
REVIEW ARTICLE
published: 30 September 2013
doi: 10.3389/fcimb.2013.00054

Autophagic clearance of bacterial pathogens: molecular
recognition of intracellular microorganisms
Maria Eugenia Mansilla Pareja and Maria I. Colombo*

Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Médicas, Instituto de Histología y Embriología-CONICET, Universidad Nacional de Cuyo,
Mendoza, Argentina

Edited by:

Amal O. Amer, The Ohio State
University, USA

Reviewed by:

Amal O. Amer, The Ohio State
University, USA
Christian Muenz, University of
Zurich, Switzerland

*Correspondence:

María I. Colombo, Laboratorio de
Biología Celular y Molecular,
Facultad de Ciencias Médicas,
Instituto de Histología y
Embriología-CONICET, Universidad
Nacional de Cuyo, Casilla de Correo
56, Centro Universitario, Parque
General San Martín, 5500 Mendoza,
Argentina
e-mail: mcolombo@fcm.uncu.edu.ar

Autophagy is involved in several physiological and pathological processes. One of the
key roles of the autophagic pathway is to participate in the first line of defense
against the invasion of pathogens, as part of the innate immune response. Targeting
of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within
vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling
also the spreading of the infection. In this review we will describe the means used by
diverse bacterial pathogens to survive intracellularly and how they are recognized by the
autophagic molecular machinery, as well as the mechanisms used to avoid autophagic
clearance.
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INTRACELLULAR PATHOGENS: DIFFERENT SURVIVAL
STRATEGIES
Certain pathogens invade host cells to be protected from systemic
immunity. However, these microorganisms face the challenge
posed by intracellular innate defense responses designed to elim-
inate the invader. Therefore, once in the host cell, pathogens
use sophisticated strategies to avoid destruction. These strategies
comprise: (i) lysis and escape from the phagosome/vacuole; (ii)
modification of the phagosomal compartment; (iii) survival in
acidic/degradative compartments. Even though, this classification
it is useful, it is not strict and some microorganisms may use more
than one strategy to actually survive in the host cell. In this review
we describe selected bacterial pathogens that belongs to each of
the groups mentioned above which are responsible for serious
diseases both in humans and animals.

PATHOGENS THAT LYSE AND ESCAPE FROM THE CONTAINING
VACUOLE
Listeria monocytogenes
L. monocytogenes is a Gram-positive bacterium that causes a dis-
ease called listeriosis (Pamer, 2004; Lecuit, 2007) which involves
severe gastroenteritis, infections, and central nervous system
infections. This bacterium has the ability to lyse the vacuole
after its entry into epithelial cells and macrophages. Subsequently,
it replicates in the cytoplasm and spreads to other cells owing
to an actin-based motility and formation of a secondary two-
membrane vacuole in the neighboring cell, which is subsequently
lysed.

L. monocytogenes secretes a pore-forming cytolysin called lis-
teriolysin O (LLO) which plays an essential role in the escape
step from the phagosome (Goldfine and Wadsworth, 2002; Kayal

and Charbit, 2006). Secreted LLO inserts into phagosomal mem-
branes and forms transmembrane pores that lead to phagosome
disruption. This listeriolysin is encoded by the hly gene which is
part of a virulence gene cluster (Dussurget et al., 2004; Scortti
et al., 2007). The acidic environment of phagosomes (pH 5.5)
is optimal for the action of LLO to pierce the phagosomal
membrane.

Phospholipases also contribute to the escape of Listeria from
the phagosome and play a key role in the disruption of the
vacuolar membrane. Listeria secretes two C-type phospholi-
pases, phosphatidylinositol-specific phospholipase C (PI-PLC)
and phosphatidylcholine-specific phospholipase C (PC-PLC).
These enzymes act specifically in the initial degradation of the
inner membrane. It is believed that PI-PLC participates in the
efficient lysis of primary vacuoles (Goldfine and Wadsworth,
2002) after direct invasion of host cells into a single mem-
brane compartment. Subsequently, it is required the action of
LLO which inserts into the vacuole membrane allowing access of
PLC to the membrane leaflets. On the other hand PC-PLC par-
ticipates in the rupture of the double membrane of secondary
vacuoles where Listeria resides after infecting a neighboring cell.
PC-PLC is activated through proteolytic cleavage by the bacte-
rial acid-dependent metalloprotease Mpl, which also cleaves the
actin nucleator ActA that is necessary for actin-mediated pro-
trusion. After internalization by cell-to-cell spread, PC-PLC and
PI-PLC participates in the dissolution of the inner membrane
as they have preference for phosphatidylethanolamine, phos-
phatidylserine, and phosphatidylinositol lipid constituents of the
inner leaflet. Acidification permits LLO secretion and perforation
of the outer membrane. Then, PC-PLC completes the membrane
dissolution as it also has preference for phosphatidylcholine lipids
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at the outer leaflet. Once in the cytoplasm, Listeria generates
actin comets to move around and to infect neighboring cells by
protruding at the plasma membrane.

Shigella flexneri
S. flexneri is a Gram-negative bacterial pathogen that causes
dysentery, a disease called shigellosis that is manifested by severe
diarrhea. During the early stages of infection, the bacteria are
phagocytosed by macrophages and dendritic cells that are present
in the follicle dome. Its intracellular fate includes escape from the
phagocytic vacuole and induction of macrophage apoptosis.

S. flexneri utilizes a Type III (T3SS) secretion system to release
protein effectors that manipulate the host cell. During the entry
it secretes IpaB and IpaC that assemble into a complex (Blocker
et al., 1999) within the host cell membrane to trigger bacterial
uptake allowing, in addition, the translocation of other effec-
tors (e.g., IpaA and IpgD) into the cytoplasm (Blocker et al.,
2003). This complex also inserts into the vacuole membrane,
thereby causing phagosomal lysis and escape into the cytoplasm.
The S. flexneri-secreted protein IpaD facilitates the insertion of
IpaB—IpaC pores into the membrane (Sansonetti et al., 1986;
Blocker et al., 1999).The lysis of the vacuole is accompanied by
the recruitment of cytosolic galectins to the remnant membranes
after phagosome rupture (Paz et al., 2010).Once in the cyto-
plasm, another effector protein VirG (also called IcsA), an outer
membrane protein, is gradually accumulated at one pole of the
bacterium (Ogawa and Sasakawa, 2006). Vir G activates the nucle-
ation of actin filaments during multiplication and is capable of
interacting with N-WASP (a member of the Wiskott-Aldrich syn-
drome protein family), which is required for actin polymerization
mediated by the Arp2/3 complex. VirA, another effector, was also
recently identified to degrade tubulin. Thus, via the formation
of actin tails S. flexneri propels through the cytoplasm moving
towards the plasma membrane with VirA as a pivotal component
creating a “tunnel.” S. flexnerii eventually moves through the host
cell cytoplasm at the tight junctions and is phagocytosed by the
neighboring cell, leading to intercellular spreading.

