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Bioaerosols generated at composting plants are released during processes that involve
the vigorous movement of material such as shredding, compost pile turning, or compost
screening. Such bioaerosols are a cause of concern because of their potential impact
on both occupational health and the public living in close proximity to such facilities.
The biological hazards potentially associated with bioaerosol emissions from composting
activities include fungi, bacteria, endotoxin, and 1-3 B-glucans. There is a major lack of
knowledge concerning the dispersal of airborne microorganisms emitted by composting
plants as well as the potential exposure of nearby residents. This is due in part to the
difficulty of tracing specifically these microorganisms in air. In recent years, molecular
tools have been used to develop new tracers which should help in risk assessments. This
review summarizes current knowledge of microbial diversity in composting aerosols and
of the associated risks to health. It also considers methodologies introduced recently to
enhance understanding of bioaerosol dispersal, including new molecular indicators and

modeling.
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INTRODUCTION

Composting is a method of waste management based on the
biological degradation and stabilization of organic matter under
aerobic conditions. It results in a sanitized and stabilized prod-
uct rich in humic substances that can be used as fertilizer (Sykes
et al., 2007). Large-scale composting has become a commonly
used method worldwide for diverting agricultural waste, sewage
sludge and other organic waste from landfills and incinerators.
The degradation of organic matter is carried out by a complex
and highly dynamic microflora containing Gram-positive and
Gram-negative bacteria and fungi (Ishii et al., 2000; Ryckeboer
et al., 2003; Hansgate et al., 2005). During the composting pro-
cess, along with the microbial degradation of organic matter,
the physico-chemical conditions pH, temperature and moisture
content evolve and changes in microbial diversity are impor-
tant. The intense microbial activity associated with degradation
of easyly-degradable compounds leads to a rise in temperature
at the beginning of the process. The fermentation phase is char-
acterized by the degradation of organic matter by thermophilic
species. It is followed by a maturing phase with degradation
of cellulolytic and ligno-cellulosic compounds and humification
reactions. The dynamics of microbial diversity during composting
has been recently revealed by high-throughput sequencing (De
Gannes et al., 2013).

Normal operations taking place at composting plants can be
the source of nuisance or pollution involving odors, noise, dust,
leachate, and bioaerosols (Sanchez-Monedero et al., 2005). The
emission of bioaerosols during operational activities increases the
concentration of microorganisms in the air by several orders of
magnitude (Persoons et al., 2010; ADEME, 2012). The implica-
tions of the release of bioaerosols is especially significant for com-
posting plants operating in the open because their bioaerosols are

released directly into the surrounding environment without any
pretreatment using biofilters or bioscrubbers. This paper focuses
on data collected from large-scale composting operations with
open-air windrow systems, which today remains the predomi-
nant composting technology. It gathers together recent findings
on bioaerosols emitted from composting facilities in terms of
microbial diversity, sanitary impact and dispersal beyond the site.

MICROBIAL DIVERSITY

The term “bioaerosol” encompasses all particles having a biolog-
ical source that are in suspension in the air and includes microor-
ganisms (bacteria, fungi, virus, protozoa, algae, pollen. . .) as well
as biomolecules (toxins, debris from membranes. . .) (Sykes et al.,
2011). Current knowledge on microbial diversity in aerosol from
composting facilities is largely focused on bacteria and molds.
For more than a decade, actinomycetes, Aspergillus fumigatus,
and Penicillium sp. have been recognized as the dominant cultur-
able micro-organisms in composting bioaerosols (Millner et al.,
1980; Fischer et al., 1999; Hryhorczuk et al., 2001; Kampfer et al.,
2002; Ryckeboer et al., 2003). However, cultivation-based tech-
niques systematically underestimate the diversity of bioaerosols.
Albrecht et al. (2007) showed that only 1.5-15.3% of airborne
bacterial cells of a composting facility enumerated by direct
counting formed countable colonies after incubation on TSA-
agar. Recent culture-independent studies using sequencing of
16S rRNA and 18S rRNA gave some new data on the microbial
diversity in composting aerosols. Tables 1, 2 present, respec-
tively, the bacterial and fungal species that have been identified
in composting bioaerosols using both culture-dependent and
culture-independent approaches.

