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The thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH) genes
are carried by most virulent Vibrio parahaemolyticus serovars. In Norway, trh+ V.
parahaemolyticus constitute 4.4 and 4.5% of the total number of V. parahaemolyticus
isolated from blue mussel (Mytilus edulis) and water, respectively. The trh gene is
located in a region close to the gene cluster for urease production (ure). This region
was characterized in V. parahaemolyticus strain TH3996 and it was found that a nickel
transport operon (nik) was located between the first gene (ureR) and the rest of the
ure cluster genes. The organization of the trh-ureR-nik-ure gene cluster in the Norwegian
trh+ isolates was unknown. In this study, we explore the gene organization within the
trh-ureR-nik-ure cluster for these isolates. PCR analyses revealed that the genes within
the trh-ureR-nik-ure gene cluster of Norwegian trh+ isolates were organized in a similar
fashion as reported previously for TH33996. Additionally, the phylogenetic relationship
among these trh+ isolates was investigated using Multilocus Sequence Typing (MLST).
Analysis by MLST or ureR-trh sequences generated two different phylogenetic trees
for the same strains analyzed, suggesting that ureR-trh genes have been acquired at
different times in Norwegian V. parahaemolyticus isolates. MLST results revealed that
some pathogenic and non-pathogenic V. parahaemolyticus isolates in Norway appear to
be highly genetically related.
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INTRODUCTION
Vibrio parahaemolyticus is a halophilic, Gram-negative pro-
teobacterium ubiquitous in the marine and estuarine environ-
ment worldwide (Iida and Honda, 2006). It is one of the main
bacterial pathogens associated with raw and undercooked seafood
in Asia and the U.S. (Su and Liu, 2007). During the last decade, a
V. parahaemolyticus clonal complex (mainly composed of O3:K6
serotype strains) has emerged, encompassing at least 14 serotypes
(Okura et al., 2008), and described by the term “pandemic group”
(Matsumoto et al., 2000; Okura et al., 2003; Nair et al., 2007).

Although the mechanism by which V. parahaemolyticus causes
enteric disease is not fully understood, two virulence factors are
usually associated with clinical isolates: the genes encoding for
thermostable direct hemolysin (TDH), (tdh) and TDH-related
hemolysin (trh) (Gonzalez-Escalona et al., 2006). Of the two, trh
is less frequently observed than tdh (Nishibuchi and Kaper, 1995).
Several variants of tdh have been identified, all of which are about
98% identical (Nishibuchi and Kaper, 1995). In the case of trh,
only two gene variants have been described, denoted trh1 and
trh2; these are about 84% identical in sequence (Kishishita et al.,
1992). The differences between trh and tdh are greater, showing
only about 68% similarity (Nishibuchi et al., 1989). While V. para-
haemolyticus can carry both genes and simultaneously express
them, it appears that such isolates produces less TDH than trh
negative isolates (Xu et al., 1994).

The frequency of tdh and/or trh expression among environ-
mental V. parahaemolyticus isolates is typically <1%, but this
may depend on location, sample source and detection method
(Kaysner et al., 1990; Alam et al., 2002; Cook et al., 2002; Hervio-
Heath et al., 2002; Martinez-Urtaza et al., 2008b). For example,
between 49 and 78% of the sediment, water, or oyster samples
from Willapa Bay (WA, U.S.) contained trh+ V. parahaemolyticus
(Kaysner et al., 1990). In Norway, trh+ V. parahaemolyticus was
isolated from only 4.4% of the V. parahaemolyticus positive blue
mussel (Mytilus edulis) samples (Bauer et al., 2006) and 4.5% of
water samples, and the tdh gene was not detected at all (Ellingsen
et al., 2008).

Little is known about how these virulence factors are acquired
by V. parahaemolyticus, although it has been suggested that the
horizontal gene transfer of pathogenicity island(s) might be the
acquisition mechanism (Nishibuchi and Kaper, 1995; Hurley
et al., 2006; Izutsu et al., 2008). The trh gene is located in a
region of ∼16 kb that containing the nik (nickel acquisition sys-
tem) and ure genes. This characteristic was observed in all trh+
strains analyzed (Park et al., 2000). A transposase gene has been
identified next to the trh gene, suggesting the possibility that the
entire region might have been transmitted into V. parahaemolyti-
cus strains by an insertion sequence (IS)-mediated mechanism
(Park et al., 2000). Isolates exhibiting trh+ are almost exclusively
urease positive (ure+), which is not a typical characteristic for V.
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parahaemolyticus (Kaysner et al., 1994). This association was also
observed in all Norwegian trh+ isolates (Bauer et al., 2006). Using
long and accurate PCR (LA-PCR), Iida et al. (1998) found that
the region between the trh and ureC genes was less than 8.5 kb.
The gene organization of the trh-ureR-nik-ure gene cluster was
determined in V. parahaemolyticus strain (TH3996) (Park et al.,
2000), but whether other trh+ isolates have the same organization
remains unknown.

