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Activation of the inflammasome occurs in response to a notably high number of
pathogenic microbes and is a broad innate immune response that effectively contributes to
restriction of pathogen replication and generation of adaptive immunity. Activation of these
platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including
cytokines, and induction of a specific form of cell death called pyroptosis, which directly
or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide
intracellular pathogens developed strategies for manipulation of cell death to guarantee
intracellular replication. In this sense, the remarkable advances in the knowledge of
the inflammasome field have been accompanied by several reports characterizing the
inhibition of this platform by several pathogenic bacteria. Herein, we review some
processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa,
Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri,
Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome
and the induction of pyroptosis.
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INTRODUCTION
Host pattern recognition receptors (PRRs) are capable of sensing
conserved microbial molecules, referred as Pathogen-Associated
Molecular Patterns (PAMPs) as well as cellular disturbances,
referred as Damage-Associated Molecular Patterns (DAMPs).
PRR activation usually leads to induction of pro-inflammatory
signaling networks that facilitate direct elimination of the
pathogens but also to alert the immune system. Consequently,
successful replication of an intracellular infectious agent relies not
only on the arsenal of virulence factors that modulate host cell
functions to establish a replicative niche, but also in the develop-
ment of efficient subversion strategies to evade host recognition
and bypass the host mechanisms related to restriction of pathogen
replication.

Induction of cell death pathways is a conserved host response
to infection. However, different subtypes of cell death can
be triggered and they will vary according to many fac-
tors, e.g., the type of infected cell and the surrounding
environment, the infectious agent and the infection dosage.
Interestingly, the same mechanism of cell death can elicit either
an immunogenic or a tolerogenic (“silent”) effect upon the
immune system, however, the factors controlling such plastic-
ity remain elusive (Green et al., 2009). Apoptosis, autophagy,
and necrosis are still considered the main types of cell
death, but several other subtypes can be distinguished based
mostly on biochemical and functional criteria (Galluzzi et al.,
2012).

Of note, activation of intracellular PRRs belonging to the fam-
ily of Nod-like receptors (NLRs) or the nucleic acid receptors
AIM2 and IFI16 (members of the PYHIN family) trigger a spe-
cific type of potentially pro-inflammatory, caspase-1-dependent

cell death program known as pyroptosis (Cookson and Brennan,
2001; Lamkanfi and Dixit, 2012). Upon sensing of pathogens,
NLRs and AIM2/IFI16 trigger the formation of the inflamma-
some, a cytosolic molecular platform that recruits and activates
caspase-1, initiating a program of pore formation in the plasma
membrane of activated cells, with consequent cell rupture and
release of cytosolic contents (Martinon et al., 2002; Fink and
Cookson, 2006). The activity of caspase-1 also mediates the acti-
vation and controlled secretion of pro-inflammatory cytokines
such as IL-1β and IL-18 (Thornberry et al., 1992; Ghayur et al.,
1997; Gu et al., 1997). Although pyroptosis and cytokine secre-
tion are both dependent on caspase-1 and occur concomitantly, it
is not confirmed that cytokine release is mediated by induction of
cell death pathway. Recently, caspase-11 was shown to mediate a
non-canonical pathway of inflammasome activation in response
to Gram-negative bacteria, leading to pyroptosis and release of
cytokines such as IL-1α independently of caspase-1 activation
(Kayagaki et al., 2011; Broz et al., 2012; Aachoui et al., 2013; Case
et al., 2013; Casson et al., 2013). It was recently demonstrated that
intracellular sensing of lipid A motif of lipopolysaccharide (LPS)
induces caspase-11-dependent pyroptosis and NLRP3-dependent
caspase-1 activation, with subsequent secretion of IL-1β and
IL-18 (Hagar et al., 2013; Kayagaki et al., 2013). Most strik-
ingly, detrimental effects of exacerbated inflammation during
systemic infectious are possibly mediated by caspase-11, but not
caspase-1 (Kang et al., 2002; Kayagaki et al., 2011, 2013; Hagar
et al., 2013). This novel caspase-11-mediated inflammasome
may operate synergistically with the other caspase-1- mediated
inflammasomes for the recognition of pathogenic bacteria encod-
ing type III/type IV secretion systems or escaping the vacuole
(Figure 1).
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FIGURE 1 | Inflammasome activation in response to Gram-negative

bacteria. Intracellular sensing of Gram-negative bacteria that violate
cytosolic compartments by expressing type III or type IV secretion
systems (T3SS and T4SS, respectively) or by inducing vacuolar lysis.
NLRC4 inflammasomes are activated in response to recognition of
bacterial flagellin by Naip5, T3SS needle proteins by murine Naip1 or
by human NAIP (hNAIP), or T3SS rod proteins by Naip2. Activation
of the NLRC4 inflammasomes culminates in caspase-1 activation,
leading to IL-1β/IL-18 secretion and pyroptosis. The requirement of
ASC to the assembly of the NLRC4 inflammasomes is still

controversial. Recognition of cytosolic DNA by AIM2 leads to
formation of a AIM2/ASC/Caspase-1 multimeric complex known as
the AIM2 inflammasome. Cytosolic LPS of Gram-negative bacteria are
recognized by an unknown receptor, triggering activation of
caspase-11. This process is independent on ASC, NLRP3 and
caspase-1, inducing pyroptosis and secretion of IL-1α. Non-canonical
inflammasome activation mediated by caspase-11 also regulates
NLRP3 activation by unclear mechanisms. Finally, formation of the
NLRP3/ASC/caspase-1 complex leads to the secretion of inflammatory
cytokines such as IL-1β and IL-18.

Activation of the inflammasome, with consequent induc-
tion of pyroptosis, has been demonstrated for several microbial
pathogens (Osawa et al., 2011; Lamkanfi and Dixit, 2012; Lima-
Junior et al., 2013; Silva et al., 2013). In the case of bacterial
pathogens, pyroptosis is a mechanism that effectively contributes
to infection control (Miao et al., 2010a, 2011; Terra et al., 2010).
Evolutionary pressure thus, shaped modulation of the inflam-
masome activation, with consequent inhibition of pyroptosis, as
a subversion strategy found among microbial pathogens. Bona-
fide intracellular pathogens (such as bacteria and viruses that