In two studies on aerosols collected during the turning of com-
posting piles in the thermophilic phase (Le Goff et al., 2010)
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Table 1 | Dominant bacteria identified in aerosols from composting

facilities using culture-dependent and culture independent
techniques from Reinthaler et al. (1997), Le Goff et al. (2010),
Bru-Adan et al. (2009), ADEME (2012), Pankhurst et al. (2012), and
Betelli et al. (2013).

Phyla Genus Species Technique*
FIRMICUTES
Bacillus sp. Cult., Seq.
B. subtilis, B. smithii, Seq.
B. coagulans
Ureibacillus sp. Seq.
U. koreensis Seq.
Geobacillus sp. Seq.
G. thermodenitrificans, Seq.
G. caldoxylosilyticus
Thermoactinomyces  sp. Seq.
T intermedius, T. Seq.
sacchari
T thalpophilus Cult., Seq.
T vulgaris Cult., gPCR
Planifilum sp. Seq.
P yunnanesis Seq.
Clostridium C. peptidovorans Seq.
Symbiobacterium S. thermophilum Seq.
Ammoniphilus sp. Seq.
Streptococcus S. sanguinis Seq.
Staphylococcus sp. Cult.
S. epidermidis Cult.
ACTINOBACTERIA
Saccharopolyspora S. rectivirgula (syn: Cult., Seq.
Faenia rectivirgula,
Micropolyspora faeni)
S. hirsuta
Saccharomonospora  sp. Cult., Seq.
S. glauca, S. caesia Seq.
S. viridis Cult., Seq.
Thermomonospora sp. Cult., Seq.
T_mesouviformis, T. Seq.
chromogena
Thermobifida T fusca Seq.
Streptomyces sp. Cult., Seq.
S. thermoviolaceus, S. Seq.
cellulosae, S.
thermoatroviridis
Corynebacterium sp. Seq.
C. variabile, C. efficiens, Seq.
C. glutamicum
Nocardiopsis N. composta Seq.
Thermocrispum T agreste, T._municipale Seq.
Actinomadura A. hallensis Seq.
Rhodococcus sp. Seq.
Rothia sp. Seq.
Arthrobacter sp. Seq.
Microbacterium sp. Seq.
Kutzneria sp. Seq.
(Continued)

Table 1 | Continued

Phyla Genus Species Technique*
ALPHAPROTEOBACTERIA
Sphingomonas sp. Seq.
S. suberifaciens Seq.
Brevundimonas B. nasdae Seq.
Mesorhizobium sp. Seq.
Devosia sp. Seq.
GAMMAPROTEOBACTERIA
Pseudomonas sp. Cult., Seq.
P aeruginosa, P Cult.
fluorescens, P
oryzihabitans
Acinetobacter sp. Seq.
A. calcoaceticus, A. Seq.
Iwoffii
Enhydrobacter E. aerosaccus Seq.
Moraxella M. osloensis Seq.
Enterobacter E. cloacae Cult.
Pantoea P agglomerans Cult.
Klebsiella K. oxytoca Cult.
Proteus P mirabilis Cult.
Xanthomonas X. maltophila Cult.
Serratia S. rubidea, S. Cult.
marcescens
BETAPROTEOBACTERIA
Delftia D. acidovorans Seq.
Alcaligenes A. faecalis Cult.
BACTEROIDETES
Flavobacteriaceae sp. Seq.
Taxeobacter sp. Seq.

*Cult., culture; Seq., 16S rRNA sequencing; for rRNA sequencing data, the
genus and species names are given for percentage of similarity above 95 and
97%, respectively. Only phylotypes with abundancy above 1% of the total
number of sequences are presented.

and during the screening of matured compost (Bru-Adan et al.,
2009), Fimicutes and Actinobacteria were the two dominant bac-
terial phyla. From sequencing data present in public databases,
it appears that Firmicutes, Proteobacteria, and Bacteroidetes are
more dominant in compost than are Actinobacteria. In particu-
lar, the percentage of Bacteroidetes is much higher in compost
than in composting bioaerosols. The selection of sporulating
species during aerosolization may explain the dominance of
Firmicutes and Actinobacteria. Actinobacteria, Thermoactinomyces
sp. and Bacillus sp., in fact produce resistant spores that spread
widely. Nielsen et al. (1997) analyzed the concentration of micro-
organisms in bioaerosols related to the concentration in bulk
samples of compost from household waste. They found that
actinomycetes or their spores were particularly prone to becom-
ing airborne (Nielsen et al., 1995). Using PLFA (PhosphoLipid
Fatty Acid analysis), PCR-DGGE (Denaturing Gradient Gel
Electrophoresis) and pyrosequencing, Pankhurst et al. (2012)
have shown the influence that green-waste composting has on
the on-site and downwind airborne microbial communities. They
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Table 2 | Dominant fungi identified in aerosols from composting

facilities using culture-dependent and culture independent
techniques from Le Goff et al. (2010), Bru-Adan et al. (2009), and

ADEME (2012).

