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In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal
cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble
ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated
by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight
compounds, known as siderophores, which have extremely high affinity for Fe3+.
However, during infection the host restricts iron from pathogens by producing iron- and
siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing
compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur)
is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore
synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that
protect against ROS damage. Thus, the challenges of iron homeostasis and defense
against ROS are addressed via Fur. Although the role of Fur as a repressor is
well-documented, emerging evidence demonstrates that Fur can function as an activator.
Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs,
(2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase
holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking
DNA binding of a repressor of transcription. In addition, Fur homologs control defense
against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and
manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence
within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence
within numerous animal and plant models of infection. This review focuses on the breadth
of Fur regulation in pathogenic bacteria.
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INTRODUCTION
Transition metals are essential elements in biological systems.
Metabolic pathways, DNA synthesis, RNA synthesis, and pro-
tein synthesis are dependent on the availability of the appropriate
metal cofactor. In support of this, all cells have designated gene
products that transport metals to maintain cellular function;
however, certain essential metals cause the formation of toxic
reactive oxygen species (ROS). In the earliest description of what
is now known as the Fenton reaction, iron (Fe) was shown to
act catalytically in the oxidation of tartaric acid (Fenton, 1894).
The Fenton reaction produces the hydroxyl radical (HO.), a ROS
capable of oxidizing macromolecules and lipids (Imlay et al.,
1988; Lloyd et al., 1997). Therefore, cells must tightly regulate the
concentration of Fe to avoid ROS-mediated cell damage.

Bacteria sense their environment and alter expression of genes
that promote survival. This is accomplished by transcription fac-
tors that regulate expression of beneficial or detrimental genes.
In order to acquire Fe in Fe-limiting environments, bacteria and
fungi synthesize and secrete low molecular weight compounds,
called siderophores, which have high affinity for binding Fe3+.
Most siderophores are produced by the non-ribosomal peptide

synthesis (NRPS) pathway and an example is the siderophore
enterochelin. The final steps of the pathway are executed by
the action of the Ent proteins (encoded by the entD, entF,
and entCEBA genes) (Gehring et al., 1998; Salvail et al., 2010).
Aerobactin, another siderophore, is sequentially produced by
the proteins IucD, IucB, IucA, and IucC (Figure 1A) that are
expressed in an operon (iucABCD). Aerobactin is an example of a
siderophore not produced by the NRPS pathway. Transcriptional
control of both siderophores is regulated by the concentration
of intracellular Fe2+ (Bagg and Neilands, 1987b); when intracel-
lular Fe2+ is low, the model bacterial organism, Escherichia coli
induces siderophore production (Brot and Goodwin, 1968; Bryce
and Brot, 1971). The Fe-bound siderophores are subsequently
transported into the cell to satisfy an Fe2+ requirement. Because
Fe2+ transcriptionally controls expression of gene products that
promote iron acquisition, Fe2+ was predicted to be a corepressor
for a DNA-binding protein. Isolation of a mutant of Salmonella
enterica subsp. enterica serovar Typhimurium (S. Typhimurium)
that constitutively expresses iron uptake proteins supported this
hypothesis (Ernst et al., 1978). A mutation in Ferric Uptake
Regulator (Fur) encoded by the fur gene was identified in E. coli
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FIGURE 1 | The classic model of Fur repression of iron acquisition

(iucA as an example). (A) Biosynthesis of the siderophore aerobactin
requires several genes located in an operon (iucABCD, iutA). Expression of
the initial gene, iucA, is Fur-repressed (De Lorenzo et al., 1987) and
production of aerobactin is known to be produced by virulent strains of
bacteria, especially strains causing disease in avian hosts (i.e., Avian
pathogenic E. coli or APEC) (Lafont et al., 1987; Xiong et al., 2012; Ling
et al., 2013). The sequential enzymatic activity of IucD, IucB, IucC, and IucA
convert L-lysine into aerobactin, a potent Fe-scavenging siderophore. (B)

There are two Fur-binding sites (FBS) for Fe-dependent regulation of iucA.
Both FBS are located within the P1 promoter (overlapping the −35 and also
the −10 sites). Under conditions of Fe-deprivation (left panel), there is
increased transcription (signified by a +1) of the iucABCD genes whose
protein products form a biosynthetic pathway that produces aerobactin.
Under Fe-replete conditions (right panel), Fur binds to DNA at the FBS
(green box) and blocks access of the −35 and −10 sites by RNA
polymerase (RNAP, blue shape).

mutants that exhibited constitutive expression of iron uptake
genes (Hantke, 1981, 1984; Bagg and Neilands, 1985). Fur is a
DNA-binding protein that recognizes specific DNA sequences,
utilizes Fe2+ or Mn2+ as a corepressor, and blocks transcrip-
tion of target genes (Bagg and Neilands, 1987a; De Lorenzo
et al., 1987). Not surprisingly, the transcriptional control of entD,
entF, entCEBA, and iucABCD is negatively regulated by Fur (De
Lorenzo et al., 1987; Brickman et al., 1990; Stojiljkovic et al., 1994;
Tsolis et al., 1995; Bjarnason et al., 2003; McHugh et al., 2003;
Troxell et al., 2011a).