Mycobacterium marinum
M.marinum is a close relative of M. tuberculosis that causes a
tuberculosis-like disease in fish. Both M. tuberculosis and M. mar-
inum have a specialized type VII secretion system ESX-1 encoded
by genes of RD1 (region of difference 1) and it is involved in
the export of virulence proteins like ESAT-6, CFP-10, EspA, and
Mh3881c. It has been shown that ESX-1plays an essential role in
the escape of M. marinum from the Mycobacterium-containing
vacuole (MCV) and also for lysis of the host cell plasma mem-
brane (Abdallah et al., 2007; Xu et al., 2007). Secreted ESAT-6 may
cause membrane pore formation in the MCV, facilitating M. mar-
inum escape from the phagosome toward the cytoplasm where
induces actin polymerization leading to bacterial motility and cell
to cell spread. Actin polymerization requires the activation of host
Arp2/3 by a member of the WASP family (Stamm et al., 2003;
Smith et al., 2008). Also it has been shown that M. marinum
and M. tuberculosis contain multiple copies of phospholipase C
that could enhance membrane pore formation but the role of
these enzymes requires further investigation. Interestingly, recent

studies report that a fraction of M. tuberculosis and M. lep-
rae escape from their phagosomal compartment and invade the
cytosol in myeloid cells (van der wel et al., 2007).

M. marinum also modifies the composition of the phagosome.
The association with the vacuolar H+-ATPase is undetectable at
6 h postinfection and during the proliferation phase the vacuole
avoids the delivery of cathepsin D, a lysosomal protease, to the
phagosomal lumen (Lerena and Colombo, 2011).

Group A streptococcus (GAS)
Streptococcus pyogenes, also known as Group A Streptococcus
(GAS) is a common pathogen that causes a variety of acute
infections including pharyngitis, skin infections, acute rheumatic
fever, and life-threatening necrotizing fasciitis.

GAS enters non-phagocytic human cells via endocytosis and
their phagosomes are labeled by EEA1, an early endosomal
marker. GAS produces a variety of pathogenic factors such
as streptolysin O (SLO), superantigens, and DNase. Bacterial
cytolysin SLO is known to trigger multiple cellular responses,
such as the induction of inflammatory cytokines and apoptosis
but its principal function is to act as a cholesterol dependent pore
forming cytolysin. The toxin inserts into the endosomal mem-
brane thus, allowing GAS escape from the endosome-lysosomal
pathway (Nakagawa et al., 2004). It is also known that SLO
and LLO share 60% amino acid identity, and that their three-
dimensional structures and characteristic domains are highly
conserved.

Following bacterial escape into the cytoplasm, a population of
GAS is captured and degraded by autophagy since the sequester-
ing vacuoles acquire lysosomal enzymes leading to GAS degra-
dation (Nakagawa et al., 2004). It is believed that the same SLO
that promotes the bacterial escape from phagosomes also induces
autophagy in host cells (please, see below).

PATHOGENS THAT MODIFY THE PHAGOSOMAL COMPARTMENT
Legionella pneumophila
L. pneumophila is a facultative intracellular Gram-negative bac-
terial pathogen that in humans causes Legionnaires’ disease that
leads to a potentially lethal pneumonia following inhalation
(Krech et al., 1980; Marra and Shuman, 1992; Xu et al., 2007).
L. pneumophila enters to the cell via phagocytosis, and generates
a phagosome that avoids the interaction with the endo/lysosomal
pathway demonstrated by the lack of plasma membrane mark-
ers and endocytic markers on the Legionella-containing com-
partment (LCC) as early as 15 min after uptake (Clemens and
Horwitz, 1992; Marra and Shuman, 1992). Instead, LCC is stained
positive for ER-derived proteins like BIP and calnexin, the recom-
binant ER marker KDEL-YFP as well as mitochondria markers
(Horwitz, 1983). Furthermore, the vacuoles are surrounded by
double membranes studded with ribosomes and fuse with vesicles
derived from the secretory pathway (Swanson and Isberg, 1995;
Kagan and Roy, 2002) since it has been shown that at 1 h post-
infection the LCC are decorated by the protein Rab1 and with the
v-SNARE Sec22b (Derre and Isberg, 2004). L. pneumophila has
numerous effector proteins which translocate into the host cell
by the Dot/Icm system and modulate host GTPases that regulate
membrane transport.
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Interestingly, after several hours of infection, the LCC becomes
acidic and is labeled by lysosomal markers, suggesting that at
later infection stages it fuses with lysosomes (Sturgill-Koszycki
and Swanson, 2000) where finally replicates and spreads cell to
cell. It has been shown a bacterial flagellin induces pyroptosis in
macrophages which leads to a host-derived pore forming activity,
dependent on the Nlrc4 inflammasome with the consequence of
host cell lysis and release of the bacteria.

Salmonella typhimurium
S. typhimurium is a Gram-negative bacterium that infects humans
among other hosts and is a causative agent of gastroenteritis
(Finlay and Brumell, 2000; Haraga et al., 2008). S. typhimurium,
similar to S. flexneri, has a T3SS used to inject virulence fac-
tors into the host cells cytosol (Brumell et al., 1999).Some of
these effectors promote the engulfment of the bacterium into a
membrane bound compartment called the Salmonella-containing
vacuole (SCV) that undergoes a maturation process (Brumell and
Grinstein, 2004). The membrane of the SCV forms Salmonella-
induced filaments (Sifs), which are long tubular structures neces-
sary for bacteria replication (Garcia-del et al., 1993; Brumell et al.,
2002; Birmingham et al., 2005). One effector protein SifA is indis-
pensable for the formation of these structures and to manipulate
the trafficking of the SCV (Beuzon et al., 2000; Brumell et al.,
2001) inside the host cell. Elimination of the SifA function in
manipulating the host trafficking machinery leads to vacuole dis-
ruption. A Salmonella sifA mutant rapidly becomes cytosolic, and
its virulence is strongly attenuated in mice.

Early after internalization, the SCV transiently acquires the
early endosome antigen-1 (EEA1) and the small GTPaseRab5.
The S. enterica effector protein SopB is a phosphoinositide phos-
phatase that maintains Rab5 recruitment to arrest vacuole matu-
ration. The vacuole then acquires late endosomal markers, such
as the GTPaseRab7 and lysosomal-associated membrane protein
1(LAMP-1) (Brumell and Grinstein, 2004). However, it does not
acquire mannose-6-phosphate receptor (M6PR) and cathepsin D
suggesting that the SCV is not able to fuse with lysosomal com-
partments. These features allow the bacteria to rapidly replicate
within the late SCV preventing their degradation in the lysosomal
environment (Knodler and Steele-Mortimer, 2003; Brumell and
Grinstein, 2004).

Mycobacterium tuberculosis
M. tuberculosis is an intracellular parasite that causes an infec-
tious disease called tuberculosis (Lee et al., 1996). This bacterium
survives in infected macrophages by blocking the maturation and
biogenesis of the phagolysosome thus, the mycobacterial phago-
somes do not acquire late endosomal and lysosomal characteristic
(Armstrong and Hart, 1971; Russell et al., 2002).