Phylum or Genus Species Technique*
subphylum
ASCOMYCOTA
Aspergillus sp. Cult., Seq.
A. fumigatus Cult., Seq
A. versicolor Cult., Seq.
A. candidus Cult.
A. nidulans Cult.
A. niger Cult.
A. flavus Cult.
A.eburneo-cremeus Cult.
Penicillium sp. Cult., Seq.
Eurotium sp. Cult.
Thermomyces T lanuginosus Seq.
Clathrospora C. diplospora Seq.
Illosporium I. carneum Seq.
Microascus M. cirrosus Seq.
Neurospora sp. Seq.
Paraphaeosphaeria R nolinae Seq.
Pithia sp. Seq.
Cladosporium sp. Cult., Seq.
Marcelleina sp. Seq.
Talaromyces T byssochlamydoides  Seq.
Madurella M. mycetomatis Seq.
Chalara hyalina Seq.
Geotrichum G. candidum Seq.
Pichia P guilliermondii Seq.
Phoma sp. Seq.
P herbarum Seq.
Ascolobus sp. sp. Seq.
Anguillospora sp. A. rubsecens Seq.
Trichoderma sp. Cult.
Emericella sp. Cult.
Tritirachium sp. Cult.
Alternaria sp. Cult.
Verticillium sp. Cult.
Didymella sp. Cult.
Candida sp. Cult.
BASIDIOMYCOTA
Dichostereum sp. Cult., Seq.
Coprinus C. comatus Cult., Seq.
Athelia A. bombacina Cult., Seq.
Ustilago U. hordei Seq.
Clitocybe C. candicans Seq.
Filobasidium F. globisporum Seq.
Sistotrema S. sernanderi Seq.
Vuilleminia V. comedens Seq.
Exidiopsis sp. Seq.
Acanthophysium A. cerussatum Seq.
Boletellus B. projectellus Seq.
(Continued)

Table 2 | Continued

Phylum or Genus Species Technique*
subphylum
Exidiopsis sp. Seq.
Peniophora P nuda Seq.
Itersonilia |. perplexans Seq.
Filobasidium sp. Seq.
Perenniporia P subacida Seq.
Botryobasidium B. subcoronatum Seq.
Dioszegia D. aurantiaca Seq.
Coleosporium C. asterum Seq.
Rhodotorula R. minuta Seq.
Classicula C. fluitans Seq.
Sporobolomyces sp. Seq.
Rhodotorella sp. Cult.
MUCOROMYCOTINA
Mucor M. plumbeus Cult., Seq.
Absidia A. corymbifera Cult., Seq.
Pilobolus P phaerosporus Seq.
Rhizopus sp. Cult.
Circinella C. umbellata Seq.
ENTOMOPHTHOROMYCOTINA
Furia F ithacensis Seq.
ZYGOMYCETES
Conidiobolus C. thromboides Seq.
Pandora P neoaphidis Seq.
Rhizomucor R. miehei Seq.

*Cult., culture; Seq., 18S rRNA sequencing; for rRNA sequencing data, only
phylotypes with abundancy above 1% of the total number of sequences are
presented.

found that in some cases, gamma-Proteobacteria (Pseudomonas,
Acinetobacter) can also dominate bioaerosols emitted by com-
posting platforms. At the genus level, these studies confirmed the
high representativity in bioaerosols of the following species which
were already known as major components of compost microflora
(Song et al., 2001; Steger et al., 2007): Aspergillus, Penicillium,
Bacillus, Thermoactinomyces, Thermobifida, Saccharomonospora,
and Saccharopolyspora. The studies provided interesting new data
concerning the importance of the fungus Thermomyces lanugi-
nosus and of the bacteria Geobacillus and Planifilum in compost-
ing bioaerosols. They also showed that thermophilic species were
strongly represented, even in mature compost (34% of the total
number of bacterial sequences in the study by Bru-Adan et al,,
2009).

