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Francisella tularensis can bypass and suppress host immune responses, even to the
point of manipulating immune cell phenotypes and intercellular inflammatory networks.
Strengthening these responses such that immune cells more readily identify and destroy
the bacteria is likely to become a viable (and perhaps necessary) strategy for combating
infections with Francisella, especially given the likelihood of antibiotic resistance in the
foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can
invade and replicate, resulting in substantially higher bacterial load that can overcome
the host. As such, understanding their responses to Francisella may uncover potential
avenues of therapy that could promote a lowering of bacterial burden and clearance of
infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1
inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and
the Ras pathway. In this review we summarize the literature pertaining to the roles of
these pathways during Francisella infection, with an emphasis on monocyte/macrophage
responses. The therapeutic targeting of one or more such pathways may ultimately
become a valuable tool for the treatment of tularemia, and several possibilities are
discussed.
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INTRODUCTION
Francisella tularensis is the Gram-negative causative agent of
tularemia (Sjostedt, 2007). F. tularensis has been classified
into distinct subspecies, including F. tularensis subsp. tularensis
(F. tularensis; Type A), F. tularensis subsp. holarctica (F. hol-
arctica; Type B), and F. tularensis subsp. novicida (F. novicida),
which may actually be a separate species (Johansson et al.,
2010). Francisella is especially recognized for its low infectious
dose and ability to cause severe illness and death, which justi-
fies its categorization as a Category A select agent by the USA
Centers for Disease Control and Prevention (CDC) (Sjostedt,
2007). Of note, the most life-threatening forms of tularemia
are particularly associated with Type A infections regardless
of host species (Mohapatra et al., 2013). Although known to
infect a range of host organisms and cell types (Rick and Wu,
2007; Hall et al., 2008), F. tularensis has evolved to success-
fully infect human monocytes/macrophages where the bacteria
escape the phagosome, replicate within the cytosol and then
move on to other cells as the infected cells die (Clemens and
Horwitz, 2007; Elkins et al., 2007; Jones et al., 2012; Celli
and Zahrt, 2013). In vivo, macrophages appear to be the pre-
ferred host cell for Francisella (Sjostedt, 2003; Elkins et al.,
2007).

One critical characteristic of F. tularensis is its ability to attenu-
ate host inflammatory responses. Indeed, early studies in humans
showed that Franicsella-infected individuals exhibited dimin-
ished cytokine responses to endotoxin (Greisman et al., 1963).

In the murine system F. tularensis infection does not lead to
a classic pro-inflammatory cytokine response, and this results
in insufficient numbers of immune cells recruited to infection
sites (Bosio et al., 2007). Further, murine studies have cor-
roborated the findings of Greisman et al. (1963), who found
that challenge with lipopolysaccharide (LPS) after infection did
not lead to the production of pro-inflammatory cytokines such
as Tumor Necrosis Factor α (TNFα) in mouse cell lines nor
in vivo (Telepnev et al., 2003, 2005; Bosio, 2011). Similar findings
have also been observed in F. tularensis-infected murine bone-
marrow and alveolar macrophages following administration of
the synthetic triacylated lipopeptide Pam3CSK4 (Crane et al.,
2013).