M. tuberculosis produces several lipids, including species
of phosphatidylinositol glycosilated. Many of these are fac-
tors involved in modulating phagosome maturation like LAM
(lipoarabinomannan) that is believed to interfere with phago-
somal acquisition of late endosomal markers (Fratti et al.,
2001, 2003).On the other hand, PIM (phosphatidylinositol
mannoside),which intercalates into host cell endomembranes
(Beatty et al., 2000), stimulates homotypic early endosomal

fusion and phagosome/early endosome fusion. M. tuberculosis
also manipulates the recruitment and function of several Rab pro-
teins, key molecules involved in vesicular transport.(Kyei et al.,
2006; Roberts et al., 2006; Sun et al., 2007; Cardoso et al., 2010;
Seto et al., 2011; Kasmapour et al., 2012). Thus, M. tuberculosis is
a bacterium considered to belong to the group of pathogens that
modify the phagosomal compartment. However, as mentioned
above, it has been found that a fraction of M. tuberculosis and
M. leprae can escape their compartment and invade the cytoplasm
of the host (van der wel et al., 2007) and that a functional secre-
tion system is required for a proper vacuolar escape. Indeed, it
has been shown that the ESX-1 secretion system is responsible
for the phagosomal membrane permeabilization. This allows the
recognition of extracelular bacterial DNA and the access of the
cytosolic components of the ubiquitin-mediated autophagy path-
way. Recently, to investigate the phagosomal escape of M. tuber-
culosis to the cytosol a fluorescence resonance energy transfer
(FRET) based method was used showing that M. tuberculosis
�RD1 or BCG, both lacking the ESX-1 secreted protein ESAT-
6 were unable to escape toward the cytoplasm (Simeone et al.,
2012). This result points to a critical role of ESAT-6 in the escape
mechanism.

Therefore, it is likely that M. tuberculosis uses more than one
strategy to survive intracellularly, modifying the phagosome and
also escaping toward the cytoplasm by lysing the containing-
compartment.

PATHOGENS THAT SURVIVE IN ACIDIC/DEGRADATIVE
COMPARTMENTS
Coxiella burnetii
C. burnetii is an obligate intracellular bacterium that is the
causative agent of Q-fever. It directs the biogenesis of a
membrane-bound compartment called “parasitophorous vac-
uole” (PV) where the bacterium benefits of the acidic pH for its
metabolic activation and resists the degradative function of the
compartment.

C. burnetii PV transits the endolysosomal pathway to form
a large phagolysosome (Voth and Heinzen, 2007). During the
first minutes after uptake PV interacts with the early endosomal
pathway as revealed by the presence of the markers Rab5 and
EEA1. Later, the PV interacts with late endosomes as demon-
strated by the recruitment of Rab7 (Romano et al., 2007) and
with lysosomal compartments as it has been shown by the colo-
calization with other late endosome/lysosome markers such as
LAMP-1, CD63, and M6PR.(Heinzen et al., 1996; Ghigo et al.,
2002; Sauer et al., 2005; Shannon et al., 2005; Beare et al., 2009).
In addition, the Coxiella PV contains active lysosomal hydrolases
and cathepsin D showing that the maturing PV eventually fuses
with lysosomal compartments, as evidenced also by acidification
to pH 5.0 (Voth and Heinzen, 2007).This bacteria compartment
also interacts with the autophagic pathway since it displays the
autophagy protein LC3 on the limiting membrane even at very
early times after infection (e.g., 5–10 min). Moreover, induc-
tion of autophagy favors Coxiella replication and development
of the replicative vacuole (Gutierrez et al., 2005; Romano et al.,
2007).Also it has been shown that the early secretory pathway
contribute to the development of the CRV as demonstrated by
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the presence of Rab1 at its membrane. In addition, we have
also demonstrated the participation of several SNAREs (Vamp3,
Vamp7, and Vamp8) in homotypic and heterotypic fusion events
in order to consolidate the replicative vacuole (Campoy et al.,
2011, 2013).

C. burnetii actively manipulates PV biogenesis and other host
cell processes for its successful replication. The PV requires bac-
terial protein synthesis for its maturation by the organism’s
Dot/Icm type IV secretion system (T4SS) since treatment with
chloramphenicol, a bacterial protein synthesis inhibitor, impedes
formation of the large and spacious PV (Howe et al., 2003).
Inhibition of bacterial protein synthesis also hampers the recruit-
ment of the protein LC3 and other critical factors required for the
generation of the large replicative compartment (Romano et al.,
2007).

THE AUTOPHAGIC PATHWAY
MOLECULAR COMPONENTS
In eukaryotic cells three major types of autophagy have been
described: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA). In microautophagy, portions of the
cytoplasm are engulfed by invagination, protrusion and fission of
the lysosomal membrane for a review see (Mijaljica and Devenish,
2011; Li et al., 2013). In contrast, in CMA unfolded and soluble
proteins are translocated directly across the limiting membrane of
the lysosome. On the other hand, macroautophagy is a conserved
cellular degradation process in which portions of cytoplasm and
organelles are sequestered into a double-membrane vesicle (i.e.,
autophagosome), and delivered by a vesicular transport event to
a degradative organelle (i.e., the vacuole/lysosome), for breaking
down and eventual recycling of the resulting macromolecules.In
this review we will focus on macroautophagy, hereafter referred to
as autophagy. The basic function of autophagy is in the turnover
of long-lived proteins and the removal of protein aggregates
or damaged organelles but it also has diverse roles in innate
and adaptive immunity, such as resistance to pathogen inva-
sion. Autophagy can be induced as a cellular response to various
stress conditions, such as nutrient limitation and oxidative stress
(Levine and Klionsky, 2004).

In mammalian cells, the first structural step in autophagy is
the formation of the phagophores which are initiated as mem-
brane curved prolongations called isolation membranes. These
structures later become autophagosomes with a double mem-
brane. The endoplasmic reticulum (ER) is believed to be involved
in the origin of the phagophore although it has been demon-
strated that other compartments also take part (Axe et al., 2008;
Zoppino et al., 2010; Militello and Colombo, 2011). Subsequently,
the autophagosomes undergo maturation into autolysosomes by
fusion with endo/lysosomal organelles, the inner single mem-
brane is released into the lumen and subsequently the captured
cytoplasmic targets are degraded (Ohsumi, 2001; Levine and
Klionsky, 2004; Klionsky, 2007; Mizushima et al., 2008).

There are a number of signaling complexes and pathways
involved in the regulation of the initiation and maturation of
autophagy. Also several autophagy-related (ATG) genes essen-
tial to drive this cellular process have been identified, both for
selective and nonselective types of autophagy. Identification of the

ATG genes in yeast, and the finding of orthologs in other organ-
isms, has revealed the conservation of the autophagic machinery
in all eukaryotes.