The collective work supports a simple model for the molec-
ular mechanism of Fur repression that consists of Fur binding
to cis regulatory elements of a gene and preventing the binding
of the RNA polymerase holoenzyme (RNAP) (Figure 1B) (De
Lorenzo et al., 1987; Escolar et al., 1999, 2000; Hantke, 2001; Lee
and Helmann, 2007; Carpenter et al., 2009). As a transcriptional
repressor, Fur-Fe2+ homodimer binds to the operator site of a tar-
get promoter (Ernst et al., 1978; Bagg and Neilands, 1985, 1987a;
Neilands, 1993; Escolar et al., 1997, 1998). However, Fur can form
a multimeric complex with DNA sequences extending beyond the
operator site (Escolar et al., 2000; Baichoo and Helmann, 2002;
Lavrrar et al., 2002). Initial studies defined the Fur-binding site
(the Fur box) as an ≈19 bp DNA sequence with dyad symmetry,
GATAATGATAATCATTATC (Calderwood and Mekalanos, 1987,

1988; De Lorenzo et al., 1987; Stojiljkovic et al., 1994). Insertion of
this sequence into an operator site in the promoter of a non-Fe2+
regulated gene results in derepression under Fe2+-limiting condi-
tions (Calderwood and Mekalanos, 1988). In an elegant approach
to define Fur regulated genes within bacteria, a high copy num-
ber plasmid containing randomly cloned DNA sequences from
Gram positive and negative bacteria were transformed into an
E. coli strain that harbored a single copy of a fhuF::lacZ reporter
fusion (Hantke, 1987). Fur represses transcription of the fhuF
gene, which encodes a protein involved in the acquisition of Fe3+
(Hantke, 1983, 1987). If the cloned DNA fragment on the high
copy number plasmid contains a Fur-binding site, then Fur pro-
teins will be titrated away from the promoter of fhuF resulting
in derepression of the fhuF::lacZ fusion, which can be quali-
tatively detected during growth on MacConkey agar plates or
quantified by a β-galactosidase assay. This assay is called the Fur
titration assay (FURTA) and has been used to study Fur regula-
tion for nearly 20 years (Stojiljkovic et al., 1994; Tsolis et al., 1995;
Baumler et al., 1996; Fassbinder et al., 2000; Osorio et al., 2004;
Haraszthy et al., 2006; Jackson et al., 2010; Tanabe et al., 2010).
In toto, these works solidified the role of Fur as a Fe2+-dependent
transcriptional repressor. However, global gene expression stud-
ies have identified numerous genes that require Fur for expression
(Foster and Hall, 1992; D’Autreaux et al., 2002; Bjarnason et al.,
2003; McHugh et al., 2003; Troxell et al., 2011a).

MULTIFACTORIAL ROLES OF Fe2+-Fur REGULATION IN BACTERIA
Fur is required for the expression of several proteins within the
tricarboxylic acid cycle (TCA) and the Fe2+-dependent super-
oxide dismutase (SodB) (Hantke, 1987; Gruer and Guest, 1994;
Dubrac and Touati, 2000, 2002). The disruption of the TCA cycle
within fur mutants may have a relevant role for the regulation
of virulence since mutations within the TCA cycle alter viru-
lence expression in Staphylococcus epidermidis and Vibrio cholera
(Sadykov et al., 2008; Minato et al., 2013). In addition, disrup-
tion of the TCA cycle reduces S. Typhimurium virulence in mice
(Tchawa Yimga et al., 2006; Bowden et al., 2010). The role of
Fur in TCA cycle regulation is an example of how Fur regulation
is multifactorial; fur mutants exhibit many phenotypes not just
enhanced expression of siderophores. The molecular mechanism
for the Fur’s positive activation in the TCA cycle and SodB went
unexplained until a landmark publication determined the impor-
tance of a highly conserved small untranslated RNA (sRNA)
named ryhB in activation by Fur (Masse and Gottesman, 2002).
ryhB is directly repressed by Fur (Vassinova and Kozyrev, 2000;
Masse and Gottesman, 2002) and base pairs with target mRNAs,
such as sodB and the succinate dehydrogenase operon sdhCDAB,
which results in degradation of the mRNAs thereby reducing
expression of the gene products (Figure 2A). Deletion of ryhB in
a �fur results in restoration of expression of TCA proteins, SodB,
and growth on succinate or fumarate minimal medium (Masse
and Gottesman, 2002). Because regulation by ryhB requires the
RNA chaperone protein, Hfq, deletion of hfq in �fur also restores
expression of many Fur activated genes (Masse and Gottesman,
2002; Ellermeier and Slauch, 2008; Troxell et al., 2011a). ryhB
homologs have a role in virulence, are Fur-repressed, and are
encoded in the genomes of several Gram negative pathogens
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FIGURE 2 | Models of the Fur-dependent activation of gene expression

