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Transition metals such as iron, manganese, and zinc are essential micronutrients for
bacteria. However, at high concentration, they can generate non-functional proteins
or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or
overload, both of which can impair cell survival. In addition, equilibrium among these
metals has to be tightly controlled to avoid molecular replacement in the active site
of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet
physiological needs within the context of the local environment. When intracellular
buffering capacity is reached, they rely primarily on membrane-localized exporters to
maintain metal homeostasis. Recently, several groups have characterized new export
systems and emphasized their importance in the virulence of several pathogens.
This article discusses the role of export systems as general virulence determinants.
Furthermore, it highlights the contribution of these exporters in pathogens emergence
with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
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INTRODUCTION
For decades, it has been known that transition metals played a
role in regulating host pathogen relationships (Weinberg, 1971;
Finkelstein et al., 1983). Bacterial pathogens must acquire these
metals in order to survive in the host during an infection. Metals
such as Fe, Mn, Zn, Ni, Cu, Co, and Mo (Schaible and Kaufmann,
2005) have an incomplete “d” orbital which permits different
states of oxidation, e.g., Fe2+ and Fe3+. These metals often serve
essential roles in protein structural stabilization or as enzymes
cofactors (Barondeau and Getzoff, 2004). However, the unique
chemistry of these metals can also provoke inappropriate redox
reactions with O−

2 and H2O2, (Fenton’s reaction), generating
highly damaging hydroxyl radicals (OH and OH−) that can ulti-
mately lead to the cell death (Stadtman, 1990). It is perhaps this
duality that has driven the selection of sophisticated bacterial
strategies to orchestrate transition metal homeostasis by sensing,
acquiring, storing, or when necessary, exporting these essential
but potentially lethal metals.

The stringent and complex requirements of bacterial
pathogens for metals have been exploited by the immune system
to limit bacterial growth. The majority of described examples
demonstrate that the immune system uses starvation strategies
that consist in decreasing metal availability (mainly Fe2+, Zn2+,
and Mn2+) (Canonne-Hergaux et al., 1999; Corbin et al., 2008)
to restrict bacterial growth. However, recent reports suggest
the existence of an immune strategy whereby the bacteria are
poisoned with an overload of metal, principally Zn2+ and
Cu+/2+(White et al., 2009). This latter finding also corrob-
orates the fact that deletion of bacterial efflux pumps often
impairs the virulence of pathogens (Stahler et al., 2006; Rosch
et al., 2009; Botella et al., 2011; Li et al., 2011; Veyrier et al.,
2011; Padilla-Benavides et al., 2013). It is therefore important

to call attention to these efflux systems as virulence factors,
as they have received less attention than metal importer sys-
tems. This article offers a brief perspective of the different
families of metallo-exporters and a discussion of their general
importance in the virulence of bacterial pathogens with empha-
sis on Neisseria meningitidis, an obligate human respiratory
symbiont.

METAL EFFLUX SYSTEMS
The concentrations of metals can vary dramatically in the
host organism during the course of a bacterial infection, and
pathogens have developed a large panel of exporters to regu-
late their intracellular metal concentrations. Currently five main
classes of bacterial exporters (Figure 1) have been described:

1. The Resistance-Nodulation-Cell division (RND) type trans-
porters are integral membrane proteins mediating the efflux
of a broad variety of substrates with a subset exporting metals.
This subgroup is named heavy-metal efflux RND (HME-
RND). This tripartite transporter utilizes the proton motive
force to drive the efflux of the substrates (Nies, 1995; Goldberg
et al., 1999). The RND pump (annotated A in Figure 1) is
an integral membrane protein with a hydrophilic periplas-
mic component, connected to a trimeric outer membrane
factor (C in Figure 1). This outer membrane channel allows
the efflux of metal into the extracellular space (Paulsen et al.,
1997). The third part of the RND transporter complex is com-
posed of several units of a periplasmic membrane protein (B in
Figure 1). It serves as an adaptor that forms a ring around the
outer membrane proteins and the pump, thereby stabilizing
contact between the two other components (Murakami et al.,
2002; Akama et al., 2004a,b).
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FIGURE 1 | The different families of metal exporters. The different families
of metal exporters include the Resistance-Nodulation-Cell division (RND) type
transporters, the P-type ATPase family (forming a covalent phosphorylated
intermediate), the Cation Diffusion Facilitator (CDF) family, the MntX

(Transporter Mediating Manganese Export) family, and the CorA family
(Cobalt Resistance protein A). As schematized by a question-mark, the
subsequent export from the periplasm to the extracellular space can be
mediated via an unknown porin or passively.