Various typing methods are used to distinguish bacterial
strains for epidemiological purposes (Foxman et al., 2005).
However, conventional serotyping against O and K antigens
appears to be of limited epidemiological value for V. para-
haemolyticus, particularly given the recent emergence of O3:K6
and the other serotypes encompassed by the term “pandemic
group” (Chowdhury et al., 2004a,b; Gonzalez-Escalona et al.,
2008). Pulsed Field Gel Electrophoresis (PFGE) has been a
favored method for genotyping V. parahaemolyticus isolates
(Marshall et al., 1999) because of its high discrimination index,
and has successfully been used in outbreak investigations world-
wide. It has also been used to type V. parahaemolyticus isolates
from seafood (Wong et al., 1999, 2000; Lu et al., 2000; McLaughlin
et al., 2005). As PFGE is based on restriction enzyme digestion
of total DNA, one potential drawback is that it may not be sen-
sitive to recent genetic events such as horizontal gene transfer,
which may be an important source of variability among isolates.
An alternative approach, Multilocus Sequence Typing (MLST), is
based on direct sequence analysis of housekeeping genes and a
public database has recently been established to archive V. para-
haemolyticus sequences (http://pubmlst.org/vparahaemolyticus)
(Gonzalez-Escalona et al., 2008). MLST is comparable in cost
to PFGE, and provides a different, if not better, details of the
genetic relationships among isolates (e.g., evolutionary relation-
ships) (Foxman et al., 2005). However, MLST analyses must be
interpreted with caution since it is less sensitive for detecting
recent genetic changes in populations that can be detected by
PFGE, such as genome inversions, transposons, and plasmid,
which in some cases will cause changes in their PFGE profiles.

The main objective of this study was to examine the genetic
relationship among trh+ V. parahaemolyticus isolates from
Norway by using a combination of MLST and ureR-trh region
sequence analysis. Furthermore, the organization of the trh-ureR-
nik-ure cluster was was explored in all of the trh+ isolates.

MATERIALS AND METHODS
BACTERIAL ISOLATES
A total of 31 V. parahaemolyticus and two V. alginolyticus isolates
were included in the present study (Table 1). Twenty-two of these
strains were isolated from different regions in Norway (Figure 1)
and nine comparator strains were from other regions of the world,
including 4 from the United States which have been recently been
characterized using MLST (Gonzalez-Escalona et al., 2008). Of
the 22 Norwegian strains, 16 were trh+ (13 from environmen-
tal sources, 3 from clinical sources). The trh+ environmental
strains were from water and blue mussel (Mytilus edulis) sam-
ples, collected from four different areas in Norway (Figure 1). The
three trh+ clinical isolates were kindly donated by Jørgen Lassen
from the Norwegian Institute of Public Health. The 6 trh– strains

consisted of 4 environmental strains (3 from blue mussels, 1 from
water) and two clinical strains. Norwegian trh– environmental
isolates 551 and 580 were also included because they represent
a larger PFGE cluster, consisting of trh–V. parahaemolyticus col-
lected from several different locations along the Norwegian coast
over several years; the PFGE pattern of these isolates appears
very similar to the V. parahaemolyticus trh+ clinical isolate 224
(Ellingsen et al., 2008). Of the nine strains isolated in other coun-
tries, 5 were trh– and the other 4 were trh+. Both V. alginolyticus
strains, 647va and 751va, were environmental isolates carrying a
trh-like gene.

All presumptiveV. parahaemolyticus isolates were analyzed for
the presence of oxidase, halophilic characteristics, (growth in
presence of: 0, 3, 6, and 10% NaCl) and by the API-20E� Enteric
Identification System (BioMerieux, France). The colony mor-
phology was assessed on TCBS agar (Oxoid, Cambridge, UK). In
addition, the identity of V. parahaemolyticus isolates were con-
firmed by V. parahaemolyticus-specific PCR targeting the toxR
gene (Bauer and Rorvik, 2007).

DNA PREPARATION
DNA was extracted from one colony of cells suspended in 200 µl
sterile distilled water. The suspension was boiled for 10 min fol-
lowed by centrifugation at 12,000 × g for 5 min. The supernatant
(crude DNA) stored at −20◦C until used as template in PCR.

