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Following the acquisition of multicellu-
larity, organisms with increasing levels
of specialized cells, tissues, and organs
emerged during evolution. To coordinate
specialized organs, long-distance interor-
gan communication systems appeared.
The central nervous system evolved to reg-
ulate many organ behaviors, using hor-
mones or neurons. In addition, organs
developed systems to directly communi-
cate their states to one another. This is
illustrated by the lack of nervous sys-
tems in plants and simple animals like
sponges, which can perform complex sys-
temic functions (Lough and Lucas, 2006;
Srivastava et al., 2010).

Developmental or homeostatic events
within cells or tissues have been extensively
studied. For example, maintenance of the
integrity of the Drosophila gut involves
stem cell proliferation and differentiation,
partially driven by local JAK/STAT, EGF,
MAPK, and Wnt signaling (Panayidou
and Apidianakis, 2013). Recently, it has
become clear that individual organs them-
selves are also able to communicate their
states. However, the nature of the interor-
gan signaling mechanisms remains largely
a mystery.

Here, we review the emerging data sup-
porting the existence of a vast interorgan
communication network (ICN). The ICN
is the network of peptides, proteins, and
metabolites that act between organs to
coordinate essential and specialized cellu-
lar processes under homeostasis and stress
(Figure 1). We propose that studies in
Drosophila, where, unlike in mammals,
biochemical studies can be combined
with genome-wide in vivo tissue-specific

genetic screens, are poised to identify
many ICN components. Characterization
of the ICN will further understanding of
systemic diseases such as cancer-associated
muscle cachexia.

FUNCTION OF THE ICN: SYSTEMIC
INTEGRATION OF HOMEOSTASIS
A limited number of studies in mam-
mals, C. elegans, and Drosophila showed
that perturbed tissues affect organis-
mal growth and metabolism via largely
unknown signals. The Drosophila fat-
body (liver and adipose functional equiv-
alent) responds to dietary signals by
releasing factors affecting insulin secre-
tion, growth, and metabolism (Britton
and Edgar, 1998; Colombani et al., 2003;
Géminard et al., 2009). For instance, in
response to high dietary fat and sugar,
the fat-body-derived leptin-like factor
Unpaired-2 systemically controls release
of insulin from insulin-producing cells in
the brain (Rajan and Perrimon, 2012).
Further, unknown nutrition-dependent
signals control intestinal, neural, and
germline stem cell division through local
or systemic insulin signaling (LaFever
and Drummond-Barbosa, 2005; Chell
and Brand, 2010; O’Brien et al., 2011;
Sousa-Nunes et al., 2011). Also, localized
organ growth perturbations delay systemic
development via inhibition of insulin sig-
naling (DiAngelo et al., 2009), and insulin
(Karpac et al., 2011) and ecdysteroid syn-
thesis, partially through insulin-like Dilp8
(Colombani et al., 2012; Garelli et al.,
2012).

In mammals, leptin is secreted by
adipose tissue with nutritional surplus,

controlling the neuroendocrine system
(Zhang et al., 1994; Ahima et al., 1996).
Also, exercise and muscle overexpression
of PGC1-α increases the production of the
secreted factor Irisin, a fragment of the
transmembrane protein FNDC5, which
stimulates metabolism and fat brown-
ing (Böstrom et al., 2012). Moreover,
exercising muscle secretes interleukin-6
(Steensberg et al., 2000), possibly regulat-
ing systemic glucose and lipid metabolism
by acting on muscle, liver, fat, intesti-
nal L-cells, and pancreatic alpha-cells
(Febbraio et al., 2004; Petersen et al.,
2005; Ellingsgaard et al., 2011; Pedersen,
2011; Pedersen and Febbraio, 2012).
Interestingly, liver or muscle autophagy
controls whole-body glucose and fatty-
acid metabolism, partially through
FGF-21 (Kim et al., 2013). Finally, a
number of gut-derived hormones includ-
ing gastrin, ghrelin, cholecystokinin,
glucagon-like peptide-1, and others affect
insulin secretion, systemic fatty-acid
metabolism, and feeding (Drucker, 2007).
Strikingly, metabolic control is conserved,
as leptin can rescue Drosophila Unpaired-
2 deficiency, and both function through
similar neuronal circuits (Vong et al., 2011;
Rajan and Perrimon, 2012).

Intracellular pathways induce factors
which regulate aging, stress resistance,
and distal cellular functions. In C. ele-
gans, germ-line absence extends life-span
(Arantes-Oliveira et al., 2002) and causes
systemic proteasomal activity increase, via
unknown signals (Vilchez et al., 2012).
In addition, tissue-specific induction of
mitochondrial (Durieux et al., 2011), cyto-
plasmic (van Oosten-Hawle et al., 2013),
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FIGURE 1 | Overview of the interorgan communication network (ICN). The ICN is the network
of peptides, proteins, and metabolites that act between organs to coordinate organismal cellular
processes under homeostasis and stress. Organs in the body secrete factors that act to influence
the physiology of cells in distal organs. Processes that may be connected between organs include
aging, protein homeostasis, nutrient uptake, metabolism, cell division, cell movement,
detoxification, organelle biogenesis, and secretion of local and systemic signals. The signals may be
nutrients, wastes, toxins, metabolites, nucleic acids, proteins, and peptides.

and endoplasmic reticulum (ER; Taylor
and Dillin, 2013) unfolded protein
responses result in their systemic prop-
agation, via poorly characterized factors.
Neurotransmitter signaling partially medi-
ates ER stress (Taylor and Dillin, 2013), but
not heat-shock response propagation (van
Oosten-Hawle et al., 2013). Moreover,
systemic signaling to the brain causes
behavioral avoidance of the stress-inducer
(Melo and Ruvkun, 2012).