Circulating monocytes constitute lower than 10% of blood
immune cells, yet serve a critical role as primary responders to
infection (Moser and Loetscher, 2001; Leavy, 2012). As men-
tioned above they are also prime targets of Francisella infec-
tion. Along with this, a higher percentage of monocytes are
infected by F. tularensis than either F. holarctica or F. novi-
cida during the course of infection (Hall et al., 2008). The
focus of this brief review is on some of the critical intracellu-
lar response pathways involved with Francisella infection. The
role of each pathway during F. tularensis infection is summa-
rized, with an emphasis on monocyte/macrophage responses.
Following this is a short discussion of potential non-antibiotic
means of combating Francisella by modulating these response
pathways.
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Francisella AND TOLL-LIKE RECEPTORS
Host immune cells have evolved to contain an array of recep-
tors which are vital for the detection of invading microbes and
foreign materials. These surface- and endosomally-expressed sen-
sors, termed pattern recognition receptors (PRR), can recognize
highly conserved bacterial, viral, and fungal motifs (Brown et al.,
2011). Toll-Like Receptors (TLR) are key PRR that are expressed
by a variety of cells including monocytes and macrophages.
Francisella directly interacts with the host cell through TLR2, a
surface receptor that recognizes surface lipopeptides and pep-
tidoglycan. In fact, TLR2−/− mice infected with F. tularensis
Live Vaccine Strain (LVS) display markedly lower TNFα and
Interleukin 6 (IL-6) production, decreased Nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) activation, and
showed overall lower survival when compared to wild-type mice
(Katz et al., 2006; Malik et al., 2006). Specific lipopeptides that
can induce TLR2 signaling, particularly the triacylated 17-kDa
membrane lipoprotein FTT0901/TUL4/LpnA (Sandstrom et al.,
1987; Sjostedt et al., 1989, 1991) and the membrane lipoprotein
FTT1103/FipB (Francisella infectivity potentiator protein B) (Qin
and Mann, 2006; Qin et al., 2011), are present on Francisella’s
surface (Thakran et al., 2008).

Modifications in TLR2 expression levels are associated with
Francisella infections, and these can vary depending on the sub-
species. For example, we have shown that F. novicida significantly
increased TLR2 transcript after infection in primary monocytes
while F. tularensis Schu S4 decreased it (Butchar et al., 2008). In
addition to altering receptor expression, both F. tularensis and
F. novicida can downregulate the molecule Cluster of differen-
tiation 14 (CD14) (Butchar et al., 2008). This is an important
co-receptor for both TLR2 and TLR4. It is required by the host cell
in order to generate a potent pro-inflammatory cytokine response
to F. tularensis LVS, although it is not adequate for increasing
survival in vivo (Chase and Bosio, 2010). In like manner, recent
reports highlight the role of the downstream adapter Myeloid
differentiation primary response 88 (MyD88), as mice lacking
this molecule died rapidly when challenged with F. tularensis LVS
(Collazo et al., 2006).

The importance of TLR4 in responding to LPS has long been
recognized (Chow et al., 1999; Qureshi et al., 1999). Francisella,
however, expresses an atypical LPS that does not strongly induce
TLR4 (Duenas et al., 2006). This is attributed to the lack of two
acetyl groups in its LPS, making it incapable of inducing a strong
TLR4 response (Phillips et al., 2004). TLR signaling appears to
be very effectively subverted by Francisella, and this may posi-
tion TLR as well as downstream pathway members as prime
candidates for targeted therapy (discussed in a later section).

INFLAMMASOME RESPONSES
Cystolic sensing mechanisms such as the multi-protein inflam-
masome play a prominent role in recognizing intracellular
pathogens, including Francisella. This depends upon Francisella’s
escape from the phagolysosome (Mariathasan et al., 2005;
Gavrilin et al., 2006). Inflammasomes regulate caspase activa-
tion through proteolytic cleavage, leading to Interleukins 1β

and 18 (IL-1β and IL-18) processing. Cleavage of procaspase-
1 to caspase-1 requires TLR2, as TLR2−/− mouse macrophages

showed little caspase-1 24 h after infection with LVS (Dotson
et al., 2013). Expectedly, caspases have been implicated in the
regulation of Francisella infections. For example, mice lacking
caspase-1 displayed higher bacterial numbers in organs following
infection with F. novicida (Mariathasan et al., 2005; Jones et al.,
2010).

Francisella’s escape from the phagosome triggers Absent in
Melanoma 2 (AIM2) inflammasome activation, as a subset of
F. novicida have been shown to lyse within the cytosol and
release AIM2-activating double-stranded deoxyribonucleic acid
(dsDNA) (Fernandes-Alnemri et al., 2010; Jones et al., 2010;
Rathinam et al., 2010). The importance of AIM2 in Francisella
infection was clearly demonstrated by a study showing that
AIM2−/− mice had increased organ bacterial burden and lower
survival rates than wild-type following infection with F. novicida
(Fernandes-Alnemri et al., 2010). In humans however, it has been
shown that the NALP3 inflammasome was the primary driver
of IL-1β production, with AIM2 contributing as well (Atianand
et al., 2011).