Concerning fungi, the samples collected during the ther-
mophilic phase by Le Goff et al. (2010) were dominated
by Ascomycota (Thermomyces lanuginosus,  Aspergillus,
Penicillium. ..) whereas the air sample collected during the
screening of more matured compost mainly contained repre-
sentatives of the Basidiomycetes group (59% of the sequences),
although sequences closely related to Aspergillus were also
recovered (9% of the sequences). The potential changes in the
microbial diversity of composting bioaerosols during the process
still remain to be better characterized. Further studies are also
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needed to explain the differences recorded between diversity
in compost and diversity in the associated aerosols (enrich-
ment in sporulating species). Finally, despite their potential
impact on health, data on the presence and dispersal of virus or
eucaryotes (amoeba, algae. . .) in composting aerosols are scarce.
Conza et al. (2013) have recently demonstrated the presence
of amoebae in composting aerosols. In molecular inventories
based on 18S rRNA sequencing, sequences from algae and
protozoa were obtained (Bru-Adan et al.,, 2009; Le Goff et al,,
2010).

IMPACT ON HEALTH OF THE EXPOSURE TO AEROSOLS
EMITTED FROM COMPOST

Some pathogenic organisms (bacteria, viruses, and parasites) are
present in raw materials and composts, notably pathogens of
enteric origin in sludge from municipal sewage plants or animal
waste, but such pathogens are rapidly inactivated by heat during
the composting process. The main identified risks of infection
from composting bioaerosols are represented by opportunis-
tic micro-organisms, especially molds which can take advantage
of deterioration in the immune system. Prolonged exposure to
Aspergillus fumigatus, an opportunistic fungal pathogen, may
cause invasive aspergillosis in immuno-compromised individu-
als. (Shen et al., 2004; Taha et al., 2006). Rare cases of inva-
sive aspergillosis have been described among people exposed
to dusts originating in decomposing vegetable matter (ADEME,
2012). However, data in the literature does not indicate an
excess of severe infectious illness among compost workers. The
main effects of exposure to composting aerosols are on respira-
tory health; these include organic dust toxic syndrome, extrinsic
allergic alveolitis (EAA), allergic rhinitis, asthma, upper air-
way irritation and mucous membrane irritation (Swan et al.,
2003; Sykes et al., 2007). A. fumigatus and thermophilic acti-
nomycetes (Thermoactinomyces vulgaris, Saccharopolyspora rec-
tivirgula) are implicated in hypersensitivity-induced pneumoni-
tis and other allergic reactions such as alveolitis or bronchial
asthma (Lacey and Crook, 1988; Dutkiewicz et al., 1994; Poulsen
et al, 1995; Kampfer et al., 2002; Albrecht et al., 2008). In
addition to these micro-organisms, certain biological agents can
also affect human health: endotoxins, components of the cell
wall of Gram-negative bacteria, peptidoglycans in the wall of
Gram-positive bacteria, the f(1-3)-D-glucans in the cell wall of
molds and the mycotoxins (Sykes et al., 2011). The main path-
way leading to exposure is by inhalation of particles which reach
the respiratory system. Particle deposition in lungs is closely
related to their size. Many of the bioaerosol particles emitted
by compost are very fine and can reach down the pulmonary
alveoli (Chiang et al., 2003; Byeon et al., 2008). The size of
spores of molds colonizing compost (Aspergillus, Penicillium)
is below 3 um (Madelin and Johnson, 1992) and the one of
thermophilic actinomycetes is around 1pum (Reponen et al,
1998).

Over the last 5 years, more knowledge has been acquired on
the relevance of Saccharopolyspora rectivirgula and of Legionella
species in aerosols from composting. Saccharopolyspora rectivir-
gula is often found in environments of agricultural produc-
tion where the classic form of EAA (“farmer’s lung disease”)

is common. Schifer et al. (2013) showed that high concentra-
tions of airborne S. rectivirgula were to be found in composting
plants at levels similar to those found in agricultural production.
Using quantitative real-time polymerase chain reaction (PCR),
they detected S. rectivirgula in 85% of the 124 aerosols sampled at
31 different composting plants. Estimated concentrations ranged
between 1.2 x 10? and 1.5 x 107 cell counts/m>®. Compost is
also one of the recognized reservoirs of Legionella. One recent
study has reported the presence of L. pneumophila and L. boze-
manii and of free-living amoebae in compost and shown that
the bioaerosols developed from 3 of the 4 composting facilities
analyzed contain L. pneumophila (Conza et al., 2013). However,
a survey of the seroprevalence of anti- Legionella pneumophila
antibodies among workers composting sludge did not show a sig-
nificant rise when compared to the non-exposed group (Clark
et al., 1984).

