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Recent findings suggest that both host and pathogen manipulate copper content in
infected host niches during infections. In this review, we summarize recent developments
that implicate copper resistance as an important determinant of bacterial fitness at
the host-pathogen interface. An essential mammalian nutrient, copper cycles between
copper () (Cut) in its reduced form and copper (Il) (Cu?t) in its oxidized form under
physiologic conditions. Cu™ is significantly more bactericidal than Cu?t due to its ability
to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters.
Copper ions can also catalyze reactive oxygen species (ROS) generation, which may
further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and
transcription factors and even siderophores affect copper accumulation and distribution in
both pathogenic microbes and their human hosts. This review will briefly cover evidence
for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and
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pathogenic resistance mechanisms directed against it.
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INTRODUCTION

Copper is both an essential mammalian micronutrient and
a potent antibacterial agent. The Smith Papyrus, an ancient
Egyptian medical text dated at 2400 BC, is the earliest medici-
nal archive to recommend copper sulfate to sterilize water and
treat infections (Dollwet and Sorenson, 1985). Mesoamerican
and Hellenistic civilizations used copper and copper salts to treat
a broad variety of physical ailments, including microbial and
parasitic infections. In 400 BC, Hippocrates prescribed copper
salts to treat leg ulcers. In the nineteenth century, Victor Burq
observed that copper workers in Paris appeared immune to recur-
rent cholera epidemics (Burqg, 1867). He also noted that while
neighboring towns were ravaged by frequent cholera epidemics,
the pottery-making town of Aubagne was protected from these
outbreaks. He attributed this protection to “... a rampart of
copper dust” generated by copper-rich clay used by the city’s pot-
ters. These observations led to rapid developments in the field
of metallotherapy, and medically employed copper salts, amulets,
and belts were widely used to treat dermatologic, gastrointestinal,
and tubercular infections (Dollwet and Sorenson, 1985; Borkow,
2005) until the advent of commercially available antibiotics in
1932.

Human and animal studies now suggest a parallel between
ancient medicinal copper use and antibacterial immune function.
In this review, we summarize copper homeostasis mechanisms
in the human host, and the means by which the host deploys
the metal to combat infections. We describe the chemical and
biochemical principles that define copper’s toxicity, and how
these toxic properties serve as potent leverage against invading
pathogens. Finally, we discuss the pathogenic molecular, cellular,
and biochemical responses that counter copper toxicity at host
interface.

COPPER AS NUTRIENT OR TOXIN

With photosynthesis and dioxygen release in the atmosphere
2.7 billion years ago, the sulfides that sequestered copper were
oxidized to sulfates, leading to increased copper bioavailability
(Frausto da Silva and Williams, 1993). Copper-containing pro-
teins appeared relatively late in an evolutionary timescale, likely
in response to increasing need to use oxygen and oxygen con-
taining molecules (Dupont et al., 2011; Nevitt et al., 2012). These
enzymes are critical to cellular, biochemical and regulatory func-
tions in the human host, leading to a nutritional requirement for
sufficient copper levels. The most prominent examples include
cytochrome ¢ oxidase, the respiratory chain terminal electron
acceptor, and Cu-Zn superoxide dismutase, required for defense
against oxidative damage (Karlin, 1993). Putative copper binding
proteins compose ~1% of the total eukaryotic proteome, suggest-
ing that known cuproproteins represent only a minor fraction of
the total (Andreini et al., 2008). Copper’s role in host biology and
defense is better understood by examining its chemistry.

Copper chemistry

Copper is the 26th most abundant in the earth’s crust and exists
as 2 stable and 9 radioactive isotopes. A transition metal, copper
primarily exists as one of two stable oxidation states: Cu®" in the
oxidized cupric form, and Cu™ in the reduced cuprous form. Cu*
is a closed shell 3d'? transition metal ion with diamagnetic prop-
erties (Frausto da Silva and Williams, 1993). A soft Lewis acid, it
favors tetrahedral coordination with soft bases such as hydrides,
alkyl groups, cyanide, phosphines, and thiols from cysteine and
thioether bonds with methionine (Crichton and Pierre, 2001).
Cu?* has a 3d° configuration, is paramagnetic, and is an inter-
mediate Lewis acid. In addition to ligands bound by Cu*, Cu®*
forms square planar complexes with sulphates, nitrates, nitrogen
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donors such as histidine, and oxygen donors like glutamate and
aspartate (Bertini et al., 2007). Different ligand combinations,
oxygenation levels, pH, organic matter, sulfates and carbonates,
generate differential metal speciation and distinct metal coordi-
nation environments. Copper’s value as a bioelement lies mainly
in its unique electrochemical properties. The Cut/Cu?* couple
has a high redox potential, which allows it to act as an electron
donor/acceptor in redox reactions (Crichton and Pierre, 2001).
Most copper enzymes span a range of +200 to +800 mV, enabling
them to directly oxidize substrates such as ascorbate, catechol,
and phenolates. The same electrochemical properties contribute
to copper’s toxic effects through several mechanisms, outlined
below.

Copper as a Fenton reagent

Within superoxide and hydrogen peroxide-rich environments
such as the phagosome, copper may propagate toxic hydroxyl rad-
ical formation by Fenton-like chemistry [Equation (1)] (Liochev,
1999).