The influence of Francisella on inflammasome activity appears
to be subspecies-dependent. For example, recent data suggest
that F. novicida does not inhibit inflammasome activation (Broz
and Monack, 2011). In contrast, it has been shown that LVS
delays inflammasome activation and cell death, an activity that
requires the OmpA-like Francisella protein FTL_0325. In vivo,
mice infected with LVS harboring a mutation in FTL_0325
showed significantly higher IL-1β by the first day after infection
while mice infected with control LVS showed higher IL-1β at day
3. Importantly, mice infected with the LVS mutant that permit-
ted earlier inflammasome activation showed a significantly lower
bacterial load at day 3 (Dotson et al., 2013).

Virulent Francisella manipulates inflammasome responses
by stimulating the activation of apoptosis-promoting caspase-
3 rather than caspase-1 (Wickstrum et al., 2009; Bosio, 2011).
Tissues from Type A F. tularensis infected mice expressed
increased cleaved caspase-3, in contrast to the tissue responses of
F. tularensis LVS- and F. novicida-infected mouse macrophages.
In these cells, an increased caspase-1 dependent/caspase-3 inde-
pendent inflammatory cytokine production was more evident
(Wickstrum et al., 2009).

TYPE I AND II INTERFERONS
Interferons (IFNs) are host-produced proteins with an inher-
ent role in pathogen clearance during infection. These Type
I interferons induce signal transduction molecules, upregulate
major histocompatibility complex (MHC) molecules and pro-
mote proliferation of T cells (Welsh et al., 2012). Importantly,
they have been shown to be critical for inflammasome acti-
vation in response to Francisella (Henry et al., 2007). While
usually associated with viral infections, interferons are also seen
with Francisella infection. For example, F. novicida is able to
induce a variety of Type I IFN-associated genes in mouse bone
marrow-derived macrophages (BMM) (Henry et al., 2007), and
Schu S4 upregulated IFNβ in human peripheral blood monocytes
(Butchar et al., 2008). However, it has been shown that Francisella
suppresses Type I interferon signaling. For example, the virulent
F. tularensis strain Schu S4 inhibited the ability of dendritic cells to
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produce IFNα and IFNβ (Chase et al., 2009). Infection of human
monocytes with Schu S4 led to downregulation of IFNα receptors
1 and 2 (Butchar et al., 2008). As such, it appears as though the
more virulent form of Francisella uses more than one means to
combat Type I IFN signaling.

It has also been shown that infection of human primary
monocytes with F. tularensis and F. holarctica not only leads to
downregulation of Type I interferon pathway components but
also Type II (Butchar et al., 2008; Cremer et al., 2011). IFNγ,
a cytokine produced primarily by natural killer (NK) and T
cells, regulates the immunological response to effectively clear
pathogens. IFNγ can lower bacterial number following infection
with LVS (Anthony et al., 1989; Polsinelli et al., 1994), and can
reduce the intra-macrophage growth of LVS in a dose-dependent
manner (Anthony et al., 1992). Later reports demonstrated that
macrophages treated with IFNγ were more efficient in clear-
ing Francisella via an increased ability to perform phagosome-
lysosomal fusion (Santic et al., 2005). In human monocytes, both
F. tularensis and F. novicida increased IFNγ ligand expression but
decreased IFNγ Receptor 1 (Butchar et al., 2008). In conjunction,
it has been shown in both human and murine monocytic cell
lines that F. novicida induces Suppressor of Cytokine Signaling 3
(SOCS3) expression, suppresses Signal Transducer and Activator
of Transcription 1 (STAT1) phosphorylation, and suppresses both
Interferon gamma-induced protein 10 (IP-10) and Inducible
Nitric Oxide Synthase (iNOS) production (Parsa et al., 2008a).