modulate host cell functions through secretion systems and
secreted proteins) use diverse strategies to evade recognition
and inflammasome activation. However, the molecular mecha-
nisms of inflammasome inhibition by pathogens remain largely
unknown. Herein, we review the current knowledge on the
mechanisms of inflammasome and pyroptosis suppression by
pathogenic bacteria. We discuss the importance of inflammasome
subversion to their pathogenesis and highlight recent findings on
the diverse strategies adopted by bacterial pathogens to inhibit the
activation of the inflammasome and how they affect pyroptosis.
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MECHANISMS OF PYROPTOSIS INHIBITION BY BACTERIAL
PATHOGENS
Yersinia spp.
The pathogenic Gram-negative bacteria belonging to the genus
Yersinia have a tropism to target lymphoid tissues, inducing dis-
tinct types of host cell death in the course of infection. The three
human pathogens of the genus, Y. pestis, Y. pseudotuberculosis, and
Y. enterocolitica share a virulence plasmid encoding a conserved
type III secretion system (T3SS) and a few identified effector pro-
teins known as Yops (Yersinia outer proteins: YopE, YopT, YopH,
YopM, YopA/O, and YopJ/P) (Trosky et al., 2008). The injection of
Yops into infected cells allows the modulation of several signaling
pathways and immune responses by Yersinia, including cell death.
However, as the control of Yersinia multiplication is affected by
a complex interplay of distinct types of cell death in different
types of infected cells, it is likely that the demise of infected cells
not only contributes to pathogenesis but also signals to mount
an effective immune response (Philip and Brodsky, 2012). For
instance, the early stage of infection is characterized by induction
of apoptotic-like death of macrophages and dendritic cells, and
YopJ, YopP (the homologous of YopJ in Y. enterocolitica) and YopK
have already been implicated in this process, with evidence that
apoptosis contributes to bacterial persistence in vivo (Mills et al.,
1997; Monack et al., 1997, 1998; Ruckdeschel et al., 1998, 2001;
Grobner et al., 2007; Peters et al., 2013). Translocation of YopJ
is also implicated in late proinflammatory lytic cell death, inde-
pendently of caspase-1 (Lilo et al., 2008). Although the molecular
mechanisms triggering the inflammasome and caspase-1 activa-
tion in response to Yersinia are largely unknown, recognition of
YopJ leads to differential regulation of inflammasome responses.
Secretion of IL-1β in response to translocated YopJ requires
caspase-1, Nlrp3, and Asc adaptor, whereas caspase-1 activation
occurs in the absence of Nlrp3, Nlrc4, and Asc (Brodsky et al.,
2010; Zheng et al., 2011). Proinflammatory cell death of infected
macrophages mediated by YopJ does not require other inflamma-
some components such as Nlrp3, Nlrc4, and Asc, corroborating
the lack of inflammasome participation in this process (Brodsky
et al., 2010; Zheng et al., 2011). Moreover, T3SS recognition also
induces caspase-1 activation and IL-1β secretion, requiring the
inflammasome adaptor Asc and mediated by both Nlrp3 and
Nlrc4, possibly in synergy (Brodsky et al., 2010). Notably, recog-
nition of Yersinia T3SS also triggers caspase-1 mediated pyrop-
tosis, independently of the effector YopJ, Nlrp3, Asc, and Nlrc4
(Bergsbaken and Cookson, 2007; Brodsky et al., 2010). Diverse
effector proteins secreted by T3SS of Yersinia has already been
shown to negatively modulate inflammasome activation with
associated impairment of pyroptosis in response to Yersinia recog-
nition. This accumulating evidence corroborates that although
cell death processes might play different roles in the pathogenesis
of Yersinia, evasion of inflammasome activation and inflamma-
tory burst caused by pyroptosis should be important to bacterial
success.

Regulation of cytotoxicity by differential secretion of YopJ is
one of the processes that impacts virulence of Yersinia. Mutants
of Y. pseudotuberculosis lacking YopJ do not induce cell death but
fail to disseminate, showing that YopJ is required for optimal vir-
ulence (Monack et al., 1998). On the other hand, secretion of

reduced levels of YopJ contributes to the pathogenesis of Yersinae
in vivo. In this sense, cytotoxicity of dendritic cells induced by
Yersinia positively correlated with the level of secretion of YopJ/P,
but enhanced cytotoxicity in response to infection with Y. pseudo-
tuberculosis ectopically expressing highly secreted YopP reduced
virulence in vivo, causing an attenuated infection of the oral
mucosa (Brodsky and Medzhitov, 2008). However, recent data
demonstrated that caspase-1 deficiency does not impair the con-
trol of infection by hypercytotoxic Y. pseudotuberculosis (ectopi-
cally expressing YopP) (Zheng et al., 2012). Thus, it is possible that
regulation of the levels of YopJ secretion might not be a subversion
strategy to downregulate the induction of pyroptosis mediated by
YopJ-dependent activation of the inflammasome.

The effectors YopE and YopT, which inactivate Rho GTPases
that regulate cytoskeleton rearrangements (Cdc42, Rac1, Rho),
were also shown to inhibit secretion of IL-1β in macrophage-
like cells infected with Y. enterocolitica (Schotte et al., 2004). YopE
also reduced cytotoxicity in these cells. Although YopE and YopT
reduce activation of overexpressed caspase-1 and inhibit cell death
in response to caspase-1 overexpression, the precise mechanism
of inhibition of the inflammasome in macrophages has not been
examined in detail. In the case of Y. pseudotuberculosis, there is
no evidence that YopE and YopT play a role in inflammasome
modulation (Larock and Cookson, 2012).

The caspase-1 activation, secretion of IL-1β and pyropto-
sis mediated by inflammasome recognition of T3SS in infected
macrophages was shown to be inhibited by the effector YopK
(Brodsky et al., 2010). This protein is secreted into the host cell
cytosol and interacts with the T3SS, possibly leading to inhibi-
tion of inflammasome activation by impairment of recognition of
the bacterial T3SS translocon structure. Activation of the inflam-
masome by mutants of Y. pseudotuberculosis lacking YopK leads
to bacterial clearance in vivo, indicating a role of inflamma-
some inhibition by YopK in bacterial pathogenesis, promoting
pathogen multiplication and dissemination. However, whether
virulence mediated by inhibition of the inflammasome by YopK
requires regulation of pyroptosis is yet only suggestive.

A recent report revealed that Yersinia also directs inhibi-
tion of caspase-1 and consequent inhibition of pyroptosis in
infected macrophages through aT3SS-dependent effector (Larock
and Cookson, 2012). The effector YopM binds to the active site
of caspase-1 through a four amino acid motif similar to the
sequence of the caspase-1 substrate YVAD and poxvirus protein
CrmA, thus, sequestering the molecule and abrogating its inter-
action with the molecular platform formed by Nlrp3 and Asc in
infected macrophages. Inhibition of caspase-1 activation by YopM
impaired induction of pyroptosis, demonstrating that the effector
modulates inflammatory cell death during infection. Importantly,
absence of YopM impaired virulence of Y. pseudotuberculosis in
vivo, suggesting that inhibition of caspase-1-dependent cell death
and cytokine secretion should play a role in the pathogenesis of
Yersinia.