Cut + H,0, — Cu’* + OH™ + OHe (1)

Hydroxyl radicals are extremely reactive, cannot be scavenged
by enzymatic reaction, and have a diffusion controlled half-
life of ~1077 s before reacting with organic molecules in vivo
(Freinbichler et al., 2011), suggesting that hydroxyl radical dam-
age would occur in close spatial proximity to copper ions.
Extensive work has implicated reactive oxygen species (ROS)
derived from metal-catalyzed oxidation in lipid, protein, and
DNA oxidation (Yoshida et al., 1993; Liochev, 1999; Stadtman,
2006). Copper ions can also oxidize sulthydryls such as cysteine
or glutathione in a cycle between reactions [Equations (2), (3a,b)
or (4a,b), followed by (5)]:

RSH + Cu’™ — RSe +Cu™ + H" (2) and
RSe + O, > RST+0;  (3a)
RSt 4+ RSH — RSSR+H™ (3b) or
RSe + RSH — RSSR+ H"  (4a)
RSSRe + O, — RSSR+ O, (4b) followed by

0, + HT — 1/2H,0, (5)

Hydrogen peroxide can in turn participate in reaction 1 and may
further propagate radical formation.

Attempts to understand copper toxicity through classic
copper-catalyzed Fenton chemistry to copper toxicity have pro-
duced contrary results. Macomber et al. exposed an Escherichia
coli mutant with multiple copper efflux deficiencies to hydrogen
peroxide (Macomber et al., 2007). Rather than exhibiting greater
peroxide sensitivity [through Equation (1)], copper-loaded E. coli
were instead more resistant to hydrogen peroxide. Furthermore,
copper loading was associated with fewer, not more, oxidative
DNA lesions. Lastly, EPR spectroscopy revealed no change in
hydroxyl radical generation with copper addition. Most of the
copper in overloaded strains was localized to the periplasm, where
any hydroxyl radical generated would react locally before reaching

DNA in the cytoplasm. This spatial compartmentalization may
explain the lack of DNA damage. While there may exist circum-
stances in which copper propagates cytotoxic Fenton chemistry
in vivo, this work suggests the existence of an alternative copper
toxicity mechanism in E. coli.

Non-Fenton destruction of iron-sulfur complexes by copper

Recent evidence suggests a non-Fenton chemistry copper toxic-
ity mechanism in which the reduced Cu* ion is instrumental.
Multiple investigators note that copper toxicity to bacteria is sus-
tained or even enhanced in anoxic conditions (Beswick et al.,
1976; Outten et al., 2001; Macomber and Imlay, 2009) where
peroxide formation is minimal. Increased copper toxicity under
anoxic conditions may reflect higher Cu™ prevalence. E. coli EPR
spectroscopy indicates that considerable Cu?* is converted to
non-paramagnetic Cu™ under anoxic conditions (Beswick et al.,
1976). Macomber et al. show that intracellular copper in over-
loaded E. coli is in the reduced Cu™ valence, likely due to cytosolic
reduction and its ability to enter bacteria by traversing bacte-
rial membranes (Macomber et al., 2007). Cu™ toxicity in the E.
coli cytosol can be explained by its intense thiophilicity, which
is sufficient to competitively disrupt key cytoplasmic iron-sulfur
enzymes both in vitro and in vivo (Macomber and Imlay, 2009).
Indeed, other “soft” thiophilic metal ions that do not act as
Fenton reagents have been found to exert comparable toxicity
(Jozefczak et al., 2012; Xu and Imlay, 2012). Together, these data
provide compelling evidence linking copper toxicity to iron dis-
placement from solvent-exposed dehydratase iron-sulfur clusters,
resulting in metabolic disruption and branched chain amino acid
auxotrophy.

COPPER AT THE HOST-PATHOGEN INTERFACE

Copper homeostasis is essential for human growth and develop-
ment. Average daily human dietary copper intake varies from 0.6
to 1.6 mg/dL, with a free copper ion concentration of 10~!> M in
human blood plasma (Linder and Hazegh-Azam, 1996). In mam-
malian cells, cytoplasmic metallothioneins, glutathione based
redox maintenance, and the Cu/Zn superoxide dismutase mitigate
copper toxicity (Fridovich, 1974; Babula et al., 2012; Hatori et al.,
2012). This section reviews the basic characteristics of human
copper transporters together with data that may speak to their
functions during infection and inflammation.

Human copper physiology

Unlike antimicrobial peptides, proteolytic enzymes, or ROS, cop-
per cannot be synthesized in situ during infections and so must
be absorbed from the diet or mobilized from tissue depots for
use by immune cells (see a more complete review Pena et al.,
1999). Once dietary copper is absorbed from the intestinal lumen
it is delivered to the liver, which exports it to the peripheral
circulation or excretes it into the bile (Crampton et al., 1965;
Vancampen and Mitchell, 1965). The liver incorporates cop-
per into multiple proteins, including the secreted glycosylated
multi-copper ferroxidase ceruloplasmin (Holmberg and Laurell,
1948). Ceruloplasmin-copper complexes bind Ctrl, an integral
membrane protein that is structurally and functionally conserved
from yeast to humans (Zhou and Gitschier, 1997). Ctrl trans-
ports 60-70% of the total copper in flux. Ctrl is responsive to
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copper levels: copper depletion increases Ctrl expression at the
plasma membrane through the recruitment from the intracel-
lular pools, whereas elevated copper induces rapid transporter
endocytosis from the plasma membrane to vesicles (Zhou and
Gitschier, 1997; Petris et al., 2003; Guo et al., 2004). Following
internalization by Ctr1, copper is shuttled to the trans-Golgi net-
work by ATOX1/HAH]1 in secretory compartments (Klomp et al.,
1997). Atox1 gene deletion in mice results in perinatal lethality,
reflecting its crucial role in normal cellular metabolism (Hamza
et al., 2001). Copper is transferred directly from ATOX1 to the
N-terminus of two homologous Pjp-type ATPase Cut trans-
porters, ATP7A (Chelly et al., 1993; Mercer et al., 1993; Vulpe
et al., 1999) and ATP7B (Bull et al., 1993; Tanzi et al., 1993; Vulpe
et al., 1993), located in the trans-Golgi network. Macrophages
infected with Salmonella typhimurium exhibit increased Ctrl,
ATP7A and ceruloplasmin gene expression, indicating that they
play a role in restricting infection by professional intracellular
pathogens (Achard et al., 2012).