Because of the Francisella-mediated dampening of both Type
I and Type II interferon signaling, there is a possibility that
pharmaceutical delivery of interferons may help combat infec-
tion. Intron A (Spiegel, 1985), Rebif (Mantia et al., 2013), and
Actimmune (Todd and Goa, 1992) are clinically approved drugs
that deliver interferons alpha, beta, and gamma to the patient,
respectively. They have been utilized for the management of
Multiple Sclerosis, Chronic Granulomatous Disease (CGD), and
Hepatitis B infection, but there is a possibility that one or more
may aid against at least some forms of tularemia.

Another Francisella family member, F. philomiragia, is an
opportunistic pathogen found with immunocompromised indi-
viduals. In particular, it is associated with the abovementioned
CGD, which can lead to fatal septicemia (Seger et al., 1982;
Mailman and Schmidt, 2005). Interestingly, both F. tularensis and
F. philomiragia have been associated with chronic granulomas and
necrotizing abscesses (Schmid et al., 1983; Nylund et al., 2006).
Of particular importance, F. philomiragia has between a 70–85%
homology to F. tularensis (Whipp et al., 2003), suggesting that
both pathogens may to some degree respond to IFN treatment.
However, Melillo et al. (2010) showed that IFNγ did not improve
the ability of human macrophages to combat Schu S4. Further
testing, perhaps with the use of monocytes, or using IFNγ plus
other agents, may uncover a positive role of IFNγ against virulent
Francisella.

THE ROLE OF NADPH
Target host cells of Francisella can respond to infection with the
production of reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) (Lindgren et al., 2005). Here we will focus on
ROS, which are generated following the assembly of nicotinamide

adenine dinucleotide phosphate-oxidase (NADPH oxidase) and
are a crucial innate defense mechanism. Not surprisingly, how-
ever, Francisella has devised an array of techniques to inhibit
ROS. These include techniques focused on hindering NADPH
component assembly, obstructing ROS production from assem-
bled NADPH oxidases and neutralizing generated ROS (Bosio,
2011; Jones et al., 2012). Francisella, including both virulent and
less virulent strains, reduces ROS production in neutrophils and
macrophages. The acid phosphatase AcpA has been shown to
be important for inhibiting reactive oxygen species production
in both macrophages and neutrophils (Mohapatra et al., 2010).
Another report showed that in neutrophils, virulent F. tularensis
both with and without an AcpA mutation, suppressed the pro-
duction of superoxide anions from the NADPH oxidase complex
(McCaffrey et al., 2010).

The live vaccine strain of F. tularensis was able to persist within
neutrophils by avoiding acquisition of gp91/p22 plasma mem-
brane and p47/p67 cytosolic NADPH subunits (McCaffrey and
Allen, 2006). This supported the growth of F. tularensis LVS by
hindering NADPH assembly. The importance of altering NADPH
complexes is not unique to Francisella, as multiple bacteria
including Helicobacter pylori and Salmonella typhimurium have
been shown to alter NADPH oxidase assembly in cells (Gallois
et al., 2001; Allen et al., 2005). If Francisella does encounter ROS,
catalases and super oxide dismutases (SOD) enzymes are neces-
sary for survival, as �SOD F. tularensis LVS have increased sus-
ceptibility to IFNγ-induced death (Melillo et al., 2009). Indeed, it
has been shown that antioxidants produced by Francisella Schu S4
can dampen macrophage inflammatory responses (Melillo et al.,
2010).