in bacteria. (A) Fur activation through “ryhB-dependent” mechanism
(SodB as an example). Fur is indirectly required for the expression of the
FeSOD (SodB) in bacteria through the sRNA ryhB (Masse and Gottesman,
2002; Ellermeier and Slauch, 2008). Under conditions of Fe2+ depletion
(top panel), Fur is unable to directly repress transcription of the sRNA ryhB
(or its paralog). This results in an increase in the level of ryhB within the
cell. The RNA chaperone Hfq binds to ryhB and to the target mRNA of
sodB (Afonyushkin et al., 2005; Urban and Vogel, 2007), which through the
RNase-dependent cleavage (cleavage sites are signified by filled triangles)
reduces the half-life of sodB mRNA and reduces SodB protein within the
cell. The Fur activation of sodB is diminished in the absence of Hfq or
ryhB (Masse and Gottesman, 2002; Ellermeier and Slauch, 2008; Troxell
et al., 2011a). When Fur is activated during Fe2+ replete conditions (bottom
panel), transcription of ryhB is blocked, which increases the half-life of
sodB mRNA allowing for enhanced production of SodB protein and FeSOD
activity. (B) Fur activation through “RNAP recruitment” mechanism
(Examples from S. Typhimurium and H. Pylori). In vitro transcription assays

with H. pylori norB regulatory sequences (Delany et al., 2004) and S.
Typhimurium hilD regulatory sequences (Teixido et al., 2011) demonstrate
an active Fur-Fe2+ binding to a FBS (signified with a green box) that
promotes increased binding of the RNAP (signified with a blue shape) to
the promoter and transcription of the target gene (signified with a +1). In
both examples, the regulatory sequences of norB and hilD contain a
repression site (signified with a red box) that may overlap the FBS (an
ArsR-binding site with norB) or be located immediately downstream of the
FBS (an H-NS binding site with hilD). If Fur-Fe2+ physically contacts the
RNAP is unknown. (C) Fur activation through “antirepressor” mechanism
(FtnA as an example). In E. coli, expression of the ftnA gene is Fur
activated, but independent of the “ryhB-dependent” activation. Under Fe2+
poor conditions, H-NS binds upstream of the ftnA gene and represses
transcription (top panel). When Fur is activated, Fur-Fe2+ binds to several
FBS located upstream of ftnA, which prevents H-NS nucleation at the ftnA
promoter and repressing transcription (bottom panel). In this example, Fur
is required to block H-NS binding and can physically remove H-NS from
the upstream regulatory site, which allows for ftnA expression.

(i.e., Klebsiella pneumoniae, Shigella, Vibrio cholera, Yersinia pestis,
Salmonella, Pseudomonas aeruginosa, Neisseria meningitidis, and
Neisseria gonorrhoeae) (Wilderman et al., 2004; Davis et al., 2005;
Mey et al., 2005a; Oglesby et al., 2005; Mellin et al., 2007; Murphy
and Payne, 2007; Ellermeier and Slauch, 2008; Ducey et al., 2009;
Metruccio et al., 2009; Troxell et al., 2011a; Deng et al., 2012;
Huang et al., 2012; Kim and Kwon, 2013; Leclerc et al., 2013).
Indirect positive regulation by Fur through negative regulation of
the negative regulator, ryhB, is the most studied molecular mecha-
nism for Fe2+-dependent activation of gene expression; however,
additional evidence demonstrates that Fur may regulate virulence
through more complicated mechanisms.

For example, in S. Typhimurium, transcription of the viru-
lence factor hilA requires Fe2+ through Fur-dependent regulation
(Thompson et al., 2006; Ellermeier and Slauch, 2008; Troxell
et al., 2011b). Recently, we demonstrated enhanced transcription
of hns in �fur and in a modified chromatin immunoprecipita-
tion (ChIP) assay we determined that Fur bound the upstream
regulatory region of hns in a metal-dependent manner (Troxell
et al., 2011b). H-NS is known to repress transcription of hilA
(Olekhnovich and Kadner, 2006). H-NS is a protein associated
with the bacterial nucleoid and is also known as OsmZ, BglY,
and PilG (Defez and De Felice, 1981; Spears et al., 1986; May
et al., 1990). Deletion of fur and hns resulted in Fur-independent
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activation of hilA, which supports the indication that Fur regu-
lation of hilA was indirect through H-NS (Troxell et al., 2011b).
Furthermore, Fur is not required for expression of Fur-activated
genes when the repressor H-NS is absent (Nandal et al., 2010;
Troxell et al., 2011b) and Fur and H-NS appeared to recognize
similar DNA sequences throughout the bacterial chromosome
(Prajapat and Saini, 2012). In another example of the multi-
factorial role of Fur in bacteria, a recent study shows that Fur
represses transcription of the vvhA gene, which encodes the major
haemolysin of Vibrio vulnificus, yet haemolytic activity and VvhA
protein level were reduced in �fur (Lee et al., 2013). Two metal-
dependent proteases are responsible for degradation of VvhA,
VvpE, and VvpM and transcription of vvpE is under negative
regulation by Fur. Through genetic and biochemical approaches,
it was shown that VvpE and VvpM exhibited enhanced activity
in �fur resulting in reduction of the VvhA protein (Lee et al.,
2013). Clearly, it can be appreciated from these two examples
that the influence of Fur within the cell is global and typically
involves multiple layers of regulation. Nevertheless, recent evi-
dence indicates Fur may have a more direct role for activation of
gene expression in bacteria (Figure 2).