Copper fills varied roles in mammalian biology, and it is
notable that copper-deficiency is associated with numerous defi-
ciencies in host defense (Kaim and Rall, 1996). Mutations in
ATP7A result in a severe copper-deficiency known as Menkes
disease (Kaler, 2011). Infants with Menkes’ disease are more
susceptible to Gram-negative infections, consistent with cop-
per’s role in restricting microbial growth (Menkes et al., 1962;
Danks et al., 1972; Gunn et al., 1984). Conversely, Wilson’s dis-
ease is characterized by excess copper accumulation in brain and
liver tissues, resulting in cirrhosis and neurodegeneration that
may manifest well after infancy. Other human copper deficiency
studies reveal impaired phagocytic indices, decreased antibody
response, impaired peripheral mononuclear cell proliferation,
lower early T-cell activation and proliferation, and lower cytokine
expression (Sullivan and Ochs, 1978; Prohaska and Lukasewycz,
1990). While these conditions suggest a specialized role for copper
in antibacterial immunity, caution must be taken to differenti-
ate this from a less specific, more general nutritional role in the
host (Newberne et al., 1968; Sullivan and Ochs, 1978; Boyne and
Arthur, 1981; Jones and Suttle, 1983; Koller et al., 1987; Prohaska
and Lukasewycz, 1990; Crocker et al., 1992; Smith et al., 2008).

Copper physiology during infections

Although incompletely understood, there are indications that
a coordinated physiologic response may increase both systemic
and local copper availability during infections. Compared to
normal controls, copper levels increase two- to ten-fold in the
serum, livers and spleens of animals infected with a range of
pathogens, including viruses, bacteria, and trypanosomes (Tufft
et al., 1988; Crocker et al., 1992; Matousek De Abel De La Cruz
etal., 1993; Ilback et al., 2003). Increased circulating copper may
be selectively imported into infected sites, as indicated by two- to
five-fold increase in copper-carrier proteins (Natesha et al., 1992;
Chiarla et al., 2008). X-ray microprobe analyses indicate that cop-
per’s absolute atomic concentration in area density increases a
hundred-fold to several hundred micromolar within granuloma-
tous lesions of lungs infected with Mycobacterium tuberculosis,
and high copper concentrations are selectively redistributed to the
exudates of wounds and burns (Beveridge et al., 1985; Jones et al.,

2001; Voruganti et al., 2005; Wagner et al., 2005). Whether this
accumulation reflects uptake by myeloid cells alone or includes a
tissue-wide response remains unclear.

Copper as a white blood cell antibacterial agent
In 2009, White et al. published findings from cultured
macrophage-like RAW264.7 cells that are consistent with a
copper-specific bactericidal system directed against phagocy-
tosed E. coli (White et al., 2009). Phagosomal killing of K12
E. coli was greatly affected by copper content of the cell culture
media. Microscopy and posttranscriptional silencing investiga-
tions linked this copper-dependent activity to ATP7A-mediated
copper trafficking from the Golgi apparatus to E. coli-containing
phagolysosomes. These studies suggest that in addition to
its role in physiologic copper absorption, ATP7A fills a host
defense function by transporting antibacterial quantities of cop-
per ions to phagolysosomal compartments containing engulfed
bacteria. Consistent with this finding, low-density lipoprotein
(LDL) oxidation by macrophage-like THP-1 cells was found to
be ATP7A-dependent, suggesting metal catalyzed oxidation by
secreted copper ions (Qin et al., 2010). ATP7A is expressed in
a broad range of both myeloid and non-myeloid cell types (La
Fontaine et al., 2010; Wang et al., 2011), raising the possibil-
ity that a variety of cell types may similarly direct the copper
payloads to kill internalized bacteria. These observations sug-
gest a specific functional rationale for the array of mammalian
copper transport genes upregulated by proinflammatory stim-
uli such as interferon-gamma and lipopolysaccharide and for
the altered copper physiology noted above in section Copper
as a Fenton Reagent. (Achard et al., 2012). Studies to identify
macrophage lineages or even non-professional phagocytes that
use copper-mediated antibacterial activity would be of great inter-
est in the area of infection biology. To date, copper-dependent
uropathogenic E. coli killing has been observed in both RAW264.7
cells and mouse peritoneal macrophages (Chaturvedi et al., 2013).
Altogether, these findings suggest an intriguing parallel between
ancient medicinal copper use and innate immune function.

Phagosomal copper may add to, and perhaps synergize with,
the diverse cellular microbial killing strategies described since
Elie Metchnikoff’s pioneering work on phagocytosis (Gordon,
2008). These strategies are often functionally redundant and have
been broadly grouped into oxidative killing mechanisms exem-
plified by the macrophage respiratory burst and non-oxidative
killing mechanisms such as antimicrobial peptides and hydrolytic
enzymes. Interactions between copper and more established
antibacterial effectors within the phagosome’s restricted space
are likely. Membrane permeabilizing defenses may facilitate cop-
per entry into bacteria, while high concentrations of respiratory
burst-derived oxidants are likely to modulate redox active copper
ions. These interactions may be spatially and temporally governed
during and after the respiratory burst. One recent finding in E. coli
suggests that copper’s interactions with phagosomal superoxide
may greatly impact intracellular bacterial survival (see section
Superoxide Dismutation).