THE PI3K/Akt PATHWAY
Phosphatidylinositol 3′-kinase (PI3K) leads to activation of Akt,
also known as protein kinase B (PKB/Akt) [please see (Hers
et al., 2011; Hemmings and Restuccia, 2012) for brief reviews
on the PI3K/Akt pathway, and (Cremer et al., 2011) for a short
review within the context of Francisella]. The cellular processes
mediated by PI3K include phagocytosis (Araki et al., 1996),
autophagy (Petiot et al., 2000), cytokine production (Parsa et al.,
2006), and oxidative burst (Chen et al., 2003; Hoyal et al.,
2003). Hence, manipulation of PI3K may be advantageous for
pathogens. For example, macrophages from PI3K-deficient mice
show impaired nitric oxide production and increased predispo-
sition to Chlamydia pneumoniae infection (Sakai et al., 2006).
Stimulation of the PI3K/Akt pathway has downstream positive
effects on NF-κB activation and host response (Rajaram et al.,
2006). It has also been reported that PI3K and Akt are crucial
in the production of RANTES (“regulated on activation, nor-
mal T cell expressed and secreted”), IL-6, and IL-12 following
F. novicida infections (Parsa et al., 2006; Rajaram et al., 2006).
F. tularensis Schu S4 but not F. novicida leads to downregulation of
the regulatory p85 subunit of PI3K, as well as Akt itself (Butchar
et al., 2008). Conversely, mice expressing constitutively active Akt
(MyrAkt) did not succumb to F. novicida infections to the same
extent as wild-type mice (Rajaram et al., 2006). Initiation of these
pathways favors the host largely through the activation of NF-κB,
which promotes survival, cytokine production, and phagosomal
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maturation (Telepnev et al., 2005; Parsa et al., 2006). However, it
has also been reported that wortmannin, by blocking Akt activa-
tion and mitogen-activated protein kinase phosphatase 1 (MKP1)
upregulation, could enhance Mitogen-activated Protein Kinase
1 (MAPK1) and phosphorylation of the p38 MAPK, as well as
cytokine release in murine BMM following infection with LVS
(Medina et al., 2010). It was also shown that Complement com-
ponent 3 (C3) opsonization of Schu S4 led to phosphorylation of
Akt in human monocyte-derived macrophages (MDM) and that
this led to an upregulation of the Erk inhibitor MKP-1 (Dai et al.,
2013). Further experiments may be needed to tease out the role(s)
of Akt during Francisella infection, but the differences seen are
likely due to differences in complement, in bacterial subspecies
and/or cell type. The results of Dai et al., however, point to the C3
pathway as a putative therapeutic target.

Downstream inhibitors of PI3K have also been shown to
be involved with dampening responses following Francisella
infection. Deletion of a key phosphatase, Phosphatidylinositol-
3,4,5-trisphosphate 5-phosphatase 1 (SHIP1) has been shown to
permit greater cytokine production following infection of pri-
mary murine macrophages with F. novicida (Parsa et al., 2006).
In addition, Phosphatase and tensin homolog (PTEN) is upreg-
ulated following Francisella Schu S4 infection of human MDM
(Melillo et al., 2010). Both phosphatases serve to dampen PI3K
activity, resulting in a lessening of responses such as cytokine pro-
duction. SHIP1 has also been shown to attenuate Ras activity by
binding Shc (Damen et al., 1996). MicroRNAs (miRs) are post-
transcriptional regulators of gene expression and Francisella has
developed methods to use microRNAs to its advantage (Cremer
et al., 2009; Eulalio et al., 2012). Specifically, miR-155, which tar-
gets the 3′ UTR of SHIP1, is induced by F. novicida but not Schu
S4, resulting in higher levels of SHIP1 with Schu S4 (Cremer et al.,
2009).

THE RAS PATHWAY
Francisella also modulates the Ras-Raf-MAPK kinase-MAPK sig-
naling pathway during infection (Al Khodor and Abu, 2010;
Asare and Abu Kwaik, 2010). It has been shown that intracellular
F. novicida triggers Ras activation within 15 min in human MDM.
This occurs through Son of Sevenless 2 (SOS2)/Growth factor
receptor-bound protein 2 (GRB2)/Protein kinase C α (PKCα) and
Protein kinase C β1 (PKCβ1), which are essential for bacterial
proliferation (Al Khodor and Abu, 2010). Along with prolifera-
tion, the Ras pathway has been linked to cell death associated with
Francisella infection. Inhibition of MAPK1 phosphorylation pre-
vented LVS-induced apoptosis in the J774.2 mouse macrophage
cell line (Hrstka et al., 2005). Uptake of F. novicida also depends
on MAPK1, via activation of Spleen tyrosine kinase (Syk) (Parsa
et al., 2008b). Ras activation upon infection is not specific to
F. novicida, as Listeria monocytogenes and Helicobacter pylori pro-
mote Ras activation during infection (Keates et al., 2001; Mansell
et al., 2001).