Several RND exporter systems have been identified to date,
including CzcABC from Cupriavidus metallidurans which
mediates the efflux of Co2+, Zn2+, and Cd2+ with different
affinities. The deletion of czcC (the outer membrane com-
ponent) resulted in a decrease of Cd2+ and Co2+ efflux
whereas the lack of czcA or czcB, the pump and fusion pro-
tein, respectively, induced a complete loss of efflux activity
(Nies and Silver, 1989; Nies et al., 1989; Goldberg et al.,
1999). Other characterized RND systems include CnrABC
from Alcaligenes eutrophus which mediates the efflux of Co2+
and Ni2+ (Liesegang et al., 1993), CznABC from Helicobacter
pylori which mediates resistance against high concentrations
of Ni2+, Zn2+, and Cd2+ (Stahler et al., 2006) and CusABC
from E. coli which mediates the efflux of Cu+ and Ag+ (Long
et al., 2012).

2. Members of the P-type ATPase family (Figure 1) are present
in eukaryotes and prokaryotes and, as the name implies,
they couple metal transport to the hydrolysis of ATP (Fagan
and Saier, 1994). Catalytic phosphorylation of the trans-
porter occurs after binding of cytoplasmic metal to the
trans-membrane metal-binding sites. This phosphorylation is
reported to induce a permissive conformation allowing the
translocation of metals (Stokes et al., 1999). Two substrate
classes have been defined for the family: Zn2+/Cd2+/Pb2+ or
Cu+/Ag+. Exporters specific for the former class include ZntA
from E. coli (Rensing et al., 1997), CadA from Bacillus sub-
tilis (Solovieva and Entian, 2002; Gaballa and Helmann, 2003),
and CtpC from Mycobacterium tuberculosis (Botella et al.,
2011). The second class is exported by homologs of CopA
from Streptococcus pneumoniae (Shafeeq et al., 2011). CopA,
the Cu+-efflux P-type ATPase, maintains a low cytoplasmic
copper concentration in conjunction with other members of
a single operon encoding the Cu+-dependent repressor, CopY
(Portmann et al., 2006) and CupA, a cell membrane-anchored
Cu+-chaperone (Fu et al., 2013). Biochemical characterization
of the CopA exporter indicates an eight transmembrane-helix
topology forming a Cu+ transport channel (Padilla-Benavides
et al., 2013).

3. An important and diverse class of metal exporters is the Cation
Diffusion Facilitator (CDF) family (Figure 1). CDF members

transport various metals in both prokaryotes and eukaryotes
(Haney et al., 2005). The first description of a CDF protein
was YiiP from E. coli and its function, the efflux of Cd2+ and
Zn2+, is coupled to H+ antiport. In addition, Fe2+ was also
suggested to be exported through YiiP (Grass et al., 2005)
but subsequent studies have shown that Fe2+ transport is not
as efficient as for Cd2+ and Zn2+ (Wei and Fu, 2005; Hoch
et al., 2012). YiiP and other members of the family are usu-
ally composed of six transmembrane domains followed by
a metallochaperone-like cytoplasmic domain that regulates
metal transport activity (Lu et al., 2009). Crystal structures
revealed an inward-facing homodimeric structure with four
Zn2+ binding sites per monomer, designated Z1–Z4 (Lu and
Fu, 2007; Coudray et al., 2013). Several homologs with speci-
ficity for Zn2+ have been described, including ZitB in E. coli
(Chao and Fu, 2004), ZitA in M. tuberculosis (Nies, 2003),
CzcD in B. subtilis (Guffanti et al., 2002) or S. pneumoniae
(Kloosterman et al., 2007).
A subclass of CDF exporters, MntE, with a preference for
Mn2+ has also been described. In general Mn has been
viewed as completely beneficial for the bacteria. For instance,
it has been established that Mn plays a role in resistance to
superoxide and hydrogen peroxide in several bacteria includ-
ing S. pneumoniae (Yesilkaya et al., 2000; McAllister et al.,
2004) Bradyrhizobium japonicum (Hohle and O’Brian, 2012)
and Neisseria gonorrhoeae (Seib et al., 2006) among others.
Accordingly Mn2+ importers, e.g., MntH and MntABC, have
received the majority of attention until recently, when MntE-
dependant Mn2+ export was described in S. pneumoniae
(Rosch et al., 2009).