In Drosophila, gut, muscles, and fat-
body are essential in stress resistance
and aging. Gut infection or oxidative
stress induces fat-body anti-microbial
peptide secretion via unknown mecha-
nisms (Foley and O’Farrell, 2003; Wu et al.,
2012). Fat-body overexpression of FOXO
transcription factor increases lifespan
(Giannakou et al., 2004). Moreover, adult
muscle-specific overexpression of FOXO
prevents aging of other organs by decreas-
ing accumulation of protein aggregates
and increasing autophagy (Demontis and
Perrimon, 2010). In addition, activation
of muscle TOR or p38-MAPK signaling
controls systemic aging and stress resis-
tance (Vrailas-Mortimer et al., 2011). Also,
muscle fatty-acid metabolism is essential
for lifespan-increasing effects of dietary
restriction (Katewa et al., 2012). Moreover,
maintenance of gut homeostasis by stem-
cell expression of PGC-1 or FOXO targets

improves lifespan and metabolic home-
ostasis (Biteau et al., 2010; Rera et al.,
2011).

Also, exposure of old mice to young
blood results in restoration of muscle
and liver regeneration, suggesting that
systemic factors control aging (Conboy
et al., 2005). For example, GDF-11 is a
BMP ligand which slows myocardial aging
through unknown mechanisms (Loffredo
et al., 2013). Interestingly, TGF-β has been
implicated in regulating reactive oxygen
species production in the aorta, endothe-
lial structure, blood-pressure, and car-
diomyocyte function (Buday et al., 2010).

Systemic factors also control cell pro-
liferation and tissue regeneration. In
Drosophila, distal wounds control gut pro-
liferative homeostasis via unknown mech-
anisms (Takeishi et al., 2013). Moreover,
insulin regulates intestinal stem-cell pro-
liferation (Amcheslavsky et al., 2009; Choi
et al., 2011). In mammals, muscle from
dystrophin-mutant mice may remotely
alter wound healing (Straino et al., 2004).
Also, liver-secreted betatrophin controls
pancreatic beta-cell proliferation (Yi et al.,
2013).

Unknown factors may also be con-
trolled by reproduction. In insects, mat-
ing and fertilization induces numerous
uncharacterized transcriptional changes in
multiple organs (Rogers et al., 2008; Avila

et al., 2011). In Drosophila females, mat-
ing increases mating receptivity, feeding,
and egg-laying; changes movement; and
decreases lifespan (Fowler and Partridge,
1988; Barnes et al., 2008; Avila et al., 2011).
Some changes are associated with transfer
of male accessory gland peptides (e.g., sex
peptide) to females (Wigby and Chapman,
2005; Carvalho et al., 2006). Conversely,
systemic factors may control reproduction.
For instance, in Drosophila, insulin con-
trols female germline stem cell prolifer-
ation (LaFever and Drummond-Barbosa,
2005). In C. elegans, oocyte and germline
maintenance during aging is regulated by
TGF-β and insulin via unknown relay sig-
nals (Luo et al., 2010).

In addition, systemic factors may regu-
late offspring fitness. In mice, paternal diet
influences offspring metabolism (Carone
et al., 2010; Ng et al., 2010). Moreover,
the injury of fathers’ and grandfathers’
livers increases the regenerative capacity
of their offspring’s livers (Zeybel et al.,
2012). Similarly, in Drosophila, tissue-
specific stress causes heritable develop-
mental alterations (Stern et al., 2012).

Finally, because alterations in its com-
position influence systemic physiology
(e.g., metabolism; Claus et al., 2008),
the microbiome is part of the ICN. For
instance, obesity-induced changes in gut
microbiome increase systemic deoxycholic
acid that acts as a liver DNA-damaging and
cancer-promoting agent (Yoshimoto et al.,
2013).

In conclusion, there is growing evi-
dence that many organismal functions
mediate various aspects of interorgan
communication through secreted factors.
Understanding the roles of these factors,
and how their activities are integrated to
the organism’s functions is the next big
challenge. Further, as systematic screens
have not been performed for such fac-
tors, it is likely that many additional ones
remain to be identified.

STRUCTURE OF THE ICN
Gene-expression analyses of organs
have shown the existence of organ-
to-organ coexpression networks that
change in disease and aging, suggesting
of unexplored interorgan processes and
common responses of tissues to systemic
factors (Keller et al., 2008; Dobrin et al.,
2009; Huang et al., 2011). These analyses
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revealed that at least 40% of the interorgan
features are not in single-tissue networks,
and that the highly connected genes in the
interorgan networks are poorly connected
in the single-tissue networks (Dobrin
et al., 2009).