MECHANISMS OF ACTIVATION OF GENE EXPRESSION VIA DNA
BINDING BY Fur: LOCATION, LOCATION, LOCATION
Global gene expression studies have identified genes that require
Fur for expression (Foster and Hall, 1992; D’Autreaux et al.,
2002; Bjarnason et al., 2003; McHugh et al., 2003; Troxell et al.,
2011a). Earlier work demonstrated a unique mechanism for Fur
activation in N. meningitidis that involves Fur directly bind-
ing to cis regulatory elements upstream of a Fur-activated gene
(Delany et al., 2004). Unlike Fur-repressed genes that possess
a characteristic Fur-binding site overlapping the RNAP-binding
site, Fur-activated genes [norB, pan1 (aniA), and nuoA] con-
tain Fur boxes located ≈100 bp upstream of the transcriptional
start site, while the Fur-repressed tbp contains a Fur box that
overlaps with the RNAP-binding site. The Fur box and activa-
tion of norB, which encodes a protein responsible for protection
against NO (Anjum et al., 2002), is conserved in N. gonorrhoeae
(Isabella et al., 2008). Moreover, in Helicobacter pylori, Fur acti-
vates expression of oorB, which encodes a 2-oxoglutarate:acceptor
oxidoreductase (Hughes et al., 1998), by directly binding to a
cis regulatory elements located 130 bp upstream of the tran-
scriptional start site (Gilbreath et al., 2012). The importance of
OorB in virulence is demonstrated by the significant reduction
in colonization of the chicken gut by a �oorB mutant strain of
Campylobacter jejuni (Weerakoon et al., 2009). In V. cholera, Fur
activates expression of the outer membrane porin, ompT, through
binding a Fur box located 90 bp upstream of the transcriptional
start site (Craig et al., 2011). In S. Typhimurium, transcription of
the virulence factor hilD is activated by Fur through a Fur box
located nearly 200 bp upstream of the transcriptional start site
(Teixido et al., 2011). HilD is an AraC/XylS-type DNA-binding
protein that regulates transcription of important virulence factors
within S. Typhimurium and is required for infection (Ellermeier
et al., 2005). Importantly, the sequence of the Fur box site for acti-
vated genes is virtually identical to the Fur box of repressed genes.
Collectively, the molecular evidence suggests the location of the

Fur box in proximity to the RNAP-binding site determines the
ability of Fur to activate gene expression.

How does Fur activate gene expression? In vitro transcrip-
tion experiments demonstrate that Fur can activate transcription
of a target gene even though the Fur boxes are located ≈100
and 200 bp upstream of the transcriptional start site, respectively
(Delany et al., 2004; Teixido et al., 2011). This example of Fur acti-
vation is rare, but may involve enhanced recruitment of RNAP
to the promoter of target genes (“RNAP recruitment” activa-
tion model, Figure 2B). Surprisingly, addition of the Fur protein
to the in vitro transcription assay stimulated the production of
hilD mRNA, which suggests improved recruitment of RNAP to
the promoter of hilD even though the Fur box is nearly 200 bp
upstream of the transcriptional start site (Teixido et al., 2011).
While deletion of fur reduces transcription of hilD (Teixido et al.,
2011) overexpression of Fur results in little increased activation
of the hilD promoter contrary to overexpression of a direct acti-
vator HilC, which increases hilD’s promoter activity by ≈5-fold
(Ellermeier and Slauch, 2008). These results indicate the role of
Fur in direct transcriptional activation of a target gene is complex.