MLST
MLST was performed as described by Gonzalez-Escalona et al.
(2008), using a set of PCR primers targeting recA (RecA
protein), dnaE (DNA polymerase III, alpha subunit), gyrB
(DNA gyrase, subunit B), dtdS (Threonine dehyrogenase), pntA
(Transhydrogenase alpha subunit), pyrC (Dihydroorotase), tnaA
(Tryptophanase). The PCR amplification and sequencing were
performed as described at the V. parahaemolyticus MLST website
(http://pubmlst.org/vparahaemolyticus).

AMPLIFICATION OF THE trh-ureR-nik-ure REGION
A set of 12 primer pairs (Table 2) were designed using the
Primer2 software (http://frodo.wi.mit.edu/cgi-bin/primer3/
primer3_www.cgi) and the trh-ureR-nik-ure sequence
AB038238.1 (Park et al., 2000) (antisense) as target. The
target sequences of these primers were located in regions that
spanned contiguous open reading frames (ORFs), as illustrated
in Figure 2. Two additional sets of primers were used in order
to amplify any partial trh (Honda et al., 1991; Honda and
Iida, 1993)and ureR sequences from all trh+ isolates (Table 2).
PCR was performed on all trh+ isolates, using the following
conditions in a 50 µl reaction solution: 1× buffer (10 mM Tris-Cl
pH 8.8, 1.5 mM MgCl2, 50 mM KCl, 0.1% Triton� X-100),
0.24 mM of each nucleotide (dNTP mix), 1.5 U µl−1 Dynazyme
II (all from Thermo Scientific, Vantoa, Finland), 20 pmol of the
UtoxF primer, 20 pmol of the reverse primer, and 2 µl of sample
DNA. The PCR running conditions were: an initial denaturation
of 95◦C for 4 min, 35 cycles of 94◦C for 1 min, 50◦C for 1 min
and 72◦C for 2 min, and a final elongation step of 72◦C for
1.5 min in a Bio-Rad Ismart cycler (BioRad, Hercules, CA).
Reference V. parahaemolyticus isolate AQ4037 (trh1+) was used
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Table 1 | Characteristics of the Vibrio spp. strains studied.

ID Origin Sample no./source* Isolation year Serotype ST Clonal complex trh sequence tdh

presence

281 Norway/Flødevigen 297 M 2003 O3:Kut 6 – trh2-1 –

274 Norway/Hvaler 268 M 2003 ND 79 – trh2-2 –

747 Norway/Vallø 27 W 2006 ND 78 – trh2-3 –

748 Norway/Vallø 27 W 2006 ND 78 – trh2-3 –

749 Norway/Vallø 27 W 2006 ND 78 – trh2-3 –

228 Norway/Unk C (Feces) 2002 O11:Kut 73 – trh2-3 –

255 Norway/Hvaler 223M 2003 ND 74 – trh2-4 –

422 Norway/Oslo, H 1546-8 W 2004 O1:K33 76 – trh2-4 –

438 Norway/Hvaler 26 M 2004 ND 76 – trh2-4 –

452 Norway/Oslo, H 1627-8 W 2004 ND 76 – trh2-4 –

469 Norway/Oslo, H 1627-8 W 2004 ND 76 – trh2-4 –

509 Norway/Oslo, H 1627-8 W 2004 ND 76 – trh2-4 –

629 Norway/Oslo, H 1723-3 W 2004 ND 76 – trh2-4 –

750 Norway/Vallø 10 M 2006 ND 76 – trh2-4 –

221 Norway/Unk C (Feces) 1999 O3:Kut 80 – trh2-5 –

224 Norway/Unk C (Feces) 2001 O3:Kut 34 CC34 trh1-1 +
551 Norway/Oslo W 2004 ND 77 CC34 – –

580 Norway/Flødevigen M 2004 ND 77 CC34 – –

227 Norway/Unk C (Feces) 2002 O5:K68 3 CC3† – +
160 Norway/Arnafjord M 2002 ND 70 CC49 – –

363 Norway/Flødevigen M 2004 ND 75 – – –

219 Norway/Unk C (Wound) 1997 O6:Kut 81 – – –

222 Ecuador C (Feces) 1999 O3:K6 3 CC3† – +
226 Thailand C (Feces) 2002 O3:Kut 3 CC3† – +
223 South America C (Feces) 1999 O3:K6 6/7® CC3† – +
220 Angola C (Feces) 1999 O3:K6 71 CC3† – +
225 Thailand C (Feces) 2002 O3:Kut 72 CC3† – +
9546257 USA/CA C 1995 O4:K8 32 CC34 trh1-1 +
DI-C2 USA/AL E 1999 O4:K9 35 CC34 trh1-1 +
98-513-F51 USA/LA E 1998 O4:K9 33 CC34 trh1-1 +
98-513-F52 USA/LA E 1998 O4:K9 34 CC34 trh1-1 +
647va Norway/Oslo, N 1689-8 W 2004 ND Unk – trh1-2 –

751va Norway/Flødevigen 13 W 2006 ND Unk – trh1-2 –

*Sample type is indicated as follows; M, blue mussels (Mytilus edulis); W, water; C, clinical; E, environmental. In red are the new STs.
†Clonal complex with pandemic strains.