The core proteins and complexes that constitute the
autophagic machinery and their main roles in autophagy are
described below. (Figure 1).

mTOR
The protein mTOR (mammalian target of rapamycin) is a ser-
ine/threonine kinase highly conserved, involved in several regu-
latory pathways that acts as a sensor of nutrient or energy status
and growth factors. mTOR regulates autophagy induction playing
an inhibitory role in this process (Carrera, 2004). mTOR exists
in two distinct complexes, mTORC1 and mTORC2 that are con-
served from yeast to mammals (Loewith et al., 2002),mTORC1
is inhibited upon nutrient deprivation or by rapamycin allow-
ing an increase in autophagic activity (Noda and Ohsumi, 1998).
The mTOR kinase may inhibit autophagy through two general
mechanisms: (i) by regulating Atg proteins, in a direct or indirect
manner, thus, avoiding the formation of autophagosomes. (ii) by
acting in a signal transduction cascade through various down-
stream effectors to control both translation and transcription.

ULK complexes. In mammals, ULK1 and ULK2 (UNC- 51-like
kinases) are the homologs of the yeast serine/threonine kinase
Atg1 that plays a key role in the induction of autophagy, acting
downstream of TORC1(Klionsky, 2005; Chan et al., 2007).These
proteins, in a complex with Atg13 and Atg101 and focal adhe-
sion kinase family interacting protein of 200 kDa (FIP200, a
functional ortholog of Atg17), are essential for autophagosome
formation in mammals (Hosokawa et al., 2009a,b; Mercer et al.,
2009).ULK and FIP200 form a complex that is required during an
early step in autophagosome formation. Atg13 directly interacts
with ULK1, ULK2, and FIP200 independent of its phosphoryla-
tion state and FIP 200 binds to ULK1 and ULK2 independently
of the nutrient status (Hara et al., 2008; Jung et al., 2009).The
ULK1–Atg13–FIP200 complex contains mTORC1 and is con-
stantly assembled and, upon autophagy induction is recruited to
the phagophore. Under basal conditions, this complex interacts
directly with mTOR, inhibiting ULK1/2 kinase activity. This lat-
ter regulates the formation of autophagosome and association
of some Atgs with the phagophore. Under nutrient starvation,
mTORC1 is dissociated from the ULK1 complex, with the result-
ing ULK1/2 dephosphorylation and consequent phosphorylation
of FIP200, Atg13, and itself (Hosokawa et al., 2009a,b).

Phosphatidylinositol 3-Kinase complexes. In mammalian cells,
there are 3 classes of phosphatidylinositol 3-Kinases (PI3K): (i)
Class I PI3K (protein kinase B, PKB, also known as Akt) is an
inhibitor of autophagy. (ii) Class II PI3K activity is thought to
have no relevance to autophagy control. (iii) Class III PI3K, a
functional ortholog of yeast Vps34 (vacuolar protein sorting 34),
is an activator of autophagy, presumably acting downstream of
mTOR. In mammals, the formation of class III PtdIns3Kcomplex
is conserved. Vps34 interacts with Vps15 (also called p150)
and with Beclin1, the ortholog of Vps30/Atg6 (Panaretou et al.,
1997; Liang et al., 2008). The Beclin 1/PI3K-III complex plays
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FIGURE 1 | Key regulatory molecules involved in autophagosome

formation. The diagram shows the steps that lead to the formation
and closure of the autophagosome and subsequent maturation into

an autophagolysosome/autolysosome. The main regulatory molecules
and signaling complexes involved in autophagosome formation are
depicted.

a crucial role at an early step of autophagosome formation in
mammalian cells. Beclin1 localizes to the TGN (trans-Golgi net-
work), the mitochondria, the perinuclear membrane and the
ER and it exists in functionally distinct hVps34-containing pro-
tein complexes, including several modifier components such
as Atg14L or Barkor (the ortholog of Atg14), which plays a
role in initiation and UVRAG (ultraviolet irradiation resistance-
associated gene) the ortholog of Vps38, which enhances the
activity of Vps34 by stabilizing the association of Beclin1
and Vps34.

Ubiquitin-Like Protein Conjugation systems. Autophagosome
formation is believed to be driven by two protein-protein and
protein-lipid conjugation systems that include the ubiquitin-like
proteins Atg12 and Atg8. Both conjugation systems are evo-
lutionarily conserved from yeast to humans The first system
yields an Atg5-Atg12 covalent conjugate that associates non cova-
lently with Atg16L1 (the mammalian equivalent of yeast Atg16)
directing the site of the formation of the second protein-lipid
conjugate. The second system yields LC3-II (Atg8-PE), which
assists in autophagic membrane growth (Mizushima et al., 1998;
Mizushima, 2002; Hanada et al., 2007).

– Atg12-Atg5 Conjugation System: Atg12 is covalently attached
to Atg5 through an isopeptide bond between a C-terminal
glycine of Atg12 and an internal lysine residue of Atg5. The
conjugation reaction is catalyzed by two additional proteins,
Atg7 and Atg10.Atg16, a coil-coil protein, binds preferen-
tially to the Atg12-Atg5 conjugate. Atg16L links Atg12-Atg5
through self-oligomerization forming an Atg12-Atg5-Atg16L
multimeric structure. This is necessary for the elongation of
the phagophores and to specify the site of LC3 lipidation. This
complex is not present in the mature autophagosome because

it dissociates from the membrane after the formation of the
autophagosome, thus, serving as a specific phagophore marker
(Fujita et al., 2008a,b).

– LC3 II (Atg8-PE):LC3, the mammalian homolog of Atg8, is
conjugated to a membrane lipid, phosphatidylethanolamine
(PE) and it is present in the early isolation membranes and
autophagosomes. Atg4, a cysteine protease, is responsible for
processing pro-LC3 by cleaving a single Arg residue, conse-
quently exposing Gly in its C-terminus. LC3 can be activated
by Atg7 (E1) in an ATP-dependent manner and transferred
to a conjugating E2 enzyme, Atg3. In a final step, LC3 is
conjugated to PE through an amide bond between the C-
terminal glycine and the amino group of PE. LC3-PE is
tightly associated with membranes, being an integral mem-
brane protein present in autophagosomes and it is utilized
as a marker to monitor its formation as well as the activity
of autophagy. Unlike the Atg12-Atg5 conjugate, LC3-PE con-
jugation is a reversible process in which Atg4 liberates LC3
from its target lipid. The released LC3 is recycled and used in
another conjugation reaction to allow efficient progression of
autophagy.
There are multiple mammalian Atg8 like proteins, divided
into two different subfamilies: LC3s and γ-aminobutyric
acid receptor associated proteins (GABARAPs), all associated
with autophagosomes. These subfamilies function at differ-
ent steps of this process, LC3 mediates the elongations of the
autophagic membrane and GABARAPs participates in the dis-
sociation of the Atg12-Atg5-Atg16L complex. Among them,
LC3 is most abundant in autophagosomal membranes and
is well established as a marker to monitor the autophago-
some and autophagic activity. The relative amount of
membrane-bound LC3-II in general reflects the abundance of
autophagosomes.
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AUTOPHAGY REGULATION
Autophagy is a highly regulated process that plays an impor-
tant role in cellular homeostasis under basal levels through the
elimination of damaged organelles as well as the turnover of
long-lived proteins. On the other hand, under stress conditions,
such as nutrient starvation, hypoxia, oxidative stress, pathogen
infection, the level of autophagy elevates as a response, result-
ing in adaptation and survival; however, deregulated or excessive
autophagy may lead to cell death (Yoshimori, 2004). Thus, defec-
tive autophagy has been implicated in the pathogenesis of diverse
diseases, such as certain types of neuronal degeneration and can-
cer, and also in aging. More recently, in epithelial cells from cystic
fibrosis (CF) patients, characterized by a dysfunctional CF trans-
membrane conductance regulator (CFTR), a marked inhibition
of autophagy has been observed (Luciani et al., 2010). Therefore,
CF is considered a disorder with defective autophagy which is
believed to contribute to the pathogenesis of the CF.