What are the factors/nodes that con-
nect the organs/hubs in the ICN? At their
simplest and most evolutionary ancient
form, signals may be nutrients, wastes,
toxins, or metabolites. For instance, liver-
produced beta-hydroxybutyrate inhibits
histone deacetylases (Shimazu et al., 2013).
Communication may also be in the form
of circulating nucleic acids (e.g., miRNAs;
Mitchell et al., 2008). Finally, proteins and
peptides may be classical developmental
regulators or novel. Intriguingly, “intra-
cellular” proteins can be secreted outside
the cell, as an isoform containing a signal
sequence (e.g., PTEN-long; Hopkins et al.,
2013), or through non-classical secretion
(e.g., aP2; Cao et al., 2013)

An important feature that differentiates
local tissue and developmental networks
from the ICN, is the large distance over
which signaling acts, meaning that con-
centration and specificity of the fac-
tors could be lower. To remedy this,
a dense network of closely acting fac-
tors could exist, such that one fac-
tor acts on a neighboring tissue, which
secretes a relay signal. Alternatively, sig-
nals may be carried along “molecular
tracks” to their destination. These may
be blood vessels or tissue regions con-
taining “guidance factors”—putative weak
affinity receptors to common structural
features to groups of secreted factors.
In addition, binding proteins (Mantovani
et al., 2001) or proteases may be secreted
to modulate local or systemic signaling.
For example, Drosophila insulin-binding
proteins ImpL2 (Honegger et al., 2008)
or secreted decoy of insulin (Okamoto
et al., 2013) bind to and inhibit insulin,
locally or systemically. The mammalian
ImpL2 homologs, insulin-like growth fac-
tor (IGF) binding proteins transport and
regulate IGFs (Hwa et al., 1999; Honegger
et al., 2008).

Factors may also be modified with
fatty-acids, cholesterol, or glycans, regulat-
ing their stability, transport (Nusse, 2003;
Linder and Deschenes, 2007; Moremen
et al., 2012), and interaction with abun-
dant and stable components including

apolipoproteins (Panáková et al., 2005).
These molecules can then deliver factors to
target organs. For example, Hedgehog can
be lipidated, interact with apoliproteins,
and act distally (Palm et al., 2013). Finally,
signaling can occur extracellularly through
protease cascades (e.g., Drosophila spatzle-
Toll; Morisato and Anderson, 1994) or
phosphorylation (Yalak and Vogel, 2012).

ICNs IN HUMAN BIOLOGY AND
DISEASE
Elucidation of the ICN will be valu-
able for disease biology. Many disorders
begin locally, and ultimately involve the
entire organism by affecting behavior, cell
recruitment, metabolism, proliferation,
and activation (McCance and Huether,
2002). For example, muscle defects are
associated with alterations in wound heal-
ing (Straino et al., 2004), regeneration,
hepatocyte proliferation (Conboy et al.,
2005), dyslipidemia, hypertension, type
2 diabetes, cardiovascular diseases, can-
cer, Alzheimer’s and Parkinson’s diseases
(Pedersen, 2011). Moreover, cachexia,
wound-healing, and hematopoiesis defects
occur in cancer (Devereux et al., 1979;
Egeblad et al., 2010).

Also, organ failure patients who receive
organ function replacement therapy even-
tually succumb to disease, with sys-
temic defects. For instance, kidney failure
patients receiving kidney function replace-
ment hemodialysis suffer from malnu-
trition and lung defects (McCance and
Huether, 2002; Doi et al., 2011; White
et al., 2011). This suggests that organs
have essential functions beyond their
“classic” roles, for example, by regulat-
ing distal organs through secreted factors.
Importantly, blood-borne signals mediate
critical systemic homeostatic adjustments
from local perturbations, illustrated by
control of systemic physiology by electrical
cycling of paralyzed muscles in spinal-cord
injured tetraplegic humans (Kjaer et al.,
1996; Pedersen, 2011).

CONCLUSIONS
Great strides are being made toward
understanding intracellular and tis-
sue homeostasis. The next step is to
understand the structure, function, and
components of the ICN. The main ques-
tions are the nature of the interorgan
communication factors and their roles

in maintaining whole-organism home-
ostasis. Also, how does the ICN change
during development, aging, and disease?
The current transcriptomic, proteomic,
metabolomic, and genome-wide tissue-
specific genetic manipulation technologies
will allow answering these questions.
Importantly, systematic in vivo identifi-
cation of systemic factors is impractical
in mammals. Thus, the ICN may be con-
structed for Drosophila, for which all of
the above tools are available, and applied
to mammals. Thus, “organ-sensing” RNAi
screens can now be done, where genes
are inactivated by tissue-specific RNAi,
and function of another organ is assessed.
Within the next decade, we expect a surge
of interest to define the structure and
function of the ICN.
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