How regulation of different types of cell death by Yersinia,
i.e., apoptosis, pyroptosis and possibly necrosis, determines the
balance between promotion of effective immune responses and
successful immunomodulation, dissemination, and growth of the
pathogen is yet to be understood.
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Pseudomonas aeruginosa
The Gram-negative bacterium P. aeruginosa is an opportunistic
extracellular pathogen ubiquitously found in the environment.
Antibiotic-resistance and vast distribution make P. aeruginosa a
major source of nosocomial acute infection of immunocompro-
mised individuals and infection associated to the use of con-
taminated medical devices. P. aeruginosa is also often associated
to the infection of chronic cystic fibrosis patients (Garau and
Gomez, 2003). The bacteria express a functional T3SS through
which four known effectors, exoenzyme S (ExoS), ExoT, ExoU,
and ExoY are secreted into host cell (Engel and Balachandran,
2009). Of note, expression of the exoenzymes varies among the
different strains of P. aeruginosa (Engel and Balachandran, 2009).
Activity of these effectors trigger signaling cascades, such as syn-
thesis of cAMP (ExoY), cleavage of phospholipids (ExoU), and
modulation of cytoskeleton dynamics (ExoS, ExoT, ExoU) that
potentially can lead to activation of cell death pathways, although
cytotoxic effects have been described to ExoS and ExoU only
(Pederson and Barbieri, 1998; Sato and Frank, 2004).

The contribution of the inflammasome to recognition of
P. aeruginosa by macrophages has been extensively described.
The Nlrc4 receptor plays a major role in activation of caspase-1
in macrophages infected with pathogenic bacteria. Activation of
the Nlrc4 inflammasome is triggered upon recognition of bacte-
rial flagellin and the T3SS secretion system (Franchi et al., 2007;
Sutterwala et al., 2007; Galle et al., 2008; Miao et al., 2008).
Recognition of the T3SS rod component also occurs, dependent
on Nlrc4 in a process mediated by activation of theNaip2 pro-
tein (Miao et al., 2010b; Zhao et al., 2011). Moreover, a toxin
encoded by the rhsT gene of P. aeruginosa induces inflammasome
activation and cytotoxicity in response to the bacteria, contribut-
ing to bacterial clearance in vivo (Kung et al., 2012). Activation
of Nlrc4 inflammasome in response to P. aeruginosa mediates
pyroptotic cell death and IL-1β secretion. Both processes have
been shown to contribute to control of infection in vivo, although
recent data argues that neutrophils, instead of macrophages,
are the main source of IL-1β in infected mouse. Moreover, the
IL-1β production by neutrophils occurs independently of bacte-
rial flagellin, Nlrc4 or caspase-1 (Karmakar et al., 2012; Cohen
and Prince, 2013). Thus, the contribution of the inflamma-
some to control of infection by P. aeruginosa may be further
investigated.

Importantly, the T3SS-dependent effector proteins of P. aerug-
inosa have been shown to inhibit the inflammasome activation in
macrophages both in vitro and in vivo. From the four described
effectors secreted by P. aeruginosa T3SS, ExoS, and ExoU inhibit
inflammasome-dependent responses, arguing that if not inhib-
ited this pathway can play a pivotal role in immune responses and
bacterial clearance.

It has been shown that ExoS deficiency leads to the secre-
tion of cleaved IL-1β in both alveolar macrophages and in the
lungs of mice infected with P. aeruginosa (Galle et al., 2008).
ExoS is a bifunctional protein containing an amino-terminal
Rho GTPase Activating Protein (GAP) domain, which modifies
host cell targets that control the cytoskeleton, such as Cdc42,
Rho and Rac1; and a carboxy-terminal ADP-ribosyltransferase
domain (ADPRT) with ribosylation activity causing cytoskeleton

rearrangements. Of note, the ADPRT domain, but not the GAP
domain of ExoS, is essential to inhibition of IL-1β mediated
by the exoenzyme. The importance of ribosylation activity of
ExoS in this process allows speculating that modulation of host
cell cytoskeleton dynamics is a possible mechanism through
which ExoS inhibits the inflammasome. For instance, it has
been recently reported that organelle transportation activity
of microtubules is critical for activation of the inflammasome
mediated by Nlrp3 (Misawa et al., 2013). Finally, ExoS induces
caspase-3 dependent apoptotic cell death in response to infec-
tion but pro-inflammatory death of macrophages is also increased
in the infection of macrophages with mutants lacking ExoS.
Whether this effect is due to a putative ExoS-mediated inhibi-
tion of caspase-1-dependent pyroptosis or caused by cytotoxic
effects independent of inflammasome activation has yet to be
addressed.

For ExoU, it has been demonstrated that this exoenzyme
inhibits Nlrc4-dependent caspase-1 activation and IL-1β in a pro-
cess dependent on its phospholipase A2 activity (Sutterwala et al.,
2007). However, pyroptosis triggered by Nlrc4 and caspase-1 was
not modulated by ExoU, which is suggestive that the cytotoxic
effect induced by the exotoxin may be due to non-apoptotic,
caspase-1-independent necrosis (Sutterwala et al., 2007).

In summary, whether pyroptosis is involved in the pathogen-
esis of P. aeruginosa or whether it contributes to an efficient
immune response by the host is still uncertain. However, differ-
ential induction and modulation of specific cell death pathways
by the exotoxins of the pathogen, as well as clear inhibition of
specific responses of the inflammasome by them, make P. aerugi-
nosa a valuable model to investigate the role of different cell death
pathways to the outcome of host-pathogen interaction and thus,
should be further explored.