®The ST of isolate 223 were identical to ST-3 in 6/6 loci, but a complete recA sequence was not obtained due to technical difficulties (see text for more information).

ND, no determined; Unk, unknown.

as positive control. Reference V. parahaemolyticus isolate 222
(trh–) was used as negative control. All primers were synthesized
by Medprobe (Oslo, Norway). All PCR amplicons resulting from
V. parahaemolyticus isolate 438 were sequenced by Medprobe in
order to confirm specific PCR amplification.

trh AND ureR SEQUENCE ANALYSIS
All partial ureR-trh and trh sequences genes were aligned and
manually trimmed to be 1417 and 497 bp in length, respec-
tively, using the Mega 3.1 software (Kumar et al., 2004),
starting at position 1436 relative to AB038238.1 (GenBank,
http://www.ncbi.nlm.nih.gov). Phylogenetic analysis of those
sequences was performed using Mega 3.1 software (Kumar
et al., 2004). Minimum evolution (ME) trees for both the
ureR-trh sequences and partial trh sequences were constructed

using the kimura-2 parameter model to estimate the genetic
distances. Additional trh gene sequences available at GenBank
database were included in the analysis (Figure 5). The statisti-
cal support of the nodes in the ME tree was assessed by 1000
bootstrap re-sampling. All amplified trh and ureR PCR prod-
ucts were sequenced by MedProbe (Oslo, Norway). The new
sequences were deposited in GenBank under accession numbers
FJ409538–FJ409547.

tdh ANALYSIS
The presence of tdh was assessed by colony hybridization
(DePaola et al., 2003) and/or by PCR amplification (Bej et al.,
1999). The forward and reverse primers were 5′-gttctgatgagatattgt
ttgttg-′3 and 5′-gttggatatacacattaccaat-′3, respectively. The PCR
reactions were performed as described above; except 0.2 mM
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of each nucleotide (dNTP mix) and 1.0 U µl−1 Dynazyme
II were used, with 30 cycles and an annealing temperature
of 55◦C.

RESULTS AND DISCUSSION
The strains of V. parahaemolyticus and V. alginolyticus in this
study presented the typical phenotypic characteristics of their
type strains, ATCC 17802 and ATCC 17749, respectively. All V.
parahaemolyticus strains resulted in positive PCR amplification
of the toxR gene, but the two V. alginolyticus isolates (647va
and 751va) did not produce any amplicons using the same PCR
primers.

MLST
The main objective of the present study was to establish the
genetic relationships among trh+ V. parahaemolyticus isolated
from Norwegian environmental (mussels and seawater) or
clinical sources.

FIGURE 1 | Locations from which the Norwegian trh+ isolates

originated (F, Flødevigen; V, Vallø; O, Oslofjord; H, Hvaler). Locations
within the Oslo fjord are indicated in the enlargement.

The 22 Norwegian V. parahaemolyticus isolates were differen-
tiated into 15 different sequence types (STs), of which 12 had
not previously been reported in the V. parahaemolyticus MLST
database (Table 1, Figure 3), indicating a high degree of geno-
typic diversity among these isolates. This confirms earlier reports
of diversity among V. parahaemolyticus found in other geographic
locations (Gonzalez-Escalona et al., 2008; Johnson et al., 2009;
Rodriguez-Castro et al., 2009). Three of the STs we identified in
the Norwegian samples had already been described in the MLST
database: ST3, ST6, and ST34. Interestingly, ST3 is believed to
be the ancestral type of pandemic CC (Gonzalez-Escalona et al.,
2008), ST6 is a singleton that does not appear related to any
known CC, and ST34 is believed to be the ancestral type of
CC34 (Gonzalez-Escalona et al., 2008). Our analysis also revealed
the existence of a new V. parahaemolyticus CC, CC49 (Figure 3,
Table 1).