Copper-mediated killing by vertebrate immune systems would
be expected exert selective pressure on copper resistance in
pathogenic bacteria. Below, we review the virulence-associated
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copper resistance systems described in several human pathogens.
The classic intracellular pathogen M. tuberculosis upregulates
genes encoding copper efflux-associated Pip-type ATPases dur-
ing macrophage infection (Ward et al., 2008; Rowland and
Niederweis, 2012). Urinary E. coli isolates collected from patients
with urinary tract infections (UTIs) exhibit higher growth than
concomitant rectal isolates in a medium containing an inhibitory
concentration of copper (Chaturvedi et al., 2012). Copper
resistance genes are often observed in virulence-associated
mobile genetic elements carried by E. coli as well as Legionella
pneumophila, Klebsiella pneumoniae, and methicillin resistant
Staphylococcus aureus (Sandegren et al., 2012; Shoeb et al., 2012;
Gomez-Sanz et al., 2013; Trigui et al., 2013). E. coli and M.
tuberculosis strains with engineered deficiencies in copper resis-
tance genes exhibit impaired intracellular survival in phagocytic
cells (White et al., 2009; Wolschendorf et al., 2011; Chaturvedi
et al., 2013). To date, these observations suggest that resistance
to copper-mediated killing among pathogens may be a virulence-
associated property driven by host innate immunity.

MECHANISMS OF MICROBIAL COPPER TOLERANCE

Copper’s direct and indirect toxicity can alter enzyme specificity,
disrupt cellular functions, and damage nucleic acid structure.
Changes in copper concentrations during infection suggest that
the host harnesses the metal’s toxic properties to combat micro-
bial growth. In response, pathogenic bacteria have evolved a series
of protein- and small-molecule based defenses against copper tox-
icity. Unlike eukaryotic cells, most known bacterial cuproproteins
are located within the cytoplasmic membrane or in the periplas-
mic space, perhaps to compartmentalize a potentially toxic metal
species. Microbes use this copper sparingly in metabolism, and
for electron transport in respiratory pathways. Given this, cop-
per’s cytoplasmic availability is tightly controlled, and data indi-
cate that there are fewer than 10* free copper atoms per bacterial
cell, reflecting cytoplasmic copper-responsive transcriptional reg-
ulators’ high copper sensitivity (Outten and O’Halloran, 2001;
Changela et al., 2003; Finney and O’Halloran, 2003).

Both Cu™ and Cu’tcan permeate the outer membrane of
E. coli and enter the periplasm, but only Cu* is able to cross
the inner membrane and reaches the cytoplasm by a cur-
rently unknown mechanism. While no copper uptake genes
have yet been identified in E. coli, the outer-membrane protein
ComC (under transcriptional control of the TetR-like regulator
ComR) may reduce the outer membrane’s copper permeability
(Mermod et al., 2012). It is speculated that cytoplasmic Cu™
is largely complexed by millimolar quantities of thiols such as
glutathione. Interestingly, glutathione biosynthesis gene dele-
tion has little effect on microbial copper response, indicating
that its role in detoxifying copper in bacterial cells may either
be limited or redundant (Helbig et al., 2008). In this regard,
qualitative and quantitative analyses of cytosolic copper bind-
ing sites in bacteria would aid our understanding of copper
toxicity.

Microbial copper-resistance systems span copper efflux (cue,
cus, and extrachromosomal efflux systems), copper sequestra-
tion (CusF and siderophores), and copper oxidation (mixed
copper oxidases and superoxide dismutase mimics). For the

sake of brevity, the following sections primarily discuss Cu?*
detection and resistance proteins that have been described in
E. coli (Figure1). Their functional homologs in other micro-
bial species are tabulated in Table 1 (see a more complete review
Rademacher and Masepohl, 2012).

Copper efflux

The cue system. In E. coli, two chromosomal systems remove
excess Cu™ from the cytosol (Outten et al., 2001). The cue sys-
tem (for Cu efflux) transcriptionally activates both plasmid- and
chromosomally-encoded copper homeostatic systems in response
to intracellular Cu™ sensing through CueR, a MerR-family met-
alloregulatory transcriptional activator (Petersen and Moller,
2000; Stoyanov et al., 2001). CueR coordinates one Cu™ ion per
monomer in an unusual and distinctive linear S-Cu*-S center
encompassing two cysteine residues (C112 and C120) located at
the dimer interface (Changela et al., 2003; Chen et al., 2003).
Both holo- and apo-CueR bind to dyad-symmetric sequences
at target promoters, but only holo-CueR activates transcription
(Yamamoto and Ishihama, 2005; Andoy et al., 2009). A genome-
wide transcriptional array study of the E. coli chromosome has
identified 197 putative CueR-binding sites, which largely await
experimental confirmation. Other bacteria that possess CueR-like
copper-tolerance systems include Pseudomonas aeruginosa and
S. typhimurium (Espariz et al., 2007; Pontel and Soncini, 2009;
Thaden et al., 2010).