Vibrio parahaemolyticus
Pathogenicity of V. parahaemolyticus, a Gram-negative extracel-
lular bacterium associated mostly with seafood-borne gastroen-
teritis, relies on the expression of two thermostable pore-forming
hemolysins (TDHs, namely TdhA and TdhS) and two sets of
chromosome-encoded T3SS (T3SS-1 and T3SS-2) (Makino et al.,
2003). A recent report demonstrated that V. parahaemolyticus
has been shown to induce robust activation of the inflamma-
some dependent on multiple mechanisms (Higa et al., 2013).
V. parahaemolyticus TDHs activate Nlrp3-dependent inflamma-
some (mainly through recognition of TdhA) and bacterial T3SS-1
induces inflammasome activation mediated by both Nlrp3 and
Nlrc4. In addition, bacterial flagellin triggers the Nlrc4 inflamma-
some. Notably, recognition of TDHs and T3SS-1 were required to
induce caspase-1-dependent pyroptosis in response to infection.
In addition, inflammatory cell death independent of caspase-
1 was also observed, suggesting that other pathways may be
involved in the induction of cell death in response to V. para-
haemolyticus. Notably this same report described a regulatory
role for inflammasome activation mediated by the T3SS effec-
tors VopQ and VopS, encoded in the pathogenicity island h1 of
Chromosome I. VopQ and VopS inhibited activation of the Nlrc4-
dependent inflammasome upon recognition of T3SS-1. VopQ
and VopS synergize to inhibit cleavage of caspase-1 and secretion
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of cleaved IL-1β, but any effect on pyroptosis has yet to be deter-
mined. In fact, complete deletion of h1 decreased pyroptosis in
response to infection, suggesting that other effectors of the bac-
teria also encoded in the region h1 may be important for specific
induction of pyroptosis by V. parahaemolyticus.

The effector VopQ is also known to be a determinant to
the induction of autophagy in HeLa cells infected with V. para-
haemolyticus (Burdette et al., 2009). Higa et al. (2013) demon-
strated that VopQ induced autophagy in murine macrophages
in response to infection. In addition, suppression of autophagic
pathway by knocking down of Atg5 impaired the inhibition of
IL-1β secretion mediated by VopQ, supporting a possible role of
autophagy in inflammasome inhibition by VopQ. Importantly,
induction of autophagy has been previously shown to negatively
regulate inflammasome activation dependent on Nlrp3 (Saitoh
et al., 2008). How the induction of autophagy mediated by
VopQ could possibly mediate inflammasome suppression by the
effector remains elusive, but it is possible that Nlrc4-mediated
inflammasome activation may also be regulated by autophagy.

In the case of VopS, it is observed that the effector binds and
inactivates endogenous Cdc42, which could account as a mech-
anism for inhibition of Nlrc4-inflammasome (Higa et al., 2013).
As mentioned above, inhibition of inflammasome responses by
the effectors ExoS of P. aeruginosa and YopE of Y. enterocolitica
relies on their GAP activity that mediates inactivation of Rho
GTPases (Schotte et al., 2004; Galle et al., 2008). No molec-
ular role for regulation of inflammasome activation by active
Rho GTPases has been demonstrated yet, but evidence suggests
that these molecules may participate in inflammasome activa-
tion in response to pathogens. For instance, the SP-1 effector
SopE of Salmonella enterica serovar Typhimurium, an activator
of Rho GTPases induces inflammasome activation by stromal
cells in response to bacterial recognition (Muller et al., 2009).
Importantly, activation of caspase-1 by SopE requires modula-
tion of Rac1 and Cdc42 by the bacterial effector. Another recent
report revealed that activation of Rac1 in response to infection
is important to NLRP3/ASC-dependent caspase-1 activation in
response to Chlamydia pneumoniae by human mononuclear cells
(Eitel et al., 2012). Importantly, a recent work showed that type I
IFN signaling inhibits Rac1, with consequent repression of Nlrp3
inflammasome in macrophages (Inoue et al., 2012). These evi-
dences reinforce a putative role of signaling pathways controlled
by Rho GTPases in the modulation of inflammasome activation
in response to pathogens, possibly inducing pyroptosis. How the
activity of Rho GTPases in inflammasome activation, as well as
modulation as a subversion strategy targeting immune responses
may thus, be further explored.

Chlamydia trachomatis
The obligate intracellular Gram-negative pathogen C. trachomatis
is the causative agent of infections of the conjunctiva and uro-
genital tract commonly evolving to severe complications such as
blindness, pelvic inflammatory disease, ectopic pregnancy, and
infertility. The bacteria rely on the expression of a T3SS and
secretion of effector proteins to adhere, invade, and establish a
replicative inclusion (parasitophorous vacuole) in the target cells
(Valdivia, 2008; Betts et al., 2009). Besides the T3SS-dependent

effectors protein, the chlamydial protease-like activity factor
(CPAF) is pivotal in the molecular pathogenesis of C. trachoma-
tis, modulating host responses and stability of bacterial inclusion
(Paschen et al., 2008). CPAF is translocated through the gen-
eral secretory pathway, eventually reaching the host cell cytosol
(Zhong et al., 2001). This effector is suggested to regulate by
cleavage at least 16 host targets, interfering with several pro-
cesses such as: proapoptotic signaling (Zhong et al., 2001; Pirbhai
et al., 2006); expression of antigen presentation molecules (MHC)
(Zhong et al., 2001); organization of host cell cytoskeleton (Dong
et al., 2004; Kumar and Valdivia, 2008); control of cell cycle
(Paschen et al., 2008) and NF-κB signaling pathway (Christian
et al., 2010). Although host substrates were demonstrated to be
cleaved by CPAF in cell lysates, enzymatic activity of CPAF may
not be necessarily required in situ to exert its regulatory func-
tions on host cell proteins (Chen et al., 2012). Nevertheless, CPAF
has also been implicated in modulation of chlamydial proteins.
It has been demonstrated that CPAF cleaves chlamydial T3SS-
dependent effectors in cell-free systems and in infected cells, with
evidences that CPAF proteolytic activity toward C. trachomatis
effectors prevents superinfection and coordinates the forma-
tion and the integrity of the inclusion-containing the bacteria
(Jorgensen et al., 2011).

In epithelial cells, which are the primary sites of infection by
C. trachomatis, as well as in human monocytes and dendritic cells,
NLRP3 and ASC mediate inflammasome-dependent activation of
caspase-1 and secretion of cytokines in response to C. trachoma-
tis (Lu et al., 2000; Gervassi et al., 2004; Abdul-Sater et al., 2009,
2010). However, the role of the inflammasome in the control
of the infection by the pathogen is still controversial. Asc- and
caspase-1-deficient mouse fibroblasts are resistant to infection by
C. trachomatis (Jorgensen et al., 2011). In addition, in a mouse
model of infection with C. muridarum, wild-type and caspase-1
deficient mice equally controlled the replication of the bacteria
in vivo (Cheng et al., 2008). Of note, caspase-1-deficient mice
displayed reduced inflammatory damage in the urogenital tract,
suggesting that inflammasome activation may contribute to the
pathology of infection by Chlamydia (Cheng et al., 2008).