Of the nine non-Norway isolatesV. parahaemolyticus used as
reference strains, four (9546257;DI-C2, 98-513-F51 and 98-513-
F52) had been previously analyzed by MLST and belonged to
a clonal complex (CC34) (Gonzalez-Escalona et al., 2008) and
the other five were ST3, except strain 223. It was difficult to
obtain good quality recA sequences for most isolates studied,
specifically at both ends of the sequences. In the case of clini-
cal V. parahaemolyticus isolate 223; a complete recA sequence was
not obtained. However, the six remaining loci were identical to
those of isolates belonging to CC3 (ST3). This suggests that iso-
late 223 belongs to CC3 and is a single sequence variant (SLV)
on recA locus of its ancestral type (ST3). The majority of these
CC3 isolates were acquired in Asian or South American countries
(Table 1), further emphasizing the worldwide distribution of the
pandemic clonal group.

Only 16 of the 22 Norwegian V. parahaemolyticus isolates
were carrying the trh gene. These isolates were subdivided into
eight different STs. Interestingly, seven of these trh+ V. para-
haemolyticus environmental isolates were shown to be identical
by MLST (ST-76), even though they originated from different
sources, locations and collection years (2004 and 2006). This
indicates their persistence in the coastal environs of Norway.
One trh+ environmental isolate (281) displayed the same ST

FIGURE 2 | Schematic representation of the trh-ureR-nik-ure gene cluster [adapted from Park et al. (2000)] together with an illustration of the gene

products amplified by primer pairs 1–11 designed to assess the genetic organization (gray bars). The fragment of the trh and ureR-trh primers also indicated.
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Table 2 | Primers employed to explore the organization of the trh-nik-ure region and to sequence the ureR-trh region in the trh+ isolates.

No. Name Primer sequence DNA target (5′ 3′) Amplicon size (bp)

1 Tnp-F AATCAATCTCGTTGGGGTGA 34 927

Tnp-R ATTGATGAAGAGGCCATTCG 961

2 Trh/ure-F CGAATGGCCTCTTCATCAAT 941 1281

Trh/ure-R AAACATGGCCATCGAAAAAC 2222

3 ureR1-F GTTTTTCGATGGCCATGTTT 2222 1274

ureR1-R AGAGCCGCCAGCTAGGTATT 3476

4 nikED TTTGGCAAAGAGCTTGGAGT 3410 958

nikED-R GGTGGGGTTGAGTGAAGAGA 4368

5 nikCB-F GTCATCTGGCAGTGCTTTCA 4515 1893

nikCB-R CTCCTCGTGGTAACGGTGAT 6407

6 nikA-F ATCACCGTTACCACGAGGAG 6387 1392

nikA-R GGCGATCTCGCTATTTCTTG 7779

7 ureD-F CCCCGAGAGCAACAAATAAA 7883 1254

ureD-R TCTGTCTGATGACCGAGTGC 9137

8 ureAB-F GAATTTGGGCGACGTAAAGA 9215 1144

ureAB-R AGTGCCACCACCGATAAAAG 10358

9 ureC-F TGTTGGAAGCAGTCGATGAG 10420 1380

ureC-R GTTCCGCGAGGTAAAAACAA 11800

10 ureEF-F CCGGTGAAATTGCTCTTGTT 11839 1326

ureEF-R AAATTGTCGCCACCACTTTC 13164

11 ureG-F TAGCCCAGAGTTGGCAGATT 13174 985

ureG-R GGAAGAACTGCCTGAGAACG 14161

trh* Trh-L TTGGCTTCGATATTTTCAGTATCT 1882 468

Trh-R CATAACAAACATATGCCCATTTCCG 1414

trh-ureR trurR2-F AACGTAACTTTCAGATAATG 2889 1071

trurR2-R GTTCATCCGAACCTGGAGAA 1818

All target sequences are reported with respect to AB038238.1 (Park et al., 2000).
*Primers designed by Honda et al. (1991), Honda and Iida (1993).

(ST6) as an environmental V. parahaemolyticus isolate from
Chile (Gonzalez-Escalona et al., 2008). However, the Chilean
isolate (PMA 112) was negative for both virulence factors.
Further analyses using whole genome sequencing could pro-
vide additional evidence about how similar or related these two
isolates are.

In contrast to the similarity seen among some environmen-
tal strains, each of the three Norwegian trh+ clinical isolates
belonged to different STs, two of which were novel (ST-73 and ST-
80). The third trh+ clinical isolate (224) belonged to ST-34. This
ST was previously observed for an O4:K9 isolate collected from
environmental sources in Louisiana in 1998. Intriguingly, ST-34
had been suggested to be the ancestral clone of CC34, which con-
sists of non-pandemic isolates (Gonzalez-Escalona et al., 2008).
Isolate 224 may further indicate an association of this cluster

with human disease (Gonzalez-Escalona et al., 2008), as well as
strengthen the possible role of ST-34 as the ancestral clone of
this clonal complex. Clinical isolate 224 (tdh+/trh+) is a single
locus variant from two environmental isolates 551 and 580 (tdh–
/trh–) belonging to ST-77. The exact origin of 224 is unknown:
the patient did not report any stay abroad prior to the infec-
tion; however, it is possible the patient ate food that had been
re-contaminated during preparation or the patient had consumed
imported seafood.