CueR is a copper-selective ortholog from multifunctional pro-
tein families that respond to a wide range of effector ligands (the
Mecl/Blal-family repressors that mediate resistance to f-lactam
antibiotics and the MerR family, respectively) (Brown et al., 2003;
Portmann et al., 2006). While CueR is not widely distributed in

yersiniabactin

o o @

PcoB

oM
CueO
\ \ PcoA
periplasm @ . 3 Q QOZ
CusF
PcoE o 2H,0
IM

CusCBA CopA
€ o

lutathione
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FIGURE 1 | Copper resistance strategies across pathogenic E. coli
membranes. The virulence-associated siderophore yersiniabactin
sequesters Cu?™ outside the cell and prevents its reduction to the more
toxic Cut. Copper ions that reach the cytosol are subject to chelation by
glutathione and export by two ATPases. The CusCBA ATPase complex
exports Cut from both the cytoplasm and the periplasm (via CusF) to the
extracellular space. Alternatively, the CopA ATPase exports cytoplasmic
copper across the inner membrane. Periplasmic Cut can bind the proteins
CusF and PcoE or be oxidized by the mixed copper oxidases CueO or PcoA
to less toxic Cu?t. PcoB has a putative function of exporting Cu2t across
the outer membrane. The systems are oriented to minimize free cytosolic
copper ions by directing these to the periplasmic or extracellular spaces.
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Table 1| Species-wide distribution of copper-resistance proteins.

Function Protein Species
Copper detection SctR GolS*  S. typhimurium (Espariz et al., 2007; Pontel et al., 2007; Osman and Cavet, 2011)
RicR M. tuberculosis (Festa et al., 2011)
CueP S. typhimurium (Pontel and Soncini, 2009)
CrdRS H. pylori (Waidner et al., 2005)
CopY Enterococcus hirae, Enterococcus faecium, Streptococcus mutans, Lactococcus lactis (Strausak and
Solioz, 1997; Vats and Lee, 2001; Magnani et al., 2008; Reyes-Jara et al., 2010)
Copper efflux GolT S. typhimurium (Espariz et al., 2007; Osman et al., 2010)
CtpV M. tuberculosis (Rowland and Niederweis, 2012)
CopA1 P aeruginosa (Thaden et al., 2010)
CopA2 P aeruginosa (Gonzalez-Guerrero et al., 2010)
CopA Enterococcus hirae (Odermatt et al., 1994, Odermatt and Solioz, 1995)
CopB Enterococcus hirae (Odermatt et al., 1994; Odermatt and Solioz, 1995)
Copper sequestration CueP S. typhimurium (Pontel and Soncini, 2009)
SmtA Synechococcus (Shi et al., 1992)
Copper oxidation Rv0846¢ M. tuberculosis (Rowland and Niederweis, 2013)
Copper homeostasis repression  YcnK Bacillus subtilis (Chillappagari et al., 2009)
CstR Staphylococcus aureus (Grossoehme et al., 2011)

*Confers additional protection from gold toxicity (Espariz et al., 2007; Pontel et al., 2007).

bacterial genomes, Liu et al. describe one such copper-specific
ubiquitous regulator (Liu et al., 2007). The intracellular copper
sensor CsoR from M. tuberculosis is the founding member of
what appears to be a large family of bacterial Cu™-responsive
repressors, with greater than 170 projected members in archaeal,
bacterial, and cyanobacterial genomes (Liu et al., 2007). Upon
copper binding, CsoR is deactivated, leading to copper-resistance
gene expression.

CueR upregulates copA and cueO gene expression (Outten
et al., 2000; Stoyanov et al., 2001). These genes are associated
with copper efflux and oxidation, respectively. CopA is a copper-
exporting Pig-type ATPase active under high extracellular copper
stress (Outten et al., 2000; Petersen and Moller, 2000; Fan and
Rosen, 2002; Stoyanov et al., 2003). Mammalian and microbial
Pip-type ATPases thus perform opposing functions that deter-
mine infection outcomes. Appropriate copper import and traf-
ficking by mammalian ATPases is required to restrict microbial
growth, while copper export by microbial ATPases is necessary
to withstand this toxicity. CopA traverses the inner membrane
and exports Cut from the cytosol in both oxic and anoxic
conditions (Fan and Rosen, 2002; Kuhlbrandt, 2004; Arguello
et al.,, 2007; Osman and Cavet, 2008). This efflux pump cou-
ples ATP hydrolysis to form an acylphosphate intermediate in
the presence of Cut but not Cu?*. It is speculated that two
amino-terminal metal binding domains with a CXXC motif con-
fer metal binding specificity. copA mutants in E. coli, Streptococcus
pneumoniae, and Neisseria gonorrhoeae all demonstrate impaired
copper efflux, intracellular metal accumulation, and increased
copper sensitivity in both oxic and anoxic conditions (Rensing
et al., 2000; Outten et al., 2001; Shafeeq et al., 2011; Djoko et al.,
2012).

The cus system. An independent copper efflux system, the cus
(for Cus ensing) system confers copper-tolerance under moderate
to high copper levels in oxic conditions (Outten et al., 2001).
cusRSCFBA products are believed to form a multiunit transport
complex that spans the periplasmic space and is anchored in both
the inner and outer membranes (Mealman et al., 2012). While
CopA exports excess Cu™ from the cytoplasm to the periplasm,
CusRSCFBA effluxes Cu™ from the periplasm (Outten et al., 2001;
Franke et al., 2003; Long et al., 2010).

