consequence of T-cell-
mediated cytotoxicity likely promotes immune responses against
Yersinia.

In vivo CONSEQUENCES OF CELL DEATH DURING INFECTION
Apoptotic cell death is generally viewed as non-inflammatory
or immunosuppressive, and YopJ-dependent cell death has been
characterized as apoptosis (Mills et al., 1997; Monack et al.,
1997, 1998; Ruckdeschel et al., 1997, 1998). However, apop-
totic cell death can also promote immune responses. For exam-
ple, anthracyclin treatment of tumor cells causes apoptosis that
leads to exposure of calreticulin on the surface, which acts as
a signal to induce phagocytosis and promote anti-tumor T cell
responses in vivo (Kepp et al., 2009). Similarly, the dendritic cell
C-type lectin receptor, DNGR-1, can promote cross-presentation
of apoptotic cell antigens by CD8α+ DCs to CD8+ T cells in
both non-infectious and infectious settings (Sancho et al., 2009;
Ahrens et al., 2012). Dendritic cells that phagocytose bacterially-
infected apoptotic cells produce both the immunoregulatory
cytokine TGFβ, and the inflammatory cytokine IL-6, which
together promote the differentiation of naïve CD4+ T cells into
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TH17 cells (Torchinsky et al., 2009). These cells play a critical
role in anti-bacterial immunity and pathological inflammatory
responses at mucosal barrier surfaces (Ye et al., 2001; O’Connor
et al., 2009; Sonnenberg et al., 2010). Investigating whether these
mechanisms promote immune responses against Yersinia infec-
tion may provide new insights into both anti-Yersinia immunity
and potential bacterial evasion strategies (Lin et al., 2011; Smiley,
2008).

CONCLUDING REMARKS
Understanding the control of programmed cell death
remains essential for understanding anti-bacterial immunity.
Appropriately distinguishing pathogens and non-pathogens is
critical both for host defense and the maintenance of tissue
homeostasis. The ability to detect conserved bacterial virulence
activities, such as the disruption of actin cytoskeleton or inhi-
bition of core signaling pathways, provides a mechanism for
rapidly sensing the presence of pathogens. Induction of cell
death in response to microbial virulence activities is an evolu-
tionarily conserved response from plants to higher eukaryotes

that limits the spread of infection. In higher organisms, dis-
tinct forms of programmed cell death, including apoptosis,
pyroptosis, and necrosis, can have differential effects on down-
stream responses. Various cell types may have differing thresholds
for activation of these distinct death pathways due to differ-
ential expression of pro-survival, pro-apoptotic, and immune
sensor proteins. Thus, understanding how cells die and how
cell death influences both the local microenvironment and
ensuing systemic response may provide key insight into new
approaches to modulate both antimicrobial immune responses
and immunopathologies that result from dysregulation of these
death pathways.
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