Still, C. trachomatis regulates caspase-1-dependent cell death
through the activity of CPAF. The use of a specific inhibitor
of CPAF, design to overcome the refraction of the bacteria to
genetic manipulation, revealed that CPAF activity inhibits ASC
and caspase-1-dependent cell death in the early times of infection
of epithelial cells with C. trachomatis. Late activation of caspase-
1 occurs in epithelial cells and pharmacological inhibition of
caspase-1 reduces bacterial growth in these cells, corroborat-
ing the importance of regulation of inflammasome activation
to the pathogenesis of C. trachomatis (Abdul-Sater et al., 2009).
However, a role for pyroptosis for caspase-1-dependent suscepti-
bility to infection is still speculative. The mechanism of inhibition
of early pyroptotic cell death by CPAF is yet to be understood and
it is not ruled out that the protease directly interferes with inflam-
masome formation. Still, one interesting possibility proposed by
Jorgensen et al. (2011) is that CPAF may function as a metaeffec-
tor (Kubori et al., 2010), regulating the pool of T3SS effectors in
the host cytosol by proteolysis and also avoiding the accumula-
tion of putative PAMPs to be sensed by cytosolic NLRs, possibly
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providing a novel mechanism of pathogenic modulation of the
inflammasome.

Francisella tularensis
Tularemia, a life-threatening infectious disease of the respira-
tory tract, is caused by the Gram-negative intracellular pathogen
Francisella tularensis. Inside infected macrophages, the main tar-
get of infection, F. tularensis escapes the vacuole and replicates
within the cytosol. However, in contrast to most of the intracellu-
lar pathogens, the bacteria do not rely on the activity of exotoxins
or encoded T3SS and T4SS secretion systems and related effec-
tors to modulate host cell functions (Larsson et al., 2005), and
virulence mechanisms of the pathogen remain largely unknown
(Broms et al., 2010; Meibom and Charbit, 2010). The inflamma-
some plays a pivotal role in recognition and control of infection
by F. tularensis in experimental models of infection. The bac-
teria trigger activation of Aim2/Asc-dependent inflammasome
in mouse macrophages (Mariathasan et al., 2005; Fernandes-
Alnemri et al., 2010; Jones et al., 2010; Rathinam et al., 2010).
Recognition of the bacteria by this Aim2/Asc leads to activa-
tion of caspase-1, secretion of IL-1β and IL-18, pyroptosis and
culminate in the control of bacterial replication in macrophages
and in vivo. In addition, Aim2 and Asc were proposed to trig-
ger caspase-1-independent, caspase-8, -9, -3-mediated apopto-
sis of macrophages in response to infection with F. tularensis,
contributing to restriction of bacterial replication in these cells
(Pierini et al., 2012). Finally, whereas Nlrp3 is dispensable for
inflammasome activation in murine macrophages, NLRP3 and
AIM2 are suggested to play a role in human monocytic cells
(Mariathasan et al., 2006; Fernandes-Alnemri et al., 2010; Jones
et al., 2010; Atianand et al., 2011).

Absence of Aim2 activation by mviN and ripA mutants of
F. tularensis have been initially reported (Huang et al., 2010;
Ulland et al., 2010), but the lack of these encoded factors was
shown to compromise the integrity of bacteria and enhance intra-
macrophage lysis of mutant bacteria and release of DNA into
the host cell cytosol (Peng et al., 2011). Besides mviN and ripA,
mutations on core components of the type VI secretion system of
F. tularensis also affect activation of the inflammasome (Barker
et al., 2009; Broms et al., 2012), therefore, it is still possible
that this lack of activation may be due to an inherited defect in
phagosome escape of this bacteria.

Recent data, however, suggests that the bacteria actively
repress inflammasome signaling by the effector protein encoded
by FTL_0325, a process that may contribute to repression of
IL-1β secretion and bacterial growth in vivo (Dotson et al.,
2013). The authors observed that virulent F. tularensis subsp.
tularensis and holarctica fail to induce a robust activation of
the inflammasome in the early times of the infection in com-
parison to attenuated F. tularensis subsp. novicida. Mutations
in FTL_0325 gene of F. tularensis subsp. holarctica (live vac-
cine strain -LVS) do not alter bacterial fitness whilst it exacer-
bates the synthesis of pro-IL-1β. In addition, mutants lacking
FLT_0325 also induce higher levels of caspase-1 activation depen-
dent on Aim2 and Tlr2 and secretion of IL-1β dependent on Tlr2,
Aim2, and Nlrp3 in the early periods of infection. Importantly,
suppression of Aim2-dependent inflammasome activation by

FLT_0325 inhibits pyroptosis in response to infection by F.
tularensis LVS in macrophages (Dotson et al., 2013). Whether
pyroptosis repression contributes to pathogenesis in vivo is still
unclear.

Shigella flexneri
Bacillary dysentery in humans is caused by mucosal infection with
the Gram-negative intracellular pathogen S. flexneri. The bacte-
ria express a functional T3SS, through which sequential delivery
of bacterial effectors into host cell cytosol promotes pathogen-
esis (Ogawa et al., 2008). In addition, recognition of S. flexneri
PAMPs elicits immune responses that paradoxically contribute to
bacterial success (Phalipon and Sansonetti, 2007). Shigella invades
the epithelia through the M cells of the mucosa barrier, subse-
quently infecting resident macrophages and dendritic cells. Once
within these cells, the bacteria lyse the vacuole, replicates in the
host cell cytosol and eventually triggers inflammatory cell death.
This inflammatory burst and consequent neutrophil recruitment
promotes basolateral invasion and dissemination of S. flexneri,
followed by their entry into epithelial cells, renewed replica-
tion of bacteria and further dissemination along the epithelia
using a cell-to-cell spread mechanism. However, the infection
of epithelial cells generates an early genotoxic stress that could
potentially cause necrotic death and bacterial control; bacterial
replication inside these cells, suggests that Shigella also antago-
nizes cell death. In this way, S. flexneri concerted modulation of
pro-death and pro-survival signaling pathways potentially allow
bacterial circulation among different host compartments, main-
tenance of a replicative niche and a mechanism to circumvent
the innate immune response (Schroeder and Hilbi, 2008; Ashida
et al., 2011).