Transcriptional activators that bind upstream of the RNAP-
binding site have been shown to interact with the C-terminal
domain of the α subunit (α-CTD) of RNAP, which promotes
transcription of the target gene (Ishihama, 1992; Busby and
Ebright, 1994; Ebright and Busby, 1995; Murakami et al., 1997;
Hochschild and Dove, 1998). Contact between activators and
α-CTD is inhibited when the upstream activator binding site
is ≥100 bp upstream of the transcriptional start site (Murakami
et al., 1997). Thus, transcription factor binding sites located fur-
ther than 100 bp upstream of the transcriptional start site are
unlikely to interact physically with the α-CTD of RNAP. However,
oligomerization of the Fur protein at Fur boxes is known to occur
(De Lorenzo et al., 1987; Tardat and Touati, 1993; Escolar et al.,
2000; Nandal et al., 2010; Teixido et al., 2011), which suggests
Fur proteins may extend to interact with other proteins nearby.
Whether Fur contacts the RNAP is not known, but emerging
in vivo evidence indicates there is another plausible molecular
mechanism for Fur-dependent activation through binding DNA
at a distal regulatory site.

Roles of Fur and H-NS in the regulation of FtnA
Fe2+ activates expression of the Fe-storage gene ftnA in a Fur-
dependent manner (Masse and Gottesman, 2002; Velayudhan
et al., 2007). Overexpression of ryhB results in the down regula-
tion of many Fe-cofactored proteins (i.e., SodB) and increases the
intracellular Fe2+ concentration resulting in enhanced Fur acti-
vation (Masse et al., 2005; Jacques et al., 2006). This is known
as the “iron-sparing” response (Gaballa et al., 2008). Masse et al.
theorized that Fur may negatively regulate a negative regulator
of ftnA, which would manifest as a Fur activation. Evidence to
support this theory was demonstrated by work from Simon C.
Andrews’ lab, which showed that Fur binds to a distal regula-
tor site upstream of the RNAP-binding site in the promoter of
ftnA to physically remove the histone-like protein, H-NS, which
mediates repression of ftnA (Nandal et al., 2010). Unlike the acti-
vation of norB and hilD, Fur was not required for transcription
of ftnA using in vitro transcription assays (Nandal et al., 2010).
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H-NS repressed transcription of ftnA and Fur was only required
to relieve this repression. The role of Fur as an antirepressor in
the activation of ftnA is supported with in vivo evidence: (1) fur
is not required for ftnA expression in the absence of hns; and (2)
ftnA expression is not reduced by Fe2+-chelation in �hns (Nandal
et al., 2010). Fur activation of gene expression by this mode rep-
resents a 3rd type of activation, the “antirepressor” activation
model (Figure 2C). In vivo evidence supports the antirepressor
model as a major mechanism for Fur-dependent activation of
gene expression. Evidence for the antirepressor model is evident
in N. gonorrhoeae because the Fur-binding site upstream of norB
is not required for activation of expression when the norB repres-
sor, ArsR, is deleted (Isabella et al., 2008). Thus, Fur antirepressor
activity is an emerging model of Fur activation through DNA
binding.

Fur CONTROLS DEFENSES AGAINST ROS
During bacterial infection the host responds to non-self
molecules and initiates a potent antimicrobial response. However,
bacterial pathogens are well-adapted to defending against the host
antimicrobial response. In many bacterial pathogens the defense
against ROS requires the Fur protein. Enzymatic defense against
ROS occurs by the rapid enzymatic dismutation of superoxide
(O2−) by superoxide dismutases (SODs) and detoxification of
H2O2 by hydroperoxidases [i.e., the heme containing peroxi-
dase/catalase (HPI), and the heme containing catalase (HPII)].
Unlike most pathogenic bacteria, S. Typhimurium contains 6
genes whose gene products are devoted toward degradation of
H2O2. HPI (encoded by katG), HPII (encoded by katE), a Mn-
dependent catalase (encoded by katN), an NADH-dependent
alkyl peroxidase system (encoded by ahpCF), and two thiol spe-
cific peroxidases (encoded by tsaA and tpx). HPII and KatN
are under positive regulation by the alternative σ factor RpoS,
whereas HPI is induced by the redox sensing regulator OxyR
during hydrogen peroxide stress (Tartaglia et al., 1989; Ivanova
et al., 1994; Robbe-Saule et al., 2001; Vazquez-Torres, 2012). In
addition, OxyR activates expression of ahpC (Storz et al., 1989;
Tartaglia et al., 1989) and also fur (Zheng et al., 1999; Varghese
et al., 2007). Regulation of tsaA appears Fur-independent (Delany
et al., 2001) and there is a lack of evidence for whether Fe2+ and
perhaps Fur regulate tpx. Deletion of any single gene or in combi-
nations does not influence virulence; only the combined deletion
of 5 out of the 6 genes results in reduced virulence signifying the
importance of redundant H2O2 scavengers to virulence (Hebrard
et al., 2009; Horst et al., 2010). As evident from studies in other
bacterial pathogens, there are profound redundancies that con-
tribute to resistance to H2O2 and virulence in vivo (Cosgrove
et al., 2007; Lindgren et al., 2007; Soler-Garcia and Jerse, 2007).
Because SODs and H2O2-degrading enzymes require certain met-
als as cofactors for enzymatic function and because Fur is a redox
sensing protein (Fleischhacker and Kiley, 2011), it is not sur-
prising that Fur is involved in the regulation of defenses against
ROS.