4. Several recent studies have also shown that MntE is not the
only type of Mn2+ exporter and the existence of a new and
distinct family corresponding to the fourth type of exporters,
was revealed: the MntX (Transporter Mediating Manganese
Export) family (Figure 1) (Li et al., 2011; Veyrier et al., 2011).
Little is known about the MntX family transport mechanism
but secondary structure and topological predictions suggest
an inverted repeat of three transmembrane segments, i.e.,
DUF204 (Veyrier et al., 2011). Unlike the other families, MntX
is found exclusively in the bacterial kingdom, indicating the
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family may have a relatively recent origin following the genetic
fusion of two DUF204 domains (Veyrier et al., 2011). For
the moment, homologs of MntX in N. meningitidis (Veyrier
et al., 2011), Xanthomonas sp. (Li et al., 2011; Veyrier et al.,
2011), and E. coli (Waters et al., 2011) have all been described
to export principally Mn2+ with some secondary affinity for
other divalent metals.

5. The fifth exporter family is composed of a subclass of the 2-
TM-GxN family (CorA, Cobalt Resistance protein A) that was
first identified as Mg2+ transporters (Figure 1) (Smith et al.,
1993). However, some members are dedicated to the export of
other divalent cations, principally Zn2+. ZntB of Salmonella
enterica is involved in the transmembrane flux of Zn2+ and
Cd2+ (Worlock and Smith, 2002). This protein, which may
multimerize, harbors two transmembrane domains and a long
cytoplasmic region that facilitates acquisition and subsequent
delivery of cations to the transport channel.

METAL EFFLUX AND VIRULENCE
As stated before, metal chelation is used by the immune-system to
restrict bacterial growth and, by definition, the use of exporters
may not help the bacteria in this situation. From the above
description, the majority of exporters from bacterial pathogens
are dedicated to export of three transition metals (Zn, Cu, and
Mn) that are found in substantial amount in the human body.
Interestingly, Zn2+ levels are increased during inflammation (20)
and have long been recognized to regulate the immune system
(13). In addition, Zn2+ is also present in phagosomes contain-
ing bacteria (35). Thus, it is postulated that pathogenic bacteria
uses Zn2+ export systems to face the fluctuating levels of Zn2+
during infection of the human body. The same may apply for cop-
per, as it has been recently demonstrated that animals use copper
as an anti-microbial weapon by inducing oxidative stress (26).
Similarly, Cu+ is imported into the phagosome via the protein
ATP7A (White et al., 2009). It is therefore not surprising that
pathogens lacking Zn2+ or Cu+ exporters have impaired viru-
lence. As an example, it has been established that a copA mutant
strain showed decreased virulence in a mouse model of pneumo-
coccal pneumonia and a decreased ability to survive in the mouse
nasopharynx (NP), indicating that Cu+ homeostasis plays an
important role in S. pneumoniae physiology and virulence (26).
All together, these studies suggest that both metals are used by the
immune system to intoxicate bacteria (Botella et al., 2012).

The role of Mn2+ during infection is less understood as both
beneficial and adverse effects have been reported. Nevertheless,
all studies point to a general but important role of Mn2+ export
in bacterial pathogenesis. All the pathogens tested to date have
a decrease in their virulence when deprived of their Mn2+-
exporters. In S. pneumoniae, it was demonstrated that the lack of
MntE, belonging to the CDF family, reduced virulence by dimin-
ishing both nasal colonization and blood invasion, resulting in
decreased mouse mortality (Rosch et al., 2009). The same applies
to Xanthomonas oryzae pv. oryzae in a plant model of infection or
N. meningitidis in a mouse sepsis model of infection after inacti-
vation of their Mn2+ exporter from the MntX family (Li et al.,
2011; Veyrier et al., 2011). These data could suggest the exis-
tence of a host immune strategy based on Mn2+ poisoning. This

hypothesis is somewhat discordant with the recent description
of a host Mn2+ and Zn2+ chelator, calprotectin (Corbin et al.,
2008). This host factor is capable of inhibiting bacterial growth in
a Mn2+-dependent manner (Damo et al., 2013), thereby fulfilling
an important role in the protection of the host against infec-
tion by bacterial pathogens such as S. aureus (Corbin et al., 2008;
Damo et al., 2013). Furthermore, the poisoning hypothesis is also
in disagreement with the fact that deletion of Mn2+ importers
decreases the virulence of several pathogens (Boyer et al., 2002;
Anderson et al., 2009; Champion et al., 2011; Perry et al., 2012).
For this reason, further study of this phenomenon will be impor-
tant to understand the exact role that Mn2+ plays during infection
(poison, nutrient or both).