Signaling through Nlrc4inflammasome pathway, mediated by
recognition of the rod component MxiI of the T3SS appara-
tus culminates in caspase-1 activation, pyroptosis and IL-1β and
IL-18 secretion (Suzuki et al., 2007; Miao et al., 2010b). The
T3SS effector protein IpaB also induces pyroptosis and IL-1β

dependent on caspase-1 (Chen et al., 1996; Hilbi et al., 1998).
Although physical interaction of caspase-1 and IpaB has been
demonstrated, recent data support a mechanism of ion channel
formation by oligomerization of IpaB in the host cell membrane,
possibly inducing Nlrc4 and Asc-dependent inflammasome acti-
vation that culminates into caspase-1 activation and pyroptosis
(Senerovic et al., 2012). Inflammasome activation in infected
macrophages, caspase-1 activation, pyroptosis and secretion of
inflammatory cytokines can correspond to the inflammatory
burst associated to shigellosis. Importantly, inflammatory burst
induced by S. flexneri, associated with bacterial invasion and dis-
semination as well as resolution of infection by a competent
host, requires caspase-1, IL-1β, and IL-18 (Sansonetti et al., 1995,
2000). It is likely that fine modulation by Shigella of pyroptosis
in infected macrophages could favor bacterial basolateral dissem-
ination but avoid the potential restriction of infection associated
with robust immune signaling. Nonetheless, a specific molecu-
lar mechanism underlying this putative process has not yet been
revealed.

In the case of nonmyleoid epithelial cells, acute infection by
Shigella induces necrotic cell death pathways as a consequence
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of mitochondrial damage as well as due to genotoxic stress
through activation of calpain. The activation of calpain is a
process mediated by the bacterial effector VirA with complex
consequences, promoting bacterial uptake, inhibition of early
pro-apoptotic signaling by degradation of p53 but also induc-
tion of late necrosis that contributes to invasion (Bergounioux
et al., 2012). However, death of infected cells is supposed to
be modulated by the bacteria to support intracellular bacterial
growth inside epithelial cells thus, favoring primary tissue colo-
nization. In this sense, activation of pro-survival NF-κB signaling
pathway through recognition of bacterial PAMPs by Nod1 and
Rip2 possibly counterbalances necrotic cell death (Carneiro et al.,
2009).

A recent report revealed that mutants of S. flexneri lacking
the expression of the T3SS effector protein OspC3 induce early
pyroptotic cell death upon infection by S. flexneri of human
epithelial cell lines (Kobayashi et al., 2013). In agreement, �ospC3
S. flexneri increases mucosal cell death and inflammatory infil-
trate in the intestine of infected guinea pigs, with associated
reduction of bacterial growth in the epithelia without affecting
bacterial invasiveness. Of note, pyroptosis induced by �ospC3 S.
flexneri specifically requires caspase-4, the human homolog of
murine caspase-11, but not caspase-1. OspC3 reduces catalytic
activity of caspase-4, also decreasing cell death induced by overex-
pression of p19 catalytic subunit of casp-4. Caspase-4 physically
interacts with OspC3 through the catalytic site in the p19 subunit
of the active caspase-4. Interaction and inhibition of pyropto-
sis induced by caspase-4 also requires the C-terminal Ankyrin
repeat-containing domain of OspC3 (ANK), a eukaryotic-like
domain predicted to mediate protein-protein interactions. Most
strikingly, certain motifs in the ANK domain of OspC3 share
high similarity to other bacterial and viral proteins, includ-
ing those encoded by Legionella pneumophila, Coxiella burnetii,
Rickettsia rickettsia, and vaccinia virus. This first demonstration
of a pathogen effector protein that inhibits non-canonical induc-
tion of pyroptosis is suggestive that this mechanism might be
a common strategy to modulate the induction of inflammatory
responses among diverse pathogens. In the case of Shigella, it is
likely that inhibition of caspase-4-dependent pyroptosis provides
both the maintenance of epithelial replicative niche as well as
evasion of early immune signaling.

Legionella pneumophila
L. pneumophila is a Gram-negative intracellular bacterial
pathogen that accidentally infects humans, causing a pneumonia-
like disease in immunocompromised individuals. The pathogen
resides within a cytosolic endosomal replicative vacuole (LCV),
avoiding fusion with lysosomal vesicles and modulating diverse
host cell functions to maintain the replicative niche. To this
end, L. pneumophila secretes through a type IVB secretion sys-
tem called Dot/Icm (Defective organelle trafficking/Intracellular
multiplication) more than 300 effectors proteins into the host cell
cytosol, which are mostly involved in the maintenance of the LCV
and bear wide function redundancy (Hubber and Roy, 2010).

L. pneumophila is known to induce robust activation of the
inflammasome by triggering different pathways. Bacterial flag-
ellin secreted through the Dot/Icm system into host cell cytosol is

recognized by the Naip5-Nlrc4-caspase-1 axis, triggering pyrop-
tosis and Asc-dependent secretion of IL-1β (Amer et al., 2006;
Molofsky et al., 2006; Ren et al., 2006; Zamboni et al., 2006;
Lightfield et al., 2008; Case et al., 2009; Silveira and Zamboni,
2010). Of note, flagellin recognition via Naip5/Nlrc4/caspase-1
account to infection control in vitro and in vivo (Amer et al.,
2006; Molofsky et al., 2006; Ren et al., 2006; Zamboni et al., 2006;
Coers et al., 2007; Pereira et al., 2011). Moreover, data suggests
that activation of caspase-7 dependent on this inflammasome
pathway leads to LCV acidification and fast macrophage death,
contributing to bacteria control in vitro (Akhter et al., 2009). In
addition, Dot/Icm products induce flagellin-independent inflam-
masome activation regulated by caspase-11. Caspase-11 mediates
macrophage pyroptosis and secretion of IL-1α, besides regulat-
ing Nlrp3/Asc-dependent secretion of IL-1β (Case et al., 2013).
Importantly, evidence suggests that inflammasome-dependent
pyroptosis and neutrophil recruitment mediate by IL-1β and IL-
1α are important to bacterial clearance (Casson et al., 2013).
Recently, secretion of IL-1α independent of caspase-1 and
caspase-11 has also been shown to participate in neutrophil
recruitment and infection control (Barry et al., 2013).

In contrast to the current knowledge on inflammasome acti-
vation by L. pneumophila, little is known about mechanisms of
inflammasome subversion by the pathogen. Of note, L. pneu-
mophila evolved cycling through different unicellular amebae
protozoa in freshwater reservoirs, possibly conserving features
that allow a broad host-range pathogen instead of those spe-
cific to provide resilience in specialized phagocytes (Ensminger
et al., 2012). In this sense, the course of pathogen adaptation to
adequate host, L. pneumophila may have encountered little selec-
tive pressure to evade PRRs recognition and immune responses
(Massis and Zamboni, 2011). Consequently, it is possible that a
reduced number of L. pneumophila effectors should be involved
in subversion of innate immune responses of host macrophages
such as inflammasome activation and pyroptosis, favoring the
conservation of tools to hijack vesicles and organelles necessary
to constant remodeling of the LCV. On the other hand, the recent
description of a putative primitive immune-like system encoded
in the genome of Acanthamoeba castellanii (Clarke et al., 2013)
raises the possibility of existence of environmental pressure that
could have favored natural selection of bacteria provided with
evasion mechanisms against host immune response.