In contrast to observations with F. novicida, it has been shown
that C3-opsonized Schu S4 dampens activation of MAPK1, p38
MAPK, and NF-κB, along with cytokine production in human
monocyte-derived macrophages (Dai et al., 2013). Cytokine
responses to non-opsonized Schu S4 were stronger, although not

as strong as the responses to F. novicida, and C3 opsonization
did not alter the responses to F. novicida (Dai et al., 2013). These
C3-mediated dampening effects appeared to be due to activation
of the protein tyrosine kinase LYN (Dai et al., 2013). Hence, it
appears as though there are differences in response to F. novi-
cida and F. tularensis that suggest caution when making inferences
from one to the other. Additional studies will be required in order
to tease out the intricacies of virulent Francisella and Ras.

Effectively targeting the Ras pathway may provide a novel
means of combating F. tularensis. Celecoxib, an FDA-approved
cyclooxygenase 2 (COX-2) inhibitor normally administered as
an anti-inflammatory agent, has recently been implicated in the
upregulation of MAPK1 and/or p38 MAPK activity in head and
neck squamous cell carcinoma cell lines, inhibiting their prolif-
eration (Park et al., 2010). Importantly, a potent antimicrobial
activity of celecoxib and a derivative has been reported, which
appears specific against Francisella. Celecoxib and a pharmaco-
logic derivative termed Compound 20, killed F. novicida, LVS,
and Schu S4 in growth media. In addition, compound 20 inhib-
ited the growth of F. novicida and Schu S4 in Raw 264.7 mouse
macrophage cells (Chiu et al., 2009). Hence, celecoxib or related
compounds may offer a dual effect against Francisella: promoting
host cell responses and direct killing.

CAN WE FIGHT Francisella WITHOUT ANTIBIOTICS?
Research to date points to immunosuppression as a critical fac-
tor in the virulence of Francisella. This leads to the hypothesis
that enhancing inflammatory responses would serve to com-
bat infection. Although cytokines such as TNFα, IL-1β, and
IFNγ are known to activate certain aspects of cellular immune
responses and are known to be attenuated by Francisella, treat-
ment with these or other such agents may not be sufficient to
combat an antibiotic-resistant form of this pathogen. For exam-
ple, even though IFNγ may promote phago-lysosomal fusion
upon infection with the less virulent F. novicida (Santic et al.,
2005), it does not appear to protect human MDM against Schu
S4 (Melillo et al., 2010). Hence, although IFNγ may be important
for combating Francisella, it in itself is not sufficient. Likewise, the
specific therapeutic targeting of other pathways may not be suffi-
cient to mount a successful immune response against Francisella.
Another approach may be to stimulate the production and acti-
vation of monocytes through administration of a factor such as
Granulocyte-macrophage colony-stimulating factor (GM-CSF).
This factor acts on both monocytes and neutrophils, and has been
tested extensively as an antitumor agent (Waller, 2007). Along
with this, it can enhance the activity, including respiratory burst,
of monocytes as has been shown ex vivo with septic patient mono-
cytes (Williams et al., 1998). Although GM-CSF did not reduce
intra-macrophage growth of LVS (Anthony et al., 1992), there is a
possibility that it may show some efficacy in vivo.

Alternatively, it is likely that the simultaneous activation of
multiple immune response pathways will be required. One poten-
tial non-antibiotic-based treatment that has already made its way
into the cancer arena is the use of immunomodulatory agents.
Indeed, this is being actively pursued as a potential treatment for
sepsis as well as for several viral and bacterial infections (reviewed
in Savva and Roger, 2013).
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Immunomodulators have been studied and used for the treat-
ment of cancer for well over 100 years. Tumors exert a strong
immunosuppressive effect on host immune responses, even to
the point where they co-opt immune cells for the production of
factors that promote growth, survival, and angiogenesis (Becker
et al., 2013; Kushner and Bautch, 2013). From this perspective,
perhaps there are enough similarities between Francisella and
tumor cells with regard to immunosuppression [e.g., both involve
Transforming growth factor β (TGFβ) production (Bosio et al.,
2007; Becker et al., 2013)] that these compounds would be effec-
tive in treating tularemia. In fact, it has recently been shown that
administration of a TLR4 agonist conferred protection against
F. novicida infection in mice (Lembo et al., 2008). It was later
shown that a mix of DNA-liposome complexes plus Francisella
membrane fractions could protect mice from F. tularensis infec-
tion (Ireland et al., 2010).