The association between exposure to composting bioaerosol
and adverse health effects has been demonstrated for compost
workers (Herr et al., 2003; Biinger et al., 2007). According to
Schlosser et al. (2009), the mean personal exposure levels to
dust, bacteria, molds and endotoxins are fully consistent with
the occurrence of inflammatory and allergic respiratory outcomes
among workers. Certain studies have reported high levels of
immunoglobulins in the blood of workers which suggests a high
level of exposure leading to stimulation of the immune system
(Clark et al., 1984; Beffa et al., 1998; Biinger et al., 2000, 2007).
In a cross-sectional study, Van Kampen et al. (2012) investigated
work-related symptoms and diseases of 190 currently-exposed
compost workers, 59 former compost workers and 38 unexposed
control subjects. Compared to controls, compost workers suf-
fered more often from cough and irritation of the eyes in terms of
mucosal membrane irritation. Former compost workers reported
similar work-related complaints but these symptoms improved
when exposure to bioaerosols ceased. In contrast, cough and
dyspnea persisted, indicating a chronic process. There was no
higher frequency of mold sensitization in the group of com-
post workers compared to controls, which, according to the
authors, may be an indication of a healthy worker survivor
effect.

Sykes et al. (2011) recommended that consideration be given
to robust approaches to ensure dust suppression at source and
that employees’ exposures to organic dust are reduced as far
as possible when waste is being agitated. Shredder and siever
adjustments, sampling at the core of windrows in the turning
phase, cleaning and maintenance of aeration/composting con-
tainers were found as producing the highest bioaerosols ambient
concentrations by Persoons et al. (2010). Engineered measured
such as water sprays, negative aeration systems or biofilters did
not prevent on-site bioaerosol emissions. Composting in enclosed
units prevent bioaerosol dispersal in the environment but is likely
to increase occupational exposures.

Concerning nearby residents of composting plants, some epi-
demiological studies have found no relationship between respira-
tory symptoms and place of residence (Cobb et al., 1995), nor
with the concentration of Aspergillus fumigatus (Browne et al.,
2001). Others, in contrast, have shown that residents living within
150-200 m of a composting plant were affected, suffering from
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irritative respiratory complaints similar to mucous membrane
irritation and from excessive tiredness (Herr et al., 2003).

DISPERSAL OF COMPOSTING AEROSOLS IN THE
SURROUNDINGS

The risk assessments undertaken to date have relied on air disper-
sion studies to estimate downwind concentrations of bioaerosols
and to permit comparisons with data measured upwind or at
background locations (Taha et al., 2006). Bioaerosol concentra-
tions decrease rapidly with distance from their source and it
becomes difficult to verify that measurements at a distance are
related to a specific activity rather than to other non-compost
sources (Taha et al., 2005).

The airborne microorganisms usually monitored in compost-
ing aerosols are cultivable bacteria and fungi (mesophilic and/or
thermophilic) (Heida et al., 1995; Van Tongeren et al., 1997),
Gram-negative bacteria or more definite microbial taxons such
as Aspergillus fumigatus and actinomycetes (Millner et al., 1980;
Gumonski et al., 1992; Darragh et al., 1997; Fischer et al., 1999;
Hryhorczuk et al., 2001; Kampfer et al., 2002; Sanchez-Monedero
and Stentiford, 2003; Sanchez-Monedero et al., 2005; Taha et al.,
2006; Albrecht et al., 2007; Fischer et al., 2008; Schlosser et al.,
2009; Pankhurst et al., 2011).