Of note, upregulation of non-apoptotic genes by activation
of NF-κB in a Dot/Icm-dependent manner counterbalance the
activation of caspase-3-mediated apoptotic pathway upon infec-
tion, indicating that L. pneumophila can modulate host cell death
(Abu-Zant et al., 2005, 2007). Early activation of caspase-3 is
induced by multiple bacterial secreted effectors and plays a role
in the arrested maturation of nascent bacteria-containing phago-
some through the endocytic pathway (Gao and Abu Kwaik,
1999; Zink et al., 2002; Molmeret et al., 2004; Zhu et al.,
2013). Importantly, caspase-3 activation accounts for restric-
tion of bacterial replication in dendritic cells (Nogueira et al.,
2009). Although direct inhibition of the inflammasome and
pyroptosis by L. pneumophila effector proteins has not yet been
demonstrated, the Dot/Icm effector SdhA is required for bacte-
rial replication in macrophages (Laguna et al., 2006). SdhA is
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important to avoid Aim2-dependent inflammasome activation in
response to recognition of L. pneumophila DNA (Ge et al., 2012).
Macrophages infected with mutants lacking sdhA gene trigger
Aim2-dependent activation of caspase-1, secretion of IL-1β and
pyroptosis, which is reversible by infection with genetically com-
plemented bacteria. However, as in the case of F. tularensis and the
genes mviN and ripA, it will be important to determine whether
the activation of Aim2 inflammasome in response to infection
with sdhA mutants is not an indirect effect of bacterial DNA
release in the cytosol as a consequence of compromised integrity
of LCV and bacterial degradation. Interestingly, a recent report
suggested that induction of autophagosome turnover dependent
on recognition of virulent flagellate L. pneumophila through
Naip5/Nlrc4/pro-caspase-1 regulates pyroptosis triggered by the
same pathway (Byrne et al., 2013). However, the mechanism by
which inflammasome components promote the autophagic flux
and how the induction of autophagy regulates pyroptosis remain
elusive. Paradoxically, L. pneumophila inhibits autophagy through
irreversible inactivation of Atg8 mediated by the effector RavZ
(Choy et al., 2012). Whether autophagy contributes to infection
or boosts immunity in response to L. pneumophila should be
further explored.

Coxiella burnetii
Similarly to Legionella pneumophila, the Gram-negative, obli-
gate intracellular bacteria and human pathogen Coxiella bur-
netii express the unique type IVB Dot/Icm secretion system
(McDonough et al., 2012). Although the two pathogens are also

closely related in phylogenetic analysis, C. burnetii is a bona-
fide mammalian pathogen, with a strong tropism for alveolar
macrophages in infected humans. Their distinct natural history
is evident in the strikingly divergent life style adopted by the bac-
teria once inside the host cells. C. burnetii demands an acidified
environment for morphological development, Dot/Icm expres-
sion and replication, which is accomplished by active maturation
of bacteria-containing vacuole through the endosomal pathway,
culminating in fusion with recruited lysosomal vesicles and for-
mation of a large replicative vacuoles (LRV) (Newton and Roy,
2011). Of note, C. burnetii is capable of modulating several cel-
lular processes to both remodel the LRV as well as to escape
bacterial recognition and control. The genome of C. burnetii
encodes more than 200 putative candidates for Dot/Icm secre-
tion, of those roughly 25% have been shown to be effectively
expressed and secreted in to host cell cytosol, with just a few
with a demonstrated functionality (Van Schaik et al., 2013). It
is possible that functional redundancy among C. burnetii effec-
tors is reduced in comparison to L. pneumophila, as diverse genes
have already been shown to affect LRV formation (Weber et al.,
2013).

The mechanism of recognition and immune response to
C. burnetii in macrophages remains elusive. Variations in the
O-antigen of C. burnetii LPS are determinant to the virulence
of the bacteria, with avirulent organisms expressing a truncated
form of O-antigen in the LPS structure. Besides, differences in
antigenic reactivity of C. burnetii LPS is determined by varia-
tion in the chemical composition of the O-polysaccharide chain

FIGURE 2 | Inhibition of inflammasome activation pathways by

pathogenic bacteria. (A) Inhibition of NAIP/NLRC4 inflammasome. The
effector YopK of Yersinia is secreted into host cell cytosol by the T3SS and
interacts with the translocon structure in the host cell cytosol interface; this
interaction possibly prevents recognition by cellular receptors. The effectors
VopQ/S of V. parahaemolyticus and ExoU of P. aeruginosa inhibit the
NAIP/NLRC4 inflammasome by unknown mechanisms. In the case of the
effectors YopE/T of Yersinia and ExoS of P. aeruginosa, interaction of the
bacterial proteins with caspase-1 in vitro are suggestive of a putative
mechanism for inflammasome inhibition by direct interaction with caspase-1.
Inhibition of inflammasome activation by interaction with caspase-1 has been
characterized for the effector YopM of Yersinia. (B) Inhibition of NLRP3
inflammasome. Inhibition of NLRP3-dependent inflammasome by YopK

occurs as explained in (A). The protein CPAF of C. trachomatis is a protease
that can target bacterial effectors secreted into host cell cytosol and inhibits
ASC-dependent inflammasome activation (that could be triggered by NLRP3)
by unknown mechanisms. In the case of YopE/T, suggestion of
inflammasome inhibition by direct interaction with caspase-1 indicates
possible subversion of both NLRP3 and NAIP/NLRC4 activation pathways. In
the case of YopM, demonstration of caspase-1 inhibition by direct interaction
also suggests that both pathways can be subverted. (C) Inhibition of AIM2
inflammasome. The effector SdhA of L. pneumophila, required for bacterial
growth, prevents bacterial DNA release into host cell cytosol, thus, avoiding
recognition by host DNA receptor AIM2. In the case of F. tularensis, the
protein encoded by bacterial gene FTL_0325 also inhibits AIM2
inflammasome activation by unknown mechanisms.
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Table 1 | Summary of bacterial effectors that suppress inflammasome activation and their role on suppression of pyroptosis, as discussed in

the main text.