The first promising immunomodulator described in the liter-
ature was Coley’s Toxin, produced by Coley (1891). This was a
mix of bacteria that typically resulted in fever and malaise after
injection but oftentimes led to the reduction or elimination of
the patients’ tumors. Since then, research has uncovered mecha-
nisms both by which host immune cells respond to such “toxins”
and by which tumor cells act to suppress immune responses
(Becker et al., 2013; Broz and Monack, 2013). A later bacterially-
based therapy was bacillus Calmette-Guerin (BCG), used as a
tuberculosis vaccine and subsequently approved for treating blad-
der cancer (Vacchelli et al., 2013). Synthetic agents were also
being developed such as imiquimod (Chen et al., 1988) and
resiquimod (Tomai et al., 1995). Imiquimod (brand name Aldara)
was approved in 1997 for the treatment of genital warts and cer-
tain skin cancers. Although such compounds are developed on
an ongoing basis, the common theme is that as TLR agonists,
they possess the ability to activate multiple immune-response-
related pathways simultaneously (Brown et al., 2011). This fuller
spectrum of activation, in contrast to single-pathway treatment
such as with Interferons, carries the potential to more effectively
combat Francisella infection.

Monocytes express most TLR, although with low levels of
TLR9 and virtually no TLR3 (Hornung et al., 2002), so it is
likely that most immunomodulators will lead to their activa-
tion. Perhaps as importantly, activation of monocytes with these
compounds can also indirectly elicit responses from neighboring
cells. For example, the TLR7/8 agonist resiquimod promoted the
production of IFNγ from Natural Killer (NK) cells in vitro, but
only through monocyte-derived IL-12 during co-culture (Hart
et al., 2005). Direct or indirect effects on other cells have been
well-documented as well. For example, resiquimod has been
shown to promote dendritic cell maturation and antigen presen-
tation (Ahonen et al., 1999), and treatment of PBMC with the
TLR8-selective agonist VTX-2337 led to enhanced dendritic cell
maturation as well as more effective priming of CD8+ T cells
(Stephenson et al., 2013). Hence, although monocytes respond
strongly to such agonists, functional responses in vivo and in
humans will result from the culmination of direct and indirect
responses among multiple cell types. Although immunomodula-
tors continue to be developed, it may be beneficial to begin testing
the efficacy of agents that are currently approved for other uses

in humans. For example, BCG and even perhaps the topically-
applied Imiquimod could be tested in mouse models. There are
numerous mouse models of infection that can be utilized (Conlan
et al., 2011), so a plethora of possibilities exists.

Other than the well-characterized side effects associated with
the use of immunomodulators such as fever, nausea and malaise
(Witt et al., 1993; Goldstein et al., 1998; Pockros et al., 2007;
Weigel et al., 2012), there are additional considerations. For
example, as demonstrated by Ireland et al. with macrophages
(Ireland et al., 2010), the timing of immunomodulator admin-
istration may be a critical factor in the efficacy of treatment.
With Francisella in particular, the more virulent F. tularensis
Schu S4 has been shown to alter the expression and func-
tion of immune response factors. For example, most TLR (as
well as the MyD88 adaptor protein) in monocytes are down-
regulated following infection with F. tularensis (Butchar et al.,
2008). Similarly, it has been shown that F. tularensis can block
NF-κB activation, PKB/Akt phosphorylation and cytokine pro-
duction in macrophages (Melillo et al., 2010). Hence, within
the context of tularemia it would be hoped that enough mono-
cytes/macrophages (and other cells) would come into contact
with the agonist before encountering Francisella, such that a
more effective immune response could be attained. Along with
timing, it is important to consider that repeated dosages of
immunomodulators may not be fully effective. Endotoxin toler-
ance following an initial stimulus can lead to hyporesponsiveness
to subsequent stimuli (Greisman and Hornick, 1975; West and
Heagy, 2002; Morris and Li, 2012). It has been shown in a mouse
model of tumor immunotherapy that systemic administration of
the TLR7/8 agonist resiquimod led to such hyporesponsiveness,
which was overcome by altering the timing of repeated injec-
tions (Bourquin et al., 2011). Based on this, it seems probable
that immunomodulators by themselves will not be fully effective
against Francisella.