CusRS is a two-component regulatory system that monitors
copper stress in the cell envelope and is particularly active in
anoxic copper stress conditions (Munson et al., 2000). In addi-
tion to CusRS, CpxRA, and YedWV are two other previously
described copper-responsive E. coli two-component regulatory
systems (Yamamoto and Ishihama, 2005, 2006). CusR and CusS
exhibit homology with other plasmid-borne two-component sys-
tems that are also involved in metal responsive gene regulation.
Membrane bound CusS senses periplasmic Cu™, which leads to
protein autophosphorylation. CusS then donates the phosphoryl
group to CusR, which activates the transcription of the cusCFBA
and cusRS operons. CusA belongs to the resistance-nodulation-
cell division (RND) proton antiporter family, CusB belongs to
the membrane fusion protein family which anchor into the cyto-
plasmic membrane with a long periplasm-spanning domain, and
CusC is an outermembrane protein with homology to the TolC-
stress response protein (Franke et al., 2003; Delmar et al., 2013).
CusF is a periplasmic metallochaperone that binds a single atom
of Cut and participates in metal efflux by delivering the metal to
CusC and CusB (Xue et al., 2008; Mealman et al., 2011).

Other prominent RND proton antiporters include the mul-
tidrug efflux systems AcrB and AcrF from E. coli, MexB from
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P. aeruginosa, and MtrD from N. gonorrhoeae (Nies and Silver,
1995; Paulsen et al., 1996). Interestingly, Cupriavidus metallidu-
rans CH34 resistance to copper is attributed to RND protein
expression (von Rozycki and Nies, 2009).

Extrachromosomally-encoded copper efflux systems. In environ-
ments where copper concentrations would overwhelm chromo-
somally encoded copper metabolic systems, microbes contain
extrachromosomal loci that confer copper resistance. These loci
are present in copper-resistant E. coli, Pseudomonas syringae, and
Xanthomonas campestris pv. vesicatoria isolates (Tetaz and Luke,
1983; Bender and Cooksey, 1987; Brown et al., 1992; Voloudakis
etal., 1993; Williams et al., 1993). All copper-resistant strains were
isolated from agricultural areas characterized by repeated copper
salt application as a feed additive, bactericidal agent, or antifungal
agent. In these strains, the plasmid borne pco and cop oper-
ons confer copper resistance. These operons carry four related
genes, pcoABCDRSE and copABCDRS, which are expressed from
chromosomal copper-inducible promoters regulated by CusRS
(Brown et al., 1995; Adaikkalam and Swarup, 2005). The genes
copABCDRS are arranged in two operons, copABCD and copRS,
respectively. This arrangement is also found in the pco deter-
minant but with an additional gene, pcoE, further downstream.
Extrachromosomal systems encode two-component regulators
similar to CusRS, including PcoR and PcoS from the pco operon
of E. coli; CopR and CopS from the cop operon, which provides
copper resistance to P. syringae; and SilR and SilS from the sil
locus, which provides silver ion resistance to Salmonella enterica
serovar Typhimurium (Gupta et al., 1999). Similar to these cop-
per efflux systems, extrachromosomal pco system encodes PcoB
and PcoD, two copper pumps that are incorporated in the outer
and inner membranes, respectively (Lee et al., 2002).

Extrachromosomal resistance systems are metal oxidation state
selective. Recently published PcoC spectroscopic and crystal-
lographic data and nuclear magnetic resonance (NMR) stud-
ies of the closely related P. syringae protein, CopC, reveal a
biologically unprecedented thioether ligation (Arnesano et al.,
2003a,b; Peariso et al., 2003). PcoC can bind both Cu’tand
Cu™: the protein exhibits a cupredoxin fold that binds Cu*
through two Met sulfur atoms and one nitrogen or oxygen lig-
and in a hydrophobic Metrich loop that is exposed to solvent
on the protein surface. Cu?t can bind a separate site in the
same protein, where it coordinates water, as well as two his-
tidine imidazoles and two other nitrogen or oxygen ligands.
Following copper sensing, microbes respond to microenviron-
ments that contain high concentrations of unligated copper by
upregulating systems associated with copper efflux, oxidation, or
sequestration.

Copper sequestration

In addition to copper oxidation and efflux systems, recent studies
suggest that bacteria deploy both low molecular weight pro-
teins and small molecules to bind and sequester intracellular
copper. In E. coli, the periplasmic chaperone CusF binds cop-
per, ultimately delivering it to CusCBA for export (Franke et al.,
2003; Bagai et al., 2008; Xue et al., 2008; Mealman et al., 2012).
Evidence indicates that PcoE acts as a soluble copper binder

in the periplasm (Zimmermann et al., 2012). Across kingdoms,
metallotheioneines sequester cytoplasmic copper (Leszczyszyn
et al., 2011; Thirumoorthy et al., 2011; Gumulec et al., 2012).
Recent work in M. tuberculosis shows that a five-locus regulon for
copper resistance is upregulated during copper stress (Festa et al.,
2011). This regulon includes MymT, a cytoplasmic metalloth-
ionein that binds Cu™ and attenuates copper toxicity (Gold et al.,
2008). Although a native E. coli metallothionein has not yet been
identified, data suggest that glutathione may exert similar cyto-
protective effects by forming stable Cu™ complexes (Osterberg
et al., 1979; Helbig et al., 2008; Macomber and Imlay, 2009).