SODs and HPI/HPII require the appropriate cofactors; Fe2+
is required for FeSOD (SodB) and Mn2+ for MnSOD (SodA)
whereas heme is required for HPI and HPII function (Keele
et al., 1970; Yost and Fridovich, 1973; Hassan and Fridovich,

1978; Claiborne and Fridovich, 1979; Claiborne et al., 1979). Fur
directly represses transcription of the gene encoding the MnSOD
(sodA) and indirectly activates expression of the gene encoding
the FeSOD (sodB; Niederhoffer et al., 1990; Tardat and Touati,
1991; Beaumont and Hassan, 1993). This indirect control of sodB
requires the RNA chaperone Hfq or ryhB (Masse and Gottesman,
2002; Ellermeier and Slauch, 2008; Troxell et al., 2011a). In addi-
tion, Fur controls HPI/HPII activity in a complex manner that
may depend on the ability of Fur to regulate biosynthesis of the
heme cofactor (Hamza et al., 2000; Benov and Sequeira, 2003;
Hoerter et al., 2005; Mey et al., 2005a; Gaballa et al., 2008)
(R. Saah and H. M. Hassan, unpublished data). Surprisingly,
despite the enhanced transcription of sodA in �fur, a correspond-
ing increase in MnSOD activity was not observed due to the
increased [Fe2+] in the mutant. Indeed, increase in MnSOD activ-
ity in �fur was only discernible upon supplementation of the
growth medium with excess [Mn2+] in order to outcompete the
available Fe2+ for the active site of MnSOD (Hassan and Schrum,
1994; Schrum and Hassan, 1994; Troxell et al., 2011a). Thus,
with respect to O−

2 defense �fur behaves phenotypically like
�sodA�sodB under Fe2+ replete conditions. The Fur regulation
of Mn2+ transport is well-documented (Patzer and Hantke, 2001;
Kehres et al., 2002; Guedon et al., 2003; Ikeda et al., 2005; Runyen-
Janecky et al., 2006; Perry et al., 2012). Furthermore, because
katN encodes a Mn-containing catalase and is activated by RpoS
(Robbe-Saule et al., 2001) and repressed by H-NS (Beraud et al.,
2010), it is likely that Fur is involved in katN expression in S.
Typhimurium. Thus, the modulation of the intracellular Mn2+
concentration will undoubtedly influence protection against ROS
and likely virulence. In support of this, numerous studies have
demonstrated the importance of Mn2+ in the regulation of vir-
ulence and infectivity (Boyer et al., 2002; Corbin et al., 2008;
Anderson et al., 2009; Ouyang et al., 2009; Ogunniyi et al., 2010;
Wu et al., 2010; Champion et al., 2011; Kehl-Fie et al., 2011; Damo
et al., 2013; Troxell et al., 2013). Likewise, additional members
of the Fur family of metal-dependent transcription factors either
bind Mn2+ directly and/or regulate Mn2+ transport.

Fe2+ SEQUESTRATION BY THE HOST
Because Fur requires Fe2+ as a corepressor the availability of
this metal controls Fur activity. Moreover, the Fe2+-Fur com-
plex is inactivated by ROS and reactive nitrogen species (RNS)
(D’Autreaux et al., 2002; Varghese et al., 2007), both of which
are generated by the host during infection. Humans and other
higher eukaryotes produce numerous proteins that sequester free
Fe2+ and heme to deprive the pathogens of iron and mean-
while prevent the toxic formation of ROS. A potent antimicrobial
response, including ROS production, produced by innate cells
of the host’s immune system is activated in response to detec-
tion of pathogen-associated molecular patterns (PAMPs) during
bacterial infection. Innate cell activation by PAMPs initiates the
synthesis of large amounts of Fe2+ sequestering proteins to limit
the available Fe pool for the pathogen, known as “nutritional
immunity” (Kehl-Fie and Skaar, 2010; Hood and Skaar, 2012)
and activates signaling pathways that causes the host to reduce
dietary absorption of Fe that is known as “the anemia of inflam-
mation.” In addition, the host responds to infection by increasing
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the body temperature (the febrile response) as a means to inhibit
bacterial growth. The antimicrobial host factors produced during
activation of nutritional immunity can be inhibited by the addi-
tion of Fe (Weinberg, 1974). Furthermore, the febrile response to
bacterial pathogens is antimicrobial, in part, due to the reduced
ability of bacteria to acquire Fe2+ at febrile temperatures (Kluger
and Rothenburg, 1979).