Finding two identical STs in different regions of the world
provides evidence that a clonal complex, different from the
pandemic clonal complex, is spreading outside its original geo-
graphic location. There could be numerous routes for such rapid
worldwide dissemination, for transport of contaminated ballast
water (McCarthy et al., 1992; McCarthy and Khambaty, 1994),
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FIGURE 3 | V. parahaemolyticus population “snap-shot” based on the

novel STs described in the present study and previously described STs

submitted to the MLST database (Gonzalez-Escalona et al., 2008),

using eBURST v3 (http://eburst.mlst.net). Four different clusters were
observed using stringent criteria (5/7 shared alleles). Isolates from the
present study are indicated by red numbers. The clonal complexes CC are
indicated (the new one in red CC49), and the predicted ancestral clones are
indicated by blue dots. Single locus variants (SLV) are indicated by dark
lines, while double locus variants (DLV) are turquoise. The number of
isolates in each ST is indicated by different dot sizes.

imported food, the motion of oceanic currents, (Martinez-Urtaza
et al., 2008a) or human travel activity (Lantagne et al., 2013).

One isolate (novel ST-81) was identified to be trh–/tdh–, and
recovered from a wound infection (Table 1). One isolate 227 was
ST-3 (“pandemic” clone) and isolated from a clinical case in
Norway (Table 1). However, it is unclear whether the pandemic
clone has reached the Norwegian environment since there were
no epidemiological links to a Norwegian source. Pandemic V.
parahaemolyticus had been previously reported in the European
environment (Martinez-Urtaza et al., 2005; Quilici et al., 2005;
Caburlotto et al., 2008).

MLST was also performed on the two V. alginolyticus
sequences using the same conditions as for V. parahaemolyti-
cus. However, the PCR did not result in amplification for five of
seven MLST loci. Sequences obtained from gyrB and dtdS genes
were not identified in the MLST database (http://pubmlst.org/
vparahaemolyticus).

AMPLIFICATION OF THE trh-ureR-nik-ure REGION
The organization of the trh-ureR-nik-ure region previously
described in most trh+ isolates (Park et al., 2000) was also
explored in Norwegian trh+ V. parahaemolyticus and V. algi-
nolyticus isolates. Amplification of the trh-nik-ure region of these
isolates resulted in PCR products of correct length, but with
exceptions for six isolates (Figure 4, Table 2). Isolate V. para-
haemolyticus 647 Va did not produce any amplicon with primer
pair 1 (tnp). Isolates 221, 228, 747, 748, and 749 did not produce
any amplicon with primer pair 2 (trh) (Figures 2, 4). Additionally,
weak amplicons of the correct size were observed with primer
pair 2 and 3 (trh and ureR) for all isolates, except for isolates
224, 647Va, and 751Va for which no amplicons were obtained.
Comparing these sequences to those previously submitted to

FIGURE 4 | PCR products amplified by each of the primers set

designed to determine the organization of the trh-ureR-nik-ure region

in each trh+ isolate. The fragments of 500, 1000 and 1500 bp are
indicated. The name of each gene target is indicated at the top of each lane.
Ld—GeneRuler™ 100 bp Plus DNA Ladder (Fermentas).

NCBI revealed that the targeted regions of the forward and/or
reverse primer of these primer sets (2 and 3) were variable
between trh1 and trh2, thus explaining the observation of weak
and secondary products of different sizes for the trh2 sequences
(data not shown). In conclusion, these primer sets were inad-
equate for isolates harboring the trh2 gene. We avoided the
challenge presented by these two primer pairs by using two addi-
tional primer sets (trh and trh-ureR (Honda et al., 1991; Honda
and Iida, 1993).

Sequences obtained from isolate 438 confirmed that the PCR
products were the intended targets (data not shown). The gene
organization of the trh-ureR-nik-ure region of all trh+ isolates
was shown to be identical to the cluster described by Park et al.
(2000). One of the V. alginolyticus isolates (647) was negative for
primer pair 1 (tnp). Whether this result is due to the absence of
this gene, or if there are mutations in the target sequence(s) is
currently unknown. Sequencing the genome of these strains will
reveal in which genomic region the trh gene is present, identify
the surrounding genes, and also provide a possible explanation
for the presence of trh in these isolates.