METAL EXPORT: THE EXAMPLE OF N. meningitidis
The NP defines the upper part of the pharynx from the end of
nasal cavities (choanoe) to the upper surface of the soft palate.
On the lateral parts it communicates with the Eustachian tubes by
the pharyngeal ostium whereas the posterior part is composed of
the pharyngeal tonsils (adenoids). This compartment is open and
serves as a habitat for many microorganisms which are collectively
called the NP microbiota (or flora). In this sense, the NP is the
ecological niche for many bacterial pathogens such as N. menin-
gitidis, S. pneumoniae, Haemophilus influenzae, and Moraxella
catarrhalis. While carriage is usually asymptomatic, it can occa-
sionally evolve into local infections of the upper-respiratory tract
(pharyngitis, laryngitis, bronchitis, sinusitis, and otitis) or an
invasive infection leading to life threatening diseases, such as inva-
sive pneumonia, septicemia, and meningitis. Consequently, this
leads to major morbidity and mortality as well as public health
and economic burdens.

N. meningitidis is exclusively found in humans and frequently
isolated from the upper respiratory tract of asymptomatic carri-
ers (overall 10% of the general population). It is also the causative
agent of life threatening invasive infections such as septicemia and
meningitidis. The carriage of N. meningitidis is low in children
(around 4–7%) where the principal neisserial colonizer (around
15%, Cartwright et al., 1987) is a closely related, non-pathogenic
species, Neisseria lactamica. The prevalence of N. meningitidis
increases after 10 years old with a peak at 19 years old (around
24%) and decreases throughout adulthood (13% in 30-year old
to 8% in 50-year old) (Christensen et al., 2011).

The importance of Fe import systems for N. meningitidis vir-
ulence has been previously demonstrated following deletion of
genes coding for several transporters (Genco et al., 1991; Genco
and Desai, 1996; Larson et al., 2002; Renauld-Mongenie et al.,
2004; Hagen and Cornelissen, 2006). A complementary approach
has been used in which its virulence was enhanced by provid-
ing a compatible Fe source (Oftung et al., 1999; Zarantonelli
et al., 2007). The role of exporters in the virulence of this
nasopharyngeal pathogen is less-well established. The emergence
of data concerning the role of exporters as virulence determi-
nants, and the new concept of bacterial metallo-intoxication
by the immune system, should encourage future research on
this topic.

Our group has recently identified a novel Mn2+-exporter,
MntX. We showed the mntX gene is expressed during sepsis in a
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mouse model and required for full virulence (Veyrier et al., 2011).
We have further shown that MntX is required to maintain the
Fe/Mn ratio thus avoiding molecular replacement between these
two metals (Veyrier et al., 2011). Meningococci acquire Fe from
host sources such as albumin, transferrin, or Fe-citrate which
have also been shown to bind Mn. Therefore, a portion of these
molecules is complexed with Mn in the host (concentration in
the µM range) (Michalke et al., 2007). We speculate, based on the
well-described needs of N. meningitidis for Fe (Genco et al., 1991;
Genco and Desai, 1996; Larson et al., 2002; Renauld-Mongenie
et al., 2004; Hagen and Cornelissen, 2006), that the intensive
import of Fe could result in non-specific import of other diva-
lent metals, which consequently must be exported. In this sense,
we observed a specific Mn2+-export by MntX of N. meningi-
tidis whilst the homologous exporter of X. campestris was also
able to export Fe2+to some extent (Veyrier et al., 2011). In this
case, metallo-exporters may be required to maintain the opti-
mal ratio between different metals (e.g., Mn/Fe and Mn/Zn).
Non-specific metal uptake should be also considered as a com-
plementary hypothesis to Mn-intoxication by the host immune
system. As another alternative, it has been reported that N.
meningitidis harbors a specific Mn-dependant hemolysin called
HrpA (Michalke et al., 2007). It is therefore possible that MntX
(and other exporters) delivers Mn2+ to N. meningitidis-specific
extracellular virulence factors such as HrpA.