The regulation of the autophagic activity to prevent an unbal-
anced situation can be controlled by several complexes. As
mentioned above, mTOR is a kinase that acts as a central sen-
sor of growth factors, nutrient signals, and energy status and
serves as a master regulator of autophagy. mTORC1 downregu-
lates autophagy through the class I PI3K-protein kinase B (PKB,
also known as Akt) pathway. Thus, the PI3K-I/PKB pathway is
involved in the negative modulation of autophagy and it func-
tions at the plasma membrane.Class I PtdIns3K is activated by
activated receptor tyrosine kinases that autophosphorylate upon
association with growth factors leading to an activation of PKB
that phosphorylates a downstream protein complex, TSC2, acti-
vating mTORC1 (Vanhaesebroeck and Alessi, 2000; Brazil and
Hemmings, 2001; Axe et al., 2008).

Apart from being a nutrient sensor, mTOR can also sense
changes in the cellular energy levels via AMPK (AMP-activated
protein kinase) (Noda and Ohsumi, 1998).AMPK is a sensor of
hypoxia bioenergetics, and is activated by a decreased ATP/AMP
ratio produced during nutrient and energy depletion. Active
AMPK leads to phosphorylation and activation of TSC1/TSC2
thus, inhibiting mTORC1 activity (Hoyer-Hansen and Jaattela,
2007). On the other hand, AMPK also inactivates mTORC1 by
direct phosphorylation of the mTOR binding partner raptor
which is important for the inhibition of mTOR (Gwinn et al.,
2008).In addition, AMPK directly phosphorylates and activates
the complex ULK1/2, resulting in the activation of autophagy
(Kim et al., 2011).

Beclin 1/hVps34 complex contributes to autophagosome for-
mation by allowing other Atg proteins to relocate to the pre-
autophagosomal structure. Beclin 1 acts as a platform, recruiting
activators or repressors of Beclin 1/hVps34-dependent autophagy
and the whole complex can be modulated by negative or positive
regulators. Beclin1 was initially identified as a binding partner
of the anti-apoptotic protein Bcl-2, an interaction that inhibits
autophagy by preventing the association of Beclin1 with Vps34.
Bcl-2 proteins do not directly compete with Vps34 for bind-
ing to Beclin 1, since they bind to the Bcl-2 binding domain of
Beclin 1, whereas Vps34 is thought to bind to its EC domain.
Hence, the binding of Bcl-2 to Beclin1 is tightly regulated and
widely exploited by pathogens and by other regulatory processes.

On the other hand, several proteins have been discovered to be
active components of the pro-autophagic multimolecular com-
plex: (i) UVRAG and Beclin 1 interact directly through their
coiled-coil domain (Itakura et al., 2008; Liang et al., 2008) and
is negatively regulated by Rubicon. (ii) AMBRA1 (the Activating
Molecule in Beclin 1-Regulated Autophagy) stabilizes the asso-
ciation of Vps34 with Beclin 1(Fimia et al., 2007). (iii) The
small GTPase Rab5, a regulator of early endocytosis, also inter-
acts with and activates Vps34 in its complex with Beclin 1 and
increases autophagosome formation. The PI3P generated by the
Beclin 1/hVps34 complex allows the recruitment of Wipi (Atg18)
via a PH domain and DFCP1 via a FYVE domain (Itakura and
Mizushima, 2010; Matsunaga et al., 2010), which are important
players in autophagosome formation.

It is important to take into account that a significant crosstalk
between apoptosis and autophagy exits. As explained above the
interaction between Bcl-2and Beclin1is key for the switch between
autophagy and apoptosis. However, proteins that were originally
thought to belong to the autophagic pathway have been found to
modulate apoptosis either by inhibiting or inducing this type of
cell death. For example ATG5, that plays an essential role in induc-
ing autophagy, also functions as a pro-apoptotic protein when is
cleaved by calpain (Yousefi et al., 2006).

As indicated above, autophagy is defective in epithelial cells
from CF patients (Luciani et al., 2010). Interestingly, as a con-
sequence of mutations on the CFTR the conformational defective
protein leads to autophagy inhibition through the sequestration
of Beclin 1 into aggresomes mediated by a ROS-transglutaminase
complex [for a review see Villella et al. (2013)]. In addition, these
autophagy deficient cells also accumulate the ubiquitin binding
protein p62 (please see below), causing proteosome overload and
aggresome formation contributing to hamper the clearance of the
misfolded proteins. This situation generates a vicious loop with
impeded autophagy and proteosomal degradation.

XENOPHAGY: ANTIBACTERIAL AUTOPHAGY
SELECTIVE RECOGNITION OF BACTERIAL PATHOGENS BY
AUTOPHAGY: MOLECULAR MACHINERY INVOLVED
Autophagic adaptors are proteins that participate in the recogni-
tion of pathogens by the autophagic machinery. These adaptors
interact with both, components of the autophagic machinery
and specific cargos targeted for autophagy degradation (Bjorkoy
et al., 2005; Kirkin et al., 2009).The adaptor proteins binds both
ubiquitin by means of an ubiquitin-associated (UBA) domain
and ATG8/LC3 via an identified WXXL-like sequences known as
AIM (Atg8-family interacting motif) and LIR (LC3 interacting
domain region), respectively. LIRs consist of a beta-strand con-
taining the WxxL motif that forms an intermolecular beta-sheet
with Atg8/LC3 (Noda et al., 2010). These motifs are present in
the protein p62 and neighbor of BRCA1 gene1 (NBR1) involved
in autophagic degradation of protein aggregates, as well as in
Atg32 and Nix required for mitophagy and in Atg19 for the
cytoplasm-to-vacuole targeting pathway, linking the cargo to the
autophagosome generating machineries [for a revision see Noda
et al. (2010)].

As mentioned above, p62 (also known as SQSTM1) is an adap-
tor protein with multiple protein-protein interaction domains,
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including an UBA domain for binding to ubiquitinated cargo
and a LIR domain for binding to LC3.The protein p62 was ini-
tially known as a molecular adaptor involved in the recognition of
toxic aggregates to be deliver to the autophagic pathway (Bjorkoy
et al., 2005; van der vaart et al., 2008; Komatsu and Ichimura,
2010). However, soon a wider role was uncovered demonstrat-
ing its participation in the detection of intracellular pathogens,
as a molecular component responsible for the targeting of cer-
tain microorganism toward the autophagy pathway, revealing a
novel function for p62 in innate immunity. Thus, the cell uses a
conserved pathway for both the surveillance of misfolded proteins
and intracellular bacteria.