PARTIAL trh AND ureR SEQUENCES
Sequence analysis performed on ureR-trh region sequences
(1417 bp) obtained from the 22 trh+ isolates (Table 1) showed
a total of eight different sequences (Figure 5A). In contrast, an
analysis of only the partial trh sequences resulted in seven differ-
ent sequences (Table 1). This discrepancy was a result of a single
nucleotide difference in the ureR-trh intergenic region (position
698) between isolates 747 (ST-78) and 228 (ST-73). Alignment of
the partial trh gene sequences of all trh+ isolates with represen-
tative trh1 and trh2 sequences retrieved from GenBank revealed
that V. parahaemolyticus isolates 224 (ST-34), 9546257 (ST-32),
DI-C2 (ST-35), 98-513-F51 (ST-33), and 98-513-F52 (ST-34)
and both V. alginolyticus isolates harbored the trh1 sequence
type, while the remaining isolates carried trh2 sequence type
(Figure 5A). The partial trh sequences of the two V. alginolyti-
cus isolates (647Va and 751Va) were identical. The three trh1
sequences had a four nucleotide insert (GATA) 160 bp upstream
of the trh start codon (position 2090, relative to AB038238.1),
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FIGURE 5 | Minimum evolution trees (ME) trees constructed from

either the concatenated sequences of the seven loci (MLST) or

ureR-trh region of each of the sequence types (STs) obtained in

this study. (A) ME tree of the ureR-trh region obtained for the trh+
isolates together with representative sequences of either trh1 or trh2
retrieved from GenBank. (B) ME tree of the concatenated sequences of

the seven loci of the trh+ isolates. (C) ME tree of concatenated
sequences of all the V. parahaemolyticus isolates from this study.
Underlined are the isolates carrying ureR-trh1 region. Scale represents
the evolutionary distance and boot-strap values over 50% are shown in
the branches.ureR-trh region sequences of V. alginolyticus isolates are
indicated in the figure as Va.

and a deletion 101 bp upstream. These mutations were in the
non-coding region. The trh1 gene is occasionally associated with
the presence of tdh (as observed in isolate 224), although the
two V. alginolyticus isolates in this study were negative for this
gene by PCR. The trh2 type had previously been described
in a V. alginolyticus isolated from Alaskan oysters (Gonzalez-
Escalona et al., 2006). This is the first report of trh1 in V.
alginolyticus. The presence of trh in other Vibrio spp. than V.
parahaemolyticus has previously been described, and suggests that
environmental Vibrio spp. may be the reservoir for the trh gene
(Gonzalez-Escalona et al., 2006; Masini et al., 2007). This is not
unique, since another V. parahaemolyticus pathogenicity deter-
minant (tdh gene) was previously identified in a V. alginolyticus
isolate (Cai et al., 2007). This re-enforced the reported highly
mobile nature of these genes in marine environment among
Vibrio.

Comparison of the minimum evolution (ME) trees gener-
ated from the concatenated sequences of the seven genes (MLST)
of all trh+ V. parahaemolyticus isolates and their 1417 bp ureR-
trh region, revealed different evolutionary stories between the
housekeeping genes and this virulence region (Figures 5A,B). As
expected, the ureR-trh1 region was identical among the mem-
bers of the clonal complex 34 (CC34), which all belong to closely
related STs (Figure 5B). In the case of the V. alginolyticus isolates,
this region was more similar (99%) to the one in V. para-
haemolyticus (TH3996) than to the one present in CC34 isolates
(96%), indicating that this region of V. alginolyticus was acquired
from a different genetic background that the one in CC34 isolates.
On the other hand, even though strains 225 and 422 contained
identical ureR-trh2 region, they belonged to very distant STs,

(ST-74 and ST-76, respectively), both located at distant part of
the ME MLST tree.

These results also demonstrate how MLST, in conjunction with
ureR-trh cluster analysis, is a powerful technique for revealing
evolutionary events inside the V. parahaemolyticus species. It has
been suggested that Vibrio spp. are more vulnerable to horizon-
tal gene transfer than the other prokaryotic species (Dryselius
et al., 2007), and that frequent recombination events further
drive clonal diversification (Gonzalez-Escalona et al., 2008). In
this study, the conservation of the ureR-trh1 among isolates
belonging to CC34 (Gonzalez-Escalona et al., 2008) suggests
that this region was acquired before those isolates started to
diverge.

MLST analyses indicate that V. parahaemolyticus isolates 225
(ST-74) and 422 (ST-76), both containing an identical ureR-trh2
region, have diverged in the past (Figure 5B), and suggest that this
region was acquired recently. Another possible explanation could
be that this region evolved or changed more slowly in compari-
son with the other housekeeping genes (MLST). However, since
MLST analyzes housekeeping genes, presuming a recent acqui-
sition of that region seems a more parsimonious explanation.
Whether this ureR-trh2 region was acquired recently by only one
or both of these isolates, remains unknown.