Although N. gonorrhoeae is closely related to N. meningitidis
it generally resides asymptomatically in the female genitourinary
tract. This ecosystem is more anaerobic than the NP and is also
occupied by H2O2 producing lactobacilli. These features of the
genitourinary tract are known to increase bacterial requirement
for intracellular Mn2+ and that may explained the high propor-
tion of strains of N. gonorrhoeae harboring a premature stop
codon mutation in the mntX gene (Veyrier et al., 2011).

METAL EFFLUX SYSTEMS AND THE EVOLUTION OF N.
meningitidis
The discovery of MntX highlights the importance of metal
efflux system in the virulence of N. meningitidis. Importantly,
the genome of N. meningitidis harbors other putative metal
exporters. Figure 2A presents the genes with homologies to puta-
tive exporters detected in the genomes of N. meningitidis and two
other major Gram-negative pathogens of the NP: M. catarrhalis
and H. influenzae. Although the genomes have similar sizes, N.
meningitidis seems to harbor more efflux systems. Only one gene
was common to all three species, NMB1325, which shares a
high similarity with HI0290 (81%) and with MCR_1049 (68%).
As Fe importers are often present in horizontally transferred
pathogenicity islands, we wondered if this could be the case for
additional metallo-exporters, and if some of them could have
been specifically acquired by N. meningitidis. As this bacterium is

FIGURE 2 | The example of Neisseria meningitidis exporters. (A)

Candidate for metal exporters encoded in the genomes of three
nasopharyngeal pathogens based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG database). st stands for strain specific and n.d. for not
detected. ∗ and ∗∗ represents groups of putative homologous genes
determined using blastp similarity. (B) TBlastN of N. meningitidis MC58

proteins against the genome of M. catarrhalis RH4 (Mc). (C) Gene
organization of the NMB1732 locus. The genes in gray have common
organization between N. meningitidis and N. gonorrhoeae whereas the
genes in black are N. meningitidis specific. The white gene, adjacent to
NMB1732, corresponds to a remnant of DNA methyltransferase also present
in the genome of M. catarrhalis.
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a human specific nasopharyngeal pathogen, without possibility of
survival in the external environment, acquisition of such exporter
by horizontal gene transfer (HGT) would support a role of these
exporters in the emergence of N. meningitidis.

With the exception of NMB1732, all the putative exporters
identified have homologs in other Neisseria species, and there-
fore cannot represent examples of recent HGT. NMB1732 is rarely
present (if ever) in the genomes of other Neisseria species (such as
N. gonorrhoeae) nor in other closely related non-neisseria strains
(e.g., Kingella). In addition, all the isolates of N. meningitidis
sequenced to date (∼200) harbor this gene, coding for a pro-
tein from the CDF family. As a consequence, this N. meningitidis
specific gene is used by the Centre National de Reference des
Meningocoques (CNRM) that is located within our laboratory, at
the Institut Pasteur in Paris, to definitively distinguish N. menin-
gitidis from all the other Neisseria species by PCR. Surprisingly,
this gene and the surrounding region have an unusually high
identity (99%) with a region of the genome of the non-closely
related M. catarrhalis (Figure 2B) which shares the same ecosys-
tem. Moreover, the gene is also present in other Moraxella species.
Altogether, these findings suggest a possible transfer of the CDF
exporter NMB1732 from M. catarrhalis to N. meningitidis. Our
hypothesis is reinforced by the fact that, with the exception of
NMB1732 and the adjacent pseudogene, the organization of the
locus (including tonB) is conserved between N. meningitidis and
other closely related Neisseria species (Figure 2C). The impor-
tance of MntX for N. meningitidis virulence and the acquisition by
HGT and the conservation of NMB1732, a putative CDF exporter,
highlight the pathogen’s needs for metal exporters and the role
that these exporters have played in the emergence of pathogens.

CONCLUSION
The existence of exporters and their transfer between species has
been known for a long time in the context of bacterial living in
the environment. In the last few years, bacterial metallo-exporters
have also been demonstrated to play a role in the context of infec-
tion. The immune system uses Cu+/2+ or Zn2+ to poison bacteria
and export systems are used to detoxify this overload. The role of
Mn is not yet completely understood, but MntE and MntX are the
proof of concept that Mn2+ exporters are important for patho-
genesis. Nevertheless, further research is required to understand
the role of exporters in emergence and adaptation of pathogens
and how these efflux systems can be used to thwart the host
immune system defenses.
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