Salmonella enterica serovar Typhimurium (S. Typhimurium)
is known to manipulate the fate of its SCV by injecting effec-
tor proteins into the host cytoplasm via its Type III secretion
system (Hueck, 1998; Knodler and Steele-Mortimer, 2003), and
(Steele-Mortimer et al., 2002; Knodler et al., 2003). However,
a small population of Salmonella that is unable to establish a
stable SCV, is released into the cytoplasm after damaging its
vacuolar niche. Upon entry into the mammalian cytosol the bac-
teria become decorated by a layer of polyubiquitinated proteins
(Perrin et al., 2004; Birmingham and Brumell, 2006). It was
shown that p62 is recruited to S. typhimurium and associates
with ubiquitinated proteins localized to the bacteria (Zheng et al.,
2009).Expression of p62 is required for efficient autophagy of the
pathogen and for the control of bacteria intracellular replication.
Interestingly, p62 is not the only adaptor protein to recognize
intracellular Salmonella. The ubiquitin-coated cytosolic bacte-
ria are also recognized by NDP52 (nuclear dot protein 52 kDa),
an adaptor protein that binds both ubiquitin and LC3, which in
turn, targets them for autophagy contributing to innate immunity
(Thurston et al., 2009).NDP52 by binding the adaptor proteins
Nap1 and Sintbad, recruits TBK1 (Tank-binding kinase 1)an IKK
family kinase. Knockdown of NDP52 and TBK1 facilitates bacte-
rial proliferation and impairs autophagy of Salmonella (Thurston
et al., 2009). Interestingly, it has been shown that the two adap-
tor proteins, p62 and NDP52, are recruited at the same time (i.e.
60–90 min post infection) to bacteria-associated microdomains
independently of each other and that both are required for
antibacterial autophagy of Salmonella enterica (Cemma et al.,
2011).Of note, double knockdown of both effectors do not have
an additive effect on autophagy impairment indicating that they
function in the same pathway and are not redundant (Cemma
et al., 2011).Other pathogens that occasionally invade the cyto-
plasm such as Streptococcus pyogenes are also restricted by NDP52
and TBK1. Recently, the mechanism by which TBK1 restricts
bacterial proliferation has been uncovered. Bacterial wall com-
ponents such as lipopolysaccharide (LPS) activates TBK1 via
the Toll-like receptor 4 (TLR4), a pattern recognition receptor
(Wild et al., 2011).The activated TBK1 phosphorylates another
autophagic receptor, optineurin (OPTN) which in turn binds
to LC3. Indeed, TBK1-mediated phosphorylation of OPTN at
Ser177 increases its affinity for LC3, targeting ubiquitin-coated
cytosolic Salmonella to autophagosomes and favoring its elim-
ination by autophagy. As expected, silencing of OPTN leads to
Salmonella proliferation confirming the requirement for OPTN
for bacterial restriction by autophagy (Wild et al., 2011). A role

for TBK-1 in the autophagic elimination of Mycobacterium tuber-
culosis var. bovis BCG has been also recently reported (Pilli et al.,
2012). It was shown that TBK-1 coordinated the assembly and
function of the autophagic machinery and phosphorylated the
autophagic adaptor p62.

Interestingly, OPTN colocalized with TBK1 and NDP52 but
not with p62 on the surface of Salmonella that has escaped to
the cytoplasm, supporting the idea that several molecular mech-
anisms participate in bacteria clearance (Weidberg and Elazar,
2011). In a recent publication it was shown that the cytosolic
lectin galectin 8 detects damaged pathogen-containing vacuoles.
Galectin 8 mediates the recruitment of NDP52 at early infection
times followed by an ubiquitin-dependent NDP52 recruitment
(Thurston et al., 2012).Thus, this study highlights the recruitment
of NDP52 mediated by two different molecules in a sequential
fashion to ensure the proper clearance of cytoplasmic Salmonella.
(Figure 2).

It was expected that those intruders that are well-adapted to
thrive in the cytoplasm such as Shigella flexneri were not restricted
by NDP52. Indeed, in a previous publication S. flexneri was indi-
cated not to colocalize with ubiquitin or NDP52 (Thurston et al.,
2009) and consistently, NDP52 depletion did not affect S. flexneri
proliferation. However, more recently Pascal Cossart and collab-
orators have shown that p62 and NDP52 target Shigella to an

FIGURE 2 | Intracellular pathogens that damage the containing

phagosomal membrane are targeted by autophagy. Molecular
components responsible for the targeting of certain microorganisms
toward the autophagy pathway are depicted. Several of the autophagic
adaptors such as p62, NDP52, that participate in the recognition of
Salmonella by the autophagic machinery are shown.
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autophagy pathway dependent upon actin and septin, a newly
characterized component of the cytoskeleton. Septin filaments
form a cage in a myosin-dependent manner which traps cytoso-
lic Shigella leading to bacteria restriction by autophagy (Mostowy
et al., 2011). Indeed, the formation of septin cages wrapping
bacteria that colonize the cytosol occurred concurrently with
the acquisition of autophagy markers (Mostowy et al., 2010). In
contrast, the Listeria ActA mutant is targeted to an autophagy
pathway by p62 or NDP52 but independently of septin or actin
(Mostowy et al., 2011). Thus, it seems that the proteins p62 and
NDP52 drive intracytoplasmic Shigella and Listeria to different
autophagic pathways.

In a study by Ogawa and collaborators (Ogawa et al., 2011),
another autophagy cargo receptor has been identified but in this
case the binding partner is not LC3 but upstream molecular
components of the pathway. Tecpr1 (Tectonin domain-containing
protein) binds Atg5 and WIPI-2, a PI(3)P-interacting protein
involved in phagophore formation. Tecpr1, colocalized with Atg5
at Shigella-containing phagophores and its activity is necessary
for efficient autophagic targeting of bacteria. Interestingly, Tecpr1
is also involved in autophagy clearance of protein aggregates
and damaged mitochondria, but it is not required for canoni-
cal autophagy induced by starvation or rapamycin (Ogawa and
Sasakawa, 2011).

In addition to ubiquitin, a role for diacylglycerol (DAG)-
dependent signaling cascade in antibacterial autophagy has
been described (Shahnazari et al., 2010). In this report the
authors have shown that DAG production was necessary
for efficient autophagy of Salmonella. DAG was localized to
bacteria-containing phagosomes and preceded the recruitment
of autophagic markers. Of note, the Salmonella-containing
autophagosomes colocalized independently with either ubiquitin
or DAG, indicating that the DAG-signaling pathway is an alterna-
tive mechanism to control autophagic clearance of bacteria.

Another signaling molecule that has an important role in
both phagosome and autophagosome formation and maturation
is ROS (Reactive oxygen species). Sources of ROS are, among
others, mitochondria, ER, and peroxisomes. In phagocytic cells
an important source of ROS is the NADPH oxidase associated
with the phagosome which has a key function as a microbici-
dal molecule (Babior, 2000; Bylund et al., 2010; Kotsias et al.,
2013) DAG is an upstream activator of the NADPH oxidase and
ROS production is also required for LC3 recruitment to a self-
tailored niche containing L. monocytogenes (Lam et al., 2013);
please also see below next section. Interestingly, ROS actively reg-
ulates autophagy by targeting autophagy gene products such as
the protein Atg4, the hypoxia inducible transcription facto Hif-1a
and also the kinases mTOR and MAPKs (mitogen-activated pro-
tein kinases). In contrast, ROS production can be controlled via
the removal of mitochondria by autophagy (i.e., mitophagy) (for
a comprehensive review see Vernon and Tang, 2013).