Furthermore, analysis of the ME tree generated with the con-
catenated sequences of the seven genes of all the V. parahaemolyti-
cus isolates in this study, including tdh+/trh– and tdh–/trh–
isolates, showed that some isolates were highly related despite
their tdh or trh content (Figure 5C). These findings support
previous reports that these elements could be laterally acquired
(Nishibuchi and Kaper, 1995; Park et al., 2000). An example is
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strain 551 (ST-77), which, although not carrying either determi-
nant, is nonetheless closely related to isolates belonging to the
ancestral type of CC34 (ST-34) which contains ureR-trh1 region
(Figure 5C). Isolate 551 is a SLV of isolates belonging to ST-
34 and differed by six nucleotide changes on locus pyrC. This
amount of changes in this locus, compared to the other six, indi-
cates that these different variants of the locus have arisen by
recombination rather than mutation (Gonzalez-Escalona et al.,
2008). The lack of ureR-trh1 region in this isolate (551) could be
due to a loss of this region or that this isolate did not acquired
it. Whole genome sequencing of these strains will provide some
insights into the loss/acquisition of the ureR-trh1 region by these
isolates.

GEOGRAPHICAL DISTRIBUTION OF trh+ V. parahaemolyticus STs IN
NORWAY
The isolation of multiple trh+ V. parahaemolyticus strains from
all four sampling sites shows that these types of isolates are preva-
lent on the coast of Norway (Figure 1, Table 1). MLST analysis
showed that most areas have unique V. parahaemolyticus popula-
tions, as evidenced by their different STs; exceptions were ST-76
and ST-77, which were isolated from 3 (Hvaler, Vallø, and Oslo)
and 2 (Oslo and Flødevigen) of the four areas tested, respectively.
The presence of the same ST across those different areas has no
easy explanation although this could be due to either ocean cur-
rents or interchange of blue mussels among different Norwegian
coastal areas.

One area of special interest was Hvaler, where V. para-
haemolyticus strains belonged to three different ST with different
degrees of similitude. For example ST-79 (trh2-2) and ST-74
(trh2-4) were located closely in the concatenated sequence ME
tree (Figure 5B), and carried different trh gene variant. While
strain 438 ST-76 (trh2-4), was identical to other strains isolated
from Oslo and Vallø, it also carried the same trh gene variant than
ST-74. This detail indicates that there are different populations of
trh+ V. parahaemolyticus in the same area (Hvaler), carrying the
same trh variant, suggesting horizontal gene transfer of this gene
among them. Interestingly, the ST-76 strains in Hvaler and Vallø
were isolated from blue mussels while the ST-76 strains from Oslo
were all isolated from water.

Also, it appears to be a high prevalence of trh2 vs. trh1 gene
in environmental V. parahaemolyticus in Norway, but in order to
offer a more conclusive answer to this phenomenon more strains
from different areas, seasons, and years, should be analyzed.
trh2+ was observed in all environmental trh+ V. parahaemolyti-
cus and two of the 3 Norwegian clinical cases. In the other hand,
trh1 gene was observed exclusively in the V. alginolyticus analyzed,
and in one of the 3 Norwegian clinical cases. trh1+ V. alginolyti-
cus were isolated in two distant regions Flødevigen and Oslo,
Nordstrand bad, indicating that there appears to be strains in
those regions that act as a reservoir of trh genes in the Norwegian
aquatic environment.

CONCLUSION
Our study presents new information regarding the genetic
relationship among trh+ isolates, and introduces a PCR
screening method demonstrating that the organization of the

trh-ureR-nik-ure gene cluster found in the Norwegian trh+
V. parahaemolyticus isolates is identical to the one previously
described for strain TH3996 (Park et al., 2000). Overall, these
results showed that the genetic background of trh+ V. para-
haemolyticus in Norwegian coasts is highly complex and there
appears to be a movement of the same, or highly similar, strains
between coastal regions. Additionally, the current study is (to
the author’s knowledge) the first to indicate a genetic rela-
tionship between trh+ and/or tdh+ V. parahaemolyticus and
non-pathogenic environmental isolates. These intriguing results
warrant closer examination of the trh+ and/or tdh+ isolates [224
(ST-34) and 228 (ST-73)] and their non-pathogenic “relatives”
[551 (ST-77) and 281 (ST-6)], which may provide unique infor-
mation regarding the transfer of genetic elements carrying trh
and/or tdh. In conclusion, MLST and ureR-trh sequence anal-
ysis generated two different evolutionary trees, suggesting that
ureR-trh genes have been acquired or lost at different times by
Norwegian V. parahaemolyticus isolates.
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