Anemia of inflammation by the host in response to infection
has been known for more than 60 years (Cartwright et al., 1946;
Greenberg et al., 1947; Wintrobe et al., 1947) and the host pro-
tein, hepcidin, controls this response (Nicolas et al., 2002; Nemeth
et al., 2004a,b). In addition, hepcidin is a host factor that strongly
reduces the absorption of dietary Fe (Shayeghi et al., 2005;
Drakesmith and Prentice, 2012; Prentice et al., 2012). Because
Fe2+ is required for cellular function within nearly all cells, lim-
iting the availability of Fe2+ starves pathogens for Fe2+ and
weakens the pathogens’ ability to combat antimicrobial responses
by the host. Not surprisingly, there is fierce competition for acces-
sibility of Fe2+ during infection. Phagocytosis of the intracellular
pathogen S. Typhimurium by macrophages enhances expres-
sion of the Fe2+ export protein ferroportin, which limits the
available Fe2+ during intracellular residence of S. Typhimurium
(Nairz et al., 2007). Expression of ferroportin correlates directly
with reduced bacterial burden of several intracellular pathogens
(Paradkar et al., 2008). Thus, the host responds to infection
by sequestering Fe2+ from the local environment of pathogens,
limits the absorption of dietary Fe resulting in a very Fe2+ lim-
iting host environment, and restricts available Fe2+ within the
phagosome.

An important host factor that controls bacterial infection is the
natural resistance-associated macrophage protein 1 (NRAMP1,
also known as SLC11A1) and several research groups determined
the contribution of the SLC11A1 locus to severity of infection
within animal models (Plant and Glynn, 1976; Bradley, 1977;
Skamene et al., 1982; Brown et al., 2013). S. Typhimurium lacking
fur are avirulent within mice with a functional NRAMP1, whereas
the isogenic parent is fully virulent. Mice lacking a functional
NRAMP1 are partially resistant to infection with �fur demon-
strating that Fur function is important for virulence, in part,
independent of the host NRAMP1 function (Troxell et al., 2011b).
Evidence indicates that Fur is functional within an unstimulated
macrophage cell-line expressing either a functional or mutated
NRAMP1 (Taylor et al., 2009). The NRAMP1 protein is a highly
conserved transporter of divalent cations and is expressed within
phagocytic cells (Cellier et al., 1995; Canonne-Hergaux et al.,
2002; Cellier, 2012); NRAMP1 functions as a transporter of
manganese (Mn2+), Fe2+, or cobalt (Co) and is important for
acidification of the phagosome (Hackam et al., 1998; Jabado
et al., 2000; Forbes and Gros, 2003). Furthermore, NRAMP1
promotes additional host factors of the antimicrobial response
including production of nitric oxide (NO) (Fritsche et al., 2003,
2008; Nairz et al., 2009) and production of lipocalin-2 (also
called siderocalin), which binds to bacterial siderophores thereby
sequestering bacterial Fe2+ acquisition proteins (Fritsche et al.,
2012). However, bacteria have evolved a counter defense mecha-
nism by producing salmochelins, which are structurally distinct
from enterochelin and therefore not susceptible to binding by

lipocalin-2 (Smith, 2007). RNS and NO perturb Fur-Fe2+ func-
tion within pathogens (Mukhopadhyay et al., 2004; Richardson
et al., 2006; Bourret et al., 2008). NO is a crucial factor in
the antimicrobial response and its production is regulated by
Fe2+ (Weiss et al., 1994; Melillo et al., 1997; Dlaska and Weiss,
1999). Consequently, the inability to generate NO increases the
Fe2+ content within macrophages, splenic cells, and hepatocytes
thereby increasing disease severity in animal models of infection
(Nairz et al., 2013). This signifies the importance of NRAMP1
in the ability to sequester Fe2+ from pathogens and in general
antimicrobial response.

CONTROL OF VIRULENCE BY THE Fur FAMILY OF TRANSCRIPTIONAL
REGULATORS
The Fur protein contributes to virulence in animal models
for numerous bacterial pathogens (Table 1). Although the pre-
cise mechanism for the observed attenuation of fur mutants is
not clear, evidence indicates that a reduction in the activity of
enzymes required for protection against ROS may be involved.
Furthermore, virulence factors within the fur mutants exhibit
altered expression or activity, which may additionally contribute
to a decrease in virulence. Because Fur also controls expression or
activity of enzymes within the TCA cycle, fur mutants are defec-
tive in the utilization of several carbon sources (i.e., succinate,
etc.), which may contribute to the inability of fur mutants to cause
disease within animal hosts.

There are additional transcription factors within the Fur fam-
ily that require alternative metals to control gene regulation and
virulence. First discovered by work in B. subtilis within the lab
of John Helmann (Bsat et al., 1998; Mongkolsuk and Helmann,
2002), PerR is widespread in other bacteria and contributes to
virulence within pathogens (Van Vliet et al., 1999; Horsburgh
et al., 2001a; Rea et al., 2004, 2005; Gryllos et al., 2008).