One important question is how this autophagic process is ini-
tiated, since the xenophagic event commonly takes places in cells
incubated in full nutrient condition. A critical role for amino
acid and mTOR signaling modulation was recently uncovered.
In a very recent study, it was demonstrated that infection with
Shigella and Salmonella triggered an early state of intracellular

amino acid starvation causing the dissociation of MTOR from
endomembranes and the downregulation of its activity (Tattoli
et al., 2012). Of note, this amino acid starvation signal was caused
by host membrane damage, which was differentially elicited by
Salmonella (a transient response) in contrast to the sustained
starvation signal in Shigella-infected cells.

EVASION FROM AUTOPHAGY RECOGNITION
If autophagy is such a powerful defense mechanism as described
above, how is it possible that certain pathogens have been able
to adapt to survive and defend against this weapon machinery?
What molecular mechanism are they using to be protected? In
this review we will present same examples of how intracellu-
lar pathogens of either a vesicular or cytoplasmic lifestyle evade
autophagy recognition.

A very interesting autophagy escape mechanism has been
unveiled in the case of S. flexneri. Soon after internalization
Shigella disrupt and break out from the containing membrane
vacuole toward the cytoplasm where the bacteria active multiply
and move infecting neighboring cells. This movement is carried
out by directing local actin polymerization at one pole of the bac-
terium which is dependent on the exposure and accumulation of
the bacterial protein VirG (Goldberg et al., 1993).VirG interacts
with N-WASP which in turn via the Arp2/3 complex induces actin
polymerization. A study revealed that VirG, via interaction with
the autophagy protein Atg5, is a key molecule in the targeting of
cytoplasmic Shigella by autophagy (Ogawa et al., 2005). IcsB an
effector protein secreted by Shigella via the T3SS (type three secre-
tion system) is capable of binding VirG inhibiting competitively
the binding of Atg5 to VirG, preventing autophagy targeting of
the bacterium. In contrast, in the icsB mutant, Atg5 binds to the
VirG and cytoplasmic Shigella are recognized by autophagy being
trapped in acidic LC3-positive compartments. As a consequence
the icsB mutant presents a phenotype characterized by deficient
ability to multiply intracellularly. Thus, the binding of IcsB to
VirG which prevents the interaction with Atg5 at one pole of
the bacterium would serve as a shield protecting Shigella against
autophagic recognition. Interestingly, it has been recently shown
that Shigella uses another device to escape from autophagy (Dong
et al., 2012). The VirA effector exhibits potent RabGAP activ-
ity and specifically inactivates the Rab protein, Rab1 disrupting
ER-to-Golgi trafficking. Rab1 has been shown to be required for
autophagosome formation (Zoppino et al., 2010) thus, via VirA
Shigella negatively modulates the autophagic pathway avoiding
this pathogen clearance mechanism.

Listeria monocytogenes also uses an actin-based motility to
escape from autophagy. ActA is the bacterial protein responsi-
ble for actin polymerization once the bacterium has reach the
cytoplasm. It has been shown that a non-motile actA mutant of
L. monocytogenes treated with the bacteriostatic antibiotic chlo-
ramphenicol is trapped by autophagy in the cytoplasm of infected
macrophages (Rich et al., 2003). Although, ActA expression was
sufficient to prevent bacteria targeting by autophagy in the cyto-
plasm of macrophages, ActA expression was not strictly necessary
since an actA mutant was competent to evade autophagy in
the absence of chloramphenicol treatment, indicating that other
virulence factors were involved (Birmingham et al., 2007). It
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was found that the bacterial phospholipases, PI-PLC, and PC-
PLC play an important role in autophagy evasion. More recently
Yoshikawa and collaborators have demonstrated that recruitment
to the bacterial surface of the Arp2/3 complex and Ena/VASP,
mediated by ActA, camouflages the bacteria from autophagic
recognition, regardless of the bacterial capacity for movement.
Thus, an ActA mutant bacteria unable to recruit these actin nucle-
ating proteins were ubiquitylated and subsequently, recruited p62
and LC3, undergoing autophagy (Yoshikawa et al., 2009a,b).

Interestingly, Listeria employs another strategy to avoid
autophagy. Internalins are a family of proteins mostly expressed
at the surface of Listeria (Glaser et al., 2001). The role of one
member of this family, InlK was recently demonstrated as a vir-
ulence factor important for bacteria infection in vivo (Dortet
et al., 2011). The Major Vault Protein (MVP) was identified as
a host partner of InlK. The interaction between InlK/MVP takes
place at the bacterial surface in the cytoplasm of infected cells
independently of actin polymerization. Of note, it was found
that the recruitment of MVP prevents L. monocytogenes from
autophagic recognition, leading to enhanced bacterial survival
in infected cells. Thus, L. monocytogenes utilizes more than one
mechanism to avoid targeting by the autophagic pathway dur-
ing colonization of host cells (Figure 3). Of note, a population
of L. monocytogenes that seems to remain in the phagosome
forms Spacious Listeria-containing Phagosomes (SLAPs), which
are large endosome- or autophagosome-like compartments con-
taining multiple bacteria. These self-tailored compartments do
not mature but require bacterial LLO and host autophagy to
form. L. monocytogenes replicate in these phagosomes, though at
a much slower rate compared to cytoplasmic bacteria and these
compartments have been associated with persistent infection
(Lam et al., 2013)

The Gram-negative tularemia-causing bacterium Francisella
tularensis is a facultative intracellular pathogen capable of surviv-
ing and growing in several mammalian host cells. The bacteria are
phagocytosed but escape the phagosome a few hours after infec-
tion (Clemens et al., 2004; Chong et al., 2008) actively multiplying
in the cytoplasm although the pathogen seems to occupy different
compartments during its intracellular cell cycle [for a revision see
Chong and Celli (2010)]. Prior to escaping from the phagosome,
Francisella initially resides within a vacuole that interacts with
early and late endosomes but it does not recruit lysosomal mark-
ers (Clemens et al., 2004; Checroun et al., 2006; Chong et al., 2008;
Santic et al., 2008; Wehrly et al., 2009). Regarding the relation-
ship with the autophagic pathway apparently there is no evidence
for an autophagic response, suggesting that the pathogen avoids
its recognition by the autophagic machinery or it may inhibits
the autophagic response. Indeed, it has been shown that several
autophagy-related genes (ATG) are downregulated during infec-
tion of human monocytes suggesting that Francisella suppresses
autophagy at the gene expression level (Butchar et al., 2008;
Cremer et al., 2009). Interestingly, it has been shown in murine
BMMs that a subpopulation of cytosolic F. tularensis is capable of
reentering the endocytic pathway residing in a compartment with
autophagosomal features by 24 h after infection (Checroun et al.,
2006). In a recent publication it has been shown that a replication-
deficient mutant is captured from the cytoplasm of murine and