Some microbial siderophores, low-molecular-weight iron
chelating agents, sequester copper extracellularly and protect bac-
teria by minimizing intracellular copper penetration. There is
precedent for this among environmental bacteria that express
Cu™-binding compounds (those originally identified as copper
binders are called chalkophores) such as methanobactin and phy-
tochelatin (Cervantes and Gutierrez-Corona, 1994; Rauser, 1999;
Kenney and Rosenzweig, 2012). In E. coli, chemically distinct
siderophore types are observed to exert opposing copper phe-
notypes. Specifically, the catecholate siderophore enterobactin
sensitizes E. coli to copper, likely through its ability to reduce
cupric ion to the more toxic cuprous ion (Grass et al., 2004).
Although known as a cuprous oxidase, CueO prevents this inter-
action by directly oxidizing catechols such as dihydroxyben-
zoic acid, an enterobactin biosynthetic precursor (Grass et al.,
2004). Conversely, phenolate siderophores such as yersiniabactin
bind Cu?* in complexes that prevent reductive free Cu*release
(Chaturvedi et al., 2012). Uropathogenic E. coli strains that
express yersiniabactin are protected from copper’s toxic effects,
suggesting that a strain’s small molecule repertoire may affect its
ability to survive and persist in a copper-rich environment. It is
notable that yersiniabactin can protect bacteria with and with-
out FyuA (the outer membrane ferric yersiniabactin importer)
from copper toxicity, suggesting that yersiniabactin’s iron uptake
function does not contribute to this phenotype. Copper oxida-
tion state selectivity among microbial small molecules is also
observed in pyoverdin and pyochelin, two major siderophore
types expressed by P. aeruginosa (Brandel et al., 2012). While both
siderophores can bind Cu?*, Cu?*supplementation upregulates
genes involved in the synthesis of pyoverdin but downregulates
those for pyochelin (Frangipani et al., 2008; Brandel et al., 2012).
Data indicate that both siderophores prevent Cu>* accumulation
in the bacterial cell by 80% (Teitzel et al., 2006). Pyoverdin’s selec-
tive expression indicates that it may play a direct role in copper
tolerance, possibly by sequestering copper in reduction-resistant
complexes like yersiniabactin. The chemical basis of pyoverdin’s
transcriptional selectivity is unclear, and response regulation is
unknown. It is possible that ferric- and cupric siderophore com-
plexes govern differential transcriptional responses.

It also remains unclear whether siderophore transport sys-
tems can discriminate between different metal bound forms.
While sequestration by siderophores can attenuate copper toxi-
city, bacterial proteins that import siderophore-metal complexes
may also play a role. The siderophore schizokinen eliminates
copper’s toxic effects on Anabaena (Clarke et al., 1987) but
exacerbates copper toxicity in Bacillus megaterium (Arceneaux
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et al., 1984). It is possible that these differences arise from
fundamental differences in metabolic and transport machin-
ery between the two organisms. Copper schizokinen-mediated
toxicity in Bacillus can be alleviated by the exogenous desfer-
rioxamine, raising the possibility that cells transport iron to
repair copper-mediated damage. This observation could be fur-
ther explained by differences in each organism’s ability to use
its iron-uptake machinery to discriminate between cupric- and
ferric-siderophore complexes. It is possible that copper indi-
rectly affects siderophore expression by competitively inhibiting
iron import or liberating intracellular iron, altering intracellu-
lar metal accumulation, and affecting a downstream biosynthetic
feedback loop.

Copper oxidation

Mixed copper oxidases (MCO). Cutis more toxic than
Cu?*when applied under anoxic conditions, as demonstrated
by Macomber and Imlay (2009). Consistent with this observa-
tion, E. coli cultures treated with both Cu?* and reductants
such as ascorbate or catechols demonstrate lower viability than
those treated with Cu?* alone (Chaturvedi et al.,, 2012). To
detoxify extracytoplasmic Cut, E. coli use the CueR-regulated
multi-copper oxidase CueO to oxidize toxic cuprous copper to its
less toxic cupric form (Grass and Rensing, 2001; Roberts et al.,
2002; Singh et al., 2004). E. coli and S. typhimurium mutants
lacking CueO exhibit extreme copper sensitivity in oxic condi-
tions. CueO contributes to S. typhimurium virulence in a systemic
murine infection model (Achard et al., 2010). A second, plasmid-
borne 605 amino acid MCO called PcoA has also been described
in E. coli. Periplasmic extracts containing PcoA exhibit copper-
inducible oxidase activity, indicating that PcoA might similarly
oxidize Cu™ to prevent toxicity (Huffman et al., 2002; Djoko
et al., 2008). PcoA can functionally substitute for CueO in E. coli,
indicating that these proteins have redundant function.

E. coli CueO is among the best-characterized bacterial mul-
ticopper oxidases (MCOs). CueO is structurally similar to the
large, cross-Kingdom family of MCOs [including ascorbate oxi-
dase and the ferroxidases Fet3 and ceruloplasmin (Outten et al.,
2000)] that oxidize substrates using oxidizing equivalents in
molecular oxygen. This oxygen requirement renders oxidases
inactive under anoxic conditions. CueO’s active site consists
of a trinuclear copper center MCO active site in which a
fourth copper atom mediates electron transfer from the substrate
(Roberts et al., 2002; Grass et al., 2004). The enzyme couples
Cu™ oxidation with four-electron oxygen oxidation to water
through the hydroxide-bridged fourth copper atom. Reactive
oxygen intermediates generated during the reaction remain coor-
dinated and are not released from the protein. It is curious
that despite low cytoplasmic copper levels, CueO and PcoA
exhibit a twin-arginine motif in their leader sequences, sug-
gesting that they are translocated from the cytoplasm by the
twin arginine translocation (Tat) pathway with copper-bound
active sites (Huffman et al., 2002). Holo-protein translocation
from the cytoplasm means that some amount of chaperone-
bound copper must be delivered to these apo-proteins intra-
cellularly. This indicates that intracellular copper may serve a
biosynthetic role in this specific process. If MCOs ultimately

evolved to prevent copper entry to the cytosol, it is possible that
metallation by cytosolic copper is a form of feedback regula-
tion in which higher cytosolic copper levels lead to higher MCO
secretion. Further studies are necessary to discern this, and other,
possibilities.