Table 1 | Animal models of infection that require Fur for virulence.

Species Animal host References

Actinobacillus
pleuropneumoniae

Swine Sheehan et al., 2003;
Jacobsen et al., 2005

Aeromonas salmonicida Fish Ebanks et al., 2013

Campylobacter jejuni Avian Palyada et al., 2004

Edwardsiella ictaluri Fish Santander et al., 2012

Haemophilus influenza Chinchilla Harrison et al., 2013

Helicobacter pylori Murine Bury-Mone et al., 2004

Helicobacter pylori Gerbil Gancz et al., 2006

Listeria monocytogenes Murine Rea et al., 2004

Pseudomonas
fluorescens

Fish Wang et al., 2009

Salmonella enterica
serovar Typhimurium

Murine Velayudhan et al., 2007;
Curtiss et al., 2009;
Troxell et al., 2011b

Salmonella enterica
serovar Typhi

Human
macrophages

Leclerc et al., 2013

Staphylococcus aureus Murine Horsburgh et al., 2001b;
Torres et al., 2010

Vibrio cholera Murine Mey et al., 2005b
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The DNA-binding activity of PerR is sensitive to relevant con-
centrations of H2O2 and upon metal-dependent oxidation results
in derepression of target genes (Lee and Helmann, 2006). PerR
homodimers are detected as two forms, one which contains two
ions of Zn2+/Fe2+ per monomer and one which contains two
ions of Zn2+/Mn2+ per monomer. Only the Zn/Fe form is sen-
sitive to H2O2-induced derepression and, as expected, PerR
regulates genes whose protein products detoxify H2O2 (Herbig
and Helmann, 2001; Lee and Helmann, 2006). Thus, the H2O2-
sensing of PerR is directly influenced by the Mn2+:Fe2+ ratio
within the cell. Maintenance of the Mn2+:Fe2+ ratio is an impor-
tant aspect within bacterial pathogens (Veyrier et al., 2011).

Zinc (Zn2+) uptake regulator (Zur) is a Fur family regula-
tor that responds to Zn2+ and was discovered by two groups
working with E. coli and Bacillus subtilis (B. subtilis) (Gaballa
and Helmann, 1998; Patzer and Hantke, 1998). As expected
for a Fur homolog, Zur represses transcription of Zn2+ uptake
when bound to the corepressor Zn2+ (Patzer and Hantke, 2000;
Gaballa and Helmann, 2002). Because ribosomal proteins uti-
lize Zn2+ for activity Zur also represses transcription of genes
involved in mobilization of Zn2+ by ribosomal protein par-
alogs, which may allow for protein synthesis under conditions
of Zn2+ limitation known as the “failsafe” model (Maciag et al.,
2007; Natori et al., 2007; Gabriel and Helmann, 2009). The Zur
protein or Zn2+ uptake systems have an important role for bac-
terial pathogens, which demonstrate the importance of Zn2+
acquisition during infection (Campoy et al., 2002; Ammendola
et al., 2007; Sabri et al., 2009; Smith et al., 2009; Desrosiers et al.,
2010; Pesciaroli et al., 2011; Corbett et al., 2012; Dowd et al.,
2012; Gielda and Dirita, 2012). The ability to acquire Zn2+ by
bacterial pathogens is likely a broad requirement among bacte-
rial pathogens during infection. More recently, a Fur-homolog
was characterized as a Mn2+-dependent DNA-binding protein

(Mur). This regulator, originally isolated from Rhizobium legumi-
nosarum (Diaz-Mireles et al., 2004, 2005; Bellini and Hemmings,
2006), utilizes Mn2+ as a corepressor. In contrast to Fur and
Zur, the role of Mur in bacterial pathogenesis is less understood.
However, genes regulated by Mur are important for virulence in
the pathogen Brucella abortus (Anderson et al., 2009; Menscher
et al., 2012), which indicates Mur function may be important to
virulence.

CONCLUSIONS
The Fur family of transcriptional regulators control virulence,
defense against ROS, and transport of Fe2+, Zn2+, and Mn2+.
Because of the anemia of inflammation and nutritional immunity
exerted by the host during infection, metals are in low abun-
dance in response to infection. In this metal-poor environment,
the demetaleted Fur would allow for efficient acquisition of iron
and enhances the fitness of the pathogen; however, deletion of
fur most often results in partial or complete attenuation within
animal models of infection. Notably, deletion of fur results in
reduced expression of active enzymes responsible for defense
against ROS, reduced expression of key metabolic pathways, and
reduced expression of important virulence factors. This signifies
that Fur’s critical contribution to virulence may not be due to its
classical role as a transcriptional repressor of metal acquisition
(Figure 1), but to its complex role as a transcriptional activator of
virulence (Figure 2).
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