FIGURE 3 | Escaping from autophagy recognition. Listeria
monocytogenes uses an actin-based motility to escape from
autophagy.ActAand PLCs are key bacterial factors to prevent bacteria
targeting by autophagy. Recruitment to the bacterial surface of the actin
nucleating proteins Arp2/3 and Ena/VASP, mediated by ActA, camouflages
the bacteria from autophagic recognition. In addition, a member of the
internalin family of proteins, InlK, a protein expressed at the surface of
Listeria, and its host partner the Major Vault Protein (MVP) prevents
L. monocytogenes from autophagic recognition.

human macrophages into double-membrane vacuoles colocaliz-
ing with the late endosomal marker, LAMP1, and the autophagic
protein LC3, limiting intracellular bacteria viability (Chong et al.,
2008). These vacuoles were also labeled with ubiquitin and the
autophagy adaptors p62 and NBR1. Thus, these findings suggest
that Francisella avoids autophagic recognition to ensure bacterial
growth in the host cells. Nevertheless, additional work is required
to fully elucidate the complex interplay between Francisella and
the autophagic pathway.

Similar to Francisella that suppresses autophagy by downreg-
ulating autophagy at the gene expression level, another bacterial
pathogen Burkholderia cenocepacia, a pathogen that causes severe
and persistent infections in CF patients, also downregulates the
expression of critical autophagy genes such as Atg12, Atg5, and
Atg8 (Abdulrahman et al., 2011). It is interesting to mention that
autophagic dysfunction in infected cells is even more pronounced
in CF macrophages compared to WT macrophages. This is con-
sistent with the observation that epithelial cells from CF patients
have a defective autophagic response even in non-infected cells
as we have described above (Luciani et al., 2010). Thus, lim-
ited formation of autophagosomes in CF macrophages promotes
B. cenocepacia survival. In contrast, autophagy stimulation by
rapamycin treatment enhances the targeting of B. cepacia to the
lysosomal compartment. (Abdulrahman et al., 2011; Li et al.,
2013) In addition, it has been shown that B. cepacia inactivates the
small GTPase Rab7 (Huynh et al., 2010), a key molecule required
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for the maturation and completion of the autophagic pathway
(Jager et al., 2004; Gutierrez et al., 2005). Thus, inactivation of
this Rab protein is part of the strategy used by B. cepacia to avoid
autophagic clearance.

In a previous work we have shown that activation of autophagy
by starvation or by other means (i.e., rapamycin-treatment)
results in autophagic clearance of Mycobacterium bovis BCG and
M. tuberculosis (Gutierrez et al., 2004). In addition, we have also
shown that M. marinum, a fish pathogen that causes similar
granulomas in the hands of infected humans to those caused by
M. tuberculosis in the lungs, was able to induce the recruitment
of LC3 to the M. marinum-containing phagosomes (Lerena and
Colombo, 2011). However, these compartments were devoid of
lysosomal enzymes indicating that fusion with lysosomes was pre-
vented. Interestingly, this LC3 recruitment was dependent on a
functional Esx-1 secretion system (Lerena and Colombo, 2011).
Consistent with our results, in a recent publication Romagnoli
and collaborators have found that the pathogenic M. tuberculosis
strain Mtb H37Rv hampers the fusion of autophagosomes with
lysosomes (Romagnoli et al., 2012). In contrast, the attenuated
strains Mtb H37Ra or BCG, which are deficient in components
of the ESX-1 secretion system (incompetent to secrete the pro-
tein ESAT-6) were unable to prevent autophagosome maturation.
The ability to inhibit the autophagic flux was recovered in recom-
binant BCG and Mtb H37Ra strains in which the ESX-1 region
was restored by genetic complementation. In another report it has
been shown that ectopic expression of the ESAT-6/CFP-10 fusion
in macrophages hampered autophagosome formation increasing
M. tuberculosis viability. Interestingly, expression levels of ATG
also diminished, suggesting that the fusion protein may mod-
ulate autophagy through the regulation of ATGs (Zhang et al.,
2011). Of note, in a recent publication it was shown that phago-
somal piercing mediated by the ESX-1 secretion system allows
cytosolic components of the ubiquitin-mediated autophagy path-
way access to phagosomal M. tuberculosis and also the recognition
of extracellular bacterial DNA by the STING-dependent cytosolic
pathway (Watson et al., 2012)

It has also been reported that the “enhanced intracellular
survival” (eis) gene of M. tuberculosis plays essential roles in mod-
ulating autophagic and inflammatory responses in macrophages
(Shin et al., 2010). Cells infected with an Mtb eis-deletion
mutant H37Rv (Mtb-�eis) presented a marked accumulation of
autophagic vacuoles. In addition, the presence of this mutant bac-
terium in typical double-membrane autophagic structures was

visualized by electron microscopy analysis. Thus, the protein eis
seems to act as a negative regulator of autophagy contribut-
ing to avoid autophagic clearance of M. tuberculosis. In a recent
publication Roy and collaborators have found that Legionella
secretes via the Type IV secretion system an effector protein
called RavZ (Choy et al., 2012).This factor disrupts the autophagy
pathway by cleaving the C-terminal region of lipid-conjugated
LC3/Atg8. Thus, Legionella inhibits autophagy in the host cell by
direct manipulation of a key protein required for autophagosome
formation.

SUBVERSION OF AUTOPHAGY TAKING ADVANTAGE OF THE
AUTOPHAGIC PATHWAY
Several intracellular bacterial pathogens such as Coxiella bur-
netii, Staphylococcus aureus, Legionella pneumophila, Anaplasma
phagocytophilum, Brucella abortus, have the ability to manipulate
the autophagic pathway for their own benefit. These pathogens
may stimulate their uptake into autophagosomes by the secre-
tion of bacterial effectors (Amer and Swanson, 2005) In addi-
tion, these microorganisms appear to efficiently growth within
autophagosome-like vacuoles. Indeed survival of some of these
pathogens is reduced by autophagy inhibitors or in cells defec-
tive for essential autophagy genes such as Atg5 (Romano et al.,
2007; Mestre and Colombo, 2012) Due to space limitations the
mechanisms employed by these pathogens are not presented here,
but these topics have been previously discussed in other reviews
(Ogawa et al., 2005; Amer, 2013). In summary, in spite of acting
as a critical component of the innate immune system to restrict
some intracellular pathogens, autophagy can be modified or even
exploited by certain microorganisms to favor pathogen survival
and growth.

CONCLUDING REMARKS
As described in this review the autophagic pathway acts as a
host cell effector mechanism to protect against pathogen invasion.
However, many intracellular bacterial pathogens have developed
highly advanced mechanisms not only to evade autophagic recog-
nition but to manipulate the autophagic pathway for their own
benefit likely by remodeling the autophagosomal compartment.
While there is a general understanding on the overall survival
strategies used for several of the microorganisms analyzed in this
review, much uncertainty remains on specific aspects of how the
autophagic response is triggered or how the pathogens escape and
avoid autophagy clearance.
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