In addition to oxidizing periplasmic Cu™, E. coli CueO can
also oxidize 2,3 dihydrobenzoic acid (DHB) (Grass et al., 2004).
2,3-DHB is the biosynthetic precursor to enterobactin, a cate-
cholate siderophore, secreted during iron limitation. As enter-
obactin can reduce Cu?" to Cu', it has been hypothesized
that CueO’s 2,3-DHB oxidation activity is a strategy to pre-
vent toxic Cu™ accumulation. While it may seem paradoxical
to both synthesize and destroy a siderophore, an intracellu-
lar copper requirement for CueO secretion may ensure that
it’s siderophore destructive activity is only relevant in the pres-
ence of high copper levels. Together, these findings suggest
that MCO’s such as CueO help protect bacteria from cop-
per stress by controlling copper ion oxidation states in oxic
environments.

Superoxide dismutation. Recent work shows that yersiniabactin
expression greatly facilitates pathogen survival within phagocytic
cells in a copper- and NADPH oxidase system-dependent man-
ner (Chaturvedi et al., 2013). In the presence of copper- and
NADPH oxidase-derived superoxide, yersiniabactin production
protects urinary pathogenic E. coli within cultured macrophage-
like cell phagosomes. Superoxide’s contribution to this phenotype
suggests that yersiniabactin’s cytoprotective effects may not be
attributable to copper sequestration alone. Subsequent biochem-
ical characterizations reveal that the copper-yersiniabactin com-
plexes catalyze superoxide dismutation according to [Equations
(6) and (7)]:

0,0~ + Cu*t — Ybt — Cut — Ybt + O, (6)
0,0~ + Cut = Ybt+ 2HT — Cu?*t — Ybt + H,0, (7)

Copper-yersiniabactin confined within the phagolysosome may
thus greatly diminish concentrations of superoxide (a reduc-
tant), while maintaining or increasing production of hydrogen
peroxide (an oxidant). This may have the effect of minimiz-
ing reduced Cu™ concentrations while increasing oxidized—and
less toxic—Cu?* ion concentrations. Periplasmic Cu,Zn-SOD
may similarly protect against copper stress, although there
are distinctive pathogenic advantages to deploying a non-
protein catalyst such as copper-yersiniabactin in the phagosomal
microenvironment (Chaturvedi et al., 2013). Yersiniabactin may
synergize with CueO and other mixed copper oxidases by bind-
ing Cu?* product ions generated by these enzymes to form
catalytic copper-yersiniabactin. While interactions such as these
will require further experimental validation, they fit with an
overall paradigm in which pathogens appear able to convert host-
supplied copper into catalysts (mixed copper oxidases, copper-
yersiniabactin, Cu,Zn-SOD) that help resist copper toxicity. SOD
activity may promote bacterial survival in several pathologically
important host niches and its connection with copper suggests
new insights into host defense mechanisms that are critical to
infection pathogenesis.
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PROSPECTS

Much remains to be understood about the mechanisms by which
mammalian hosts deploy copper to resist infection, and how
pathogenic bacteria respond to these strategies. ATP7A’s emerg-
ing role in direct antibacterial immunity warrants its detailed
study in mammalian cells that encounter bacterial pathogens. Cell
type, pathogen, and regulatory activity may result in unforeseen
interactions between copper and other innate immune effector
molecules. Possible cooperation with mammalian copper absorp-
tion and trafficking may suggest routes by which copper-based
immunity could be therapeutically supported. Both basic and
translational research efforts will be necessary to understand these
details.

The mechanisms by which pathogenic bacteria resist cop-
per during mammalian infections merits further investigation.
Studies conducted in bacterial cultures with environmental and
pathogenic isolates provide an excellent starting point for infec-
tion models that may provide additional insights. The recent
finding that yersiniabactin, a virulence-associated siderophore
in E. coli binds copper during humans infections (Chaturvedi
et al., 2012) and promotes microbial survival in phagocytic
cells suggests that host microenvironments may reveal new cop-
per resistance strategies (Chaturvedi et al., 2013). Yersiniabactin
exemplifies the rich array of microbial secondary compounds
that may include other copper-detoxifying microbial products.
Metabolomic approaches, which are sensitive to the end prod-
ucts of multi-gene biosynthetic units, are well suited to discover
additional copper-binding secondary compounds.

Copper’s inherent toxicity has renewed interest in its use as an
antimicrobial. Three hundred different copper and copper alloy
surfaces are registered with the U.S. Environmental Protection
Agency as antimicrobials and trials are underway to deter-
mine whether copper treated surfaces can significantly reduce
nosocomial infections (http://www.epa.gov/pesticides/factsheets/
copper-alloy-products.htm) (Grass et al., 2011). While these
approaches may be useful in limiting nosocomial infections, it
is worth noting that environmental copper-resistance loci have
been isolated from Gram-negative bacteria that colonize agri-
cultural areas repeatedly treated with copper salts. Given the
linkage between copper resistance and virulence, it would be
worth knowing whether sublethal copper exposures might effec-
tively select for increased virulence in bacteria. Improved insight
into bacterial copper resistance mechanisms iz vivo and in envi-
ronmental settings will be necessary to optimize antimicrobial
uses of copper.
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