The use of therapeutic antibodies within the cancer field has
been ongoing since 1997 with the advent of Rituximab, and sev-
eral others are in use or testing for a variety of cancers. Much of
their efficacy has been attributed to antibody-dependent cellular
cytotoxicity (ADCC) (Sliwkowski et al., 1999; Clynes et al., 2000),
which monocytes are capable of performing (Shaw et al., 1978).
There have also been efforts to engineer these antibodies for bet-
ter binding, and/or for drug delivery to target cells (Vincent and
Zurini, 2012).

Antibodies within the context of Francisella have also been
examined preclinically, with promising results. (Stenmark et al.,
2003; Stenmark and Sjostedt, 2004). Of particular note, human
serum from a person infected with F. tularensis holarctica was
able to confer protection against F. tularensis holarctica in mice
(Stenmark et al., 2003). Stenmark and Sjostedt went on to
show that immune serum led to increases in both TNFα and
IL-12 (Stenmark and Sjostedt, 2004), which had been previ-
ously shown to be important within the context of Francisella
infection (Stenmark et al., 1999). From a practical perspec-
tive, it may not be feasible to isolate anti-Francisella antibod-
ies from people who survived infection and use them to treat
currently-infected patients. In addition, there are currently few
commercially-available antibodies against virulent F. tularensis.
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However, DNA-based technology has made the production of
monoclonal antibodies far less cumbersome so it is not unrea-
sonable to predict that a battery of humanized antibodies could
be available in the future. Furthermore, as with several antitumor
antibodies, such new anti-Francisella antibodies may be engi-
neered to enhance binding and/or immunogenicity. Due to the
immunosuppressive nature of F. tularensis, however, it is possible
that anti-Francisella antibodies alone will not be fully effective for
all patients.

Perhaps a combination of immunomodulators and anti-
Francisella antibodies should be explored, as it has been shown
that the two together can lead to superadditive immune
responses. For example, we found that treatment of human
monocytes with the TLR7/8 agonist resiquimod led to syner-
gistic increases in IgG-mediated TNFα production. Resiquimod
also enhanced monocyte-mediated ADCC against a tumor cell
line and synergistically improved the efficacy of antitumor anti-
body therapy in vivo. Interestingly, resiquimod modulated not
only the function but also the expression of monocyte Fcγ recep-
tors (FcγR), such that activating receptors were upregulated and
the inhibitory FcγRIIb was downregulated (Butchar et al., 2010).
Similarly, the TLR8-selective agonist VTX-2337 was shown to
increase the effectiveness of NK cell-mediated ADCC (Lu et al.,
2012). Although not all TLR agonists may modulate monocyte
FcγR expression to equal extents, it is likely that at least one or
more FDA-approved agents such as BCG could. Within the con-
text of tularemia, this dual therapy might successfully combat
the immunosuppressive effects of F. tularensis and direct the host
immune cells specifically against this pathogen. It remains to be
tested, however, whether such treatment can offset the Francisella-
mediated suppression seen upon contact and phagocytosis. Lastly,
from a treatment point of view, the synergistic effects of dual
treatment might permit the use of lower dosages and thereby
minimize untoward effects.

CONCLUSION
Francisella has evolved methods to escape and suppress host cell
immune responses. This might be counteracted via the use of
immunomodulatory agents or antibodies, and the combination
of both may lead to the best results. Further research may lead to
the successful development and testing of such agents.
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