Bacterial effector Mechanism of

inflammasome

inhibition

Inflammasome target Effect on

macrophage

pyroptosis

References

Yersinia spp. YopK Interaction with
YopK possibly
prevents
recognition of
T3SS

Metaeffector Inhibition Brodsky et al., 2010

YopE (Y. enterocolitica) Unknown, YopE
interacts with
caspase-1
in vitro

Unknown Inhibition Schotte et al., 2004

YopM Direct inhibition
of caspase-1
activation

Caspase-1 Inhibition Larock and Cookson, 2012

YopT (Y. enterocolitica) Unknown, YopT
interacts with
caspase-1
in vitro

Unknown Not-described Schotte et al., 2004

P. aeruginosa ExoS Unknown,
dependent on
ribosylation
activity of ExoS

Unknown Not-described Galle et al., 2008

ExoU Unknown,
dependent on
phospholipase
activity of ExoU

Unknown No inhibition Sutterwala et al., 2007

V. parahaemolyticus VopQ Unknown,
dependent on
host cell
autophagy

Unknown Not described Higa et al., 2013

VopS Unknown,
dependent on
inhibition of Rho
GTPase byVopS

Unknown Not described Higa et al., 2013

C. trachomatis CPAF Unknown,
requires
proteolytic
activity of CPAF

Unknown Inhibition Jorgensen et al., 2011

F. tularensis FTL_0325 Unknown Unknown Inhibition Dotson et al., 2013

S. flexneri OspC3 Direct inhibition
of caspase-4

Caspase-4 Inhibition Kobayashi et al., 2013

L. pneumophila SdhA Inhibition of
bacterial DNA
release

AIM2 Inhibition Ge et al., 2012

(Narasaki and Toman, 2012). Although the bacterial lipopep-
tides are recognized by Tlr2, as demonstrated with infections
performed purified molecules and with avirulent phase II C. bur-
netii (Zamboni et al., 2004), the virulent phase I bacteria avoid

Tlr2 recognition by forming a protective structure that avoids
exhibition of components of the bacteria cell wall for Tlr2 recog-
nition (Shannon et al., 2005). In addition, the structure of the
lipid A of the LPS of C. burnetii was also revealed and it was
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shown that lipid A derived from both virulent and avirulent bac-
teria antagonizes Tlr4 activation (Zamboni et al., 2004). Of note,
antagonic engagement of Tlr4 by C. burnetii LPS is possibly a
complex process. A recent report showed that virulent bacteria
and their LPS trigger an impaired activation of the MAPK path-
way in macrophages, which is important to avoid conversion of
phagolysosomes hosting bacteria into degradative compartments
containing cathepsin D (Barry et al., 2012).

The bacterium is also known to induce pro-survival pathways
that sustain bacterial growth. Phase I and phase II C. burnetii
induce sustained phosphorylation of anti-apoptotic host pro-
teins Akt and Erk1/2 (Voth and Heinzen, 2009). Interaction
of Beclin-1, a protein of autophagy, with anti-apoptotic Bcl2
in the membrane of the bacterial LRV prevents apoptosis of
cells infected with C. burnetii (Vazquez and Colombo, 2010).
In addition, C. burnetii inhibits caspase-3- dependent intrin-
sic pathway of apoptosis (Luhrmann and Roy, 2007; Voth
et al., 2007), and the Dot/Icm effectors AnkG, CaeA, and CaeB
have already been implicated in this process by distinguished
mechanisms. The effector AnkG inhibits host cell apoptosis
dependent on the interaction with p32, a host cytoplasmic
protein implicated in pathogen-induced apoptosis (Luhrmann
et al., 2010). Whereas a mechanism for inhibition of apop-
tosis by CaeA has not yet been demonstrated, the effector
CaeB co-localizes with the mitochondria and its overexpres-
sion reduces the loss of MOMP (mitochondria outer membrane
permeabilization) induced by activation of the apoptosis pathway
(Klingenbeck et al., 2012).

A role of NLRs and inflammasome activation in the recogni-
tion and control of C. burnetii infection has not been demon-
strated so far, even though the bacteria is a bona-fide intracellular
pathogen that express a functional secretion system, a hallmark
for bacterial sensing by macrophages. Still, the capacity of the
bacteria to thrive inside the macrophages throughout a slow
replicative life cycle suggests that the bacteria might subvert
inflammatory responses including the activation of the inflam-
masome. Future investigations should shed light in a possible
role of the inflammasomes in host response to C. burnetii, as
well as reveal novel mechanisms of bacterial subversion of the
inflammasome and pyroptosis.

CONCLUDING REMARKS
Activation of the inflammasome is a broad host response that
effectively contributes to innate immune response and infec-
tion control of a remarkably high number of infectious agents.
Activation of this platform leads to inflammasome-dependent
secretion of cytokines, induction of pyroptosis and restriction
of pathogen replication, by mechanisms that are still obscure.
As reviewed here, targeting inflammasome activation is a com-
mon evasion strategy of different species of bacterial pathogens.
Importantly, different steps of the signaling cascade that leads
to inflammasome activation are targeted by bacterial proteins.
However, in most cases, the molecular mechanisms underly-
ing inflammasome inhibition are still not fully understood. Few
reports identified a direct interaction with the inflammasome
effector molecule caspase-1, whereas others provided evidence
of an interference with upstream signaling pathway (Figure 2,

Table 1). Moreover, in some cases the inhibition of the inflamma-
some was verified in the level of caspase-1 activation and IL-1β

secretion, without appropriate assessment of inhibition of pyrop-
tosis. In this scenario, it should be considered that secretion of
IL-1β and pyroptosis can be differentially regulated, with caspase-
11 emerging as a master regulator of these processes. The con-
tribution of caspase-11 in inflammasome activation in response
to pathogens is possibly underscored because published litera-
ture on the activation of caspase-1 has been widely assessed using
C57BL/6 mice double knockout for both caspase-1 and caspase-
11 (Kayagaki et al., 2011). In this scenario, it will be important
to reevaluate if the reported suppression of the inflammasome
by bacterial proteins reviewed herein occur via inhibition of
the canonical (caspase-1-dependent, caspase-11- independent)
or non-canonical (caspase-11-dependent only) inflammasome.
Finally, it is important to emphasize that dysfunctions on
inflammasome signaling is intrinsically connected to the onset
of diverse chronic inflammatory metabolically and autoim-
mune syndromes. Understanding the molecular mechanisms of
pathogen subversion strategies for suppression of the inflam-
masome activation and elucidate how they specifically affect
inflammasome responses will be critical to a comprehensive
understanding of the bacterial pathogenesis and host response.
Importantly, it may provide clues for the advance in the develop-
ment of effective therapeutics to uncontrolled inflammation asso-
ciated to systemic infections and chronic inflammatory diseases.
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