Thermophilic actinomycetes such as Thermoactinomyces and
Saccharomonospora and thermotolerant microfungi have been
put forward as potential indicators because they are rare in natu-
ral environments due to their thermotolerant or obligatory ther-
mophilic characteristics. Their concentrations in air samples in
the surroundings of composting plants are indeed higher than in
background samples (Kampfer et al., 2002; Neef et al., 2003; Swan
et al., 2003; Albrecht et al., 2008; Fischer et al., 2008). Aspergillus
fumigatus is common in the environment but its concentration
increases when there are sources of self-heating materials. For
some authors, therefore, dominance of Aspergillus fumigatus in
the downwind vicinity of a composting plant is an indication of
the release of emissions from the plant (Recer et al., 2001; Taha
et al., 2006; Albrecht et al., 2008; Pankhurst et al., 2011). The
United Kingdom Composting Association has proposed a proce-
dure for monitoring bioaerosols, based on the monitoring of two
airborne groups, Aspergillus fumigatus and total mesophilic bacte-
ria, at different upwind and downwind locations at a composting
plant (Environment Agency, 2010).

Most studies on composting bioaerosols have been carried out
using culture. However, the culturability of bacteria occurring in
bioaerosols is low (Albrecht et al., 2007). Furthermore, culture
techniques may underestimate the exposure to some compost-
ing bioaerosols; this is especially true for biological agents other
than viable cells: endotoxins, mycotoxines, § (1-3)-D-glucans.
In contrast to culture techniques, qPCR targeting DNA will not
underestimate bioaerosol concentration. It is sensitive and robust,
and is used widely for monitoring microoganisms in other envi-
ronments (soil, water) (Peccia and Hernandez, 2006). Recently,
thermophilic species from compost have been quantified by gPCR
in order to monitor composting aerosols. Le Goff et al. (2010,
2011, 2012) used data obtained from molecular inventories to
identify new indicators affiliated to Saccharopolyspora rectivirgula,
to the Thermoactinomycetaceae and to the fungus Thermomyces

lanuginosus. Schifer et al. (2011, 2013) used qPCR to monitor
S. rectivirgula in composting aerosols. Betelli et al. (2013) devel-
oped a system for monitoring Thermoactinomyces vulgaris as a
basis for a standardized method for quantifying worker exposure
to bioaerosols at composting facilities. To evaluate the exposure
and the dispersal of composting bioaerosols, it is necessary to
know their background concentrations in air from unaffected
areas. Most studies have used concentrations measured upwind
of the composting site with respect to the dominant wind. Table 3
gathers the microbial groups used in monitoring of bioaerosols
emitted by composting facilities and their background concen-
trations.

An efficient indicator for tracing bioaerosols from compost-
ing should have the following characteristics: (i) be readily
transposed into an aerosol in high concentrations during the
stages of composting that produce bioaerosols; (ii) be specifi-
cally associated with the “compost” environment such that it is
scarce in the air in environments not associated with compost-
ing activities. However, microorganisms such as A. fumigatus,
Thermoactinomyces or Saccharopolyspora are not specific to a
compost origin (Song et al., 2001; Pankhurst et al., 2011). Indeed,
they play an important role in other habitats where decompo-
sition of organic matter takes place at high temperatures and
under aerobic conditions (e.g., improperly stored hay, cereal
grains, manure, straw, etc.). It is therefore important to analyze
other potential source of emissions (agricultural activities) when
collecting air samples for dispersal studies.

In the literature, very disparate results can be found con-
cerning the distance at which composting bioaerosols remain
detectable. Some authors did not expect finding elevated loads
beyond a distance of 150 m from the facilities during normal
operation (Reinthaler et al., 1997; Swan et al.,, 2003). In other
studies, however, microbial concentrations fell to the background
level only at distances further then 500m (Hryhorczuk et al,
2001; Recer et al., 2001; Fischer et al., 2008). Le Goff et al. (2012)
compiled data obtained from 12 different sampling campaigns
carried out at 11 composting plants at distances from 30 to 500 m,
with samples collected during a turning activity. For all cam-
paigns, an impact was measureable up to distances of 100 m.
Further away, the impact was not systematically observed as it
depended on meteorological conditions (wind speed) and on lev-
els of bioaerosol emissions. Beyond 200 m, the signal was largely
dispersed, falling to the background level.

The UK Environmental Agency considers that concentrations
can return to those of the background noise as near as 250 m
from the source emission (Environment Agency, 2001, 2010).
However, some studies show the presence of bioaerosols at much
greater distances (Recer et al., 2001; Kampfer et al., 2002; Fischer
et al., 2008). Fischer et al. (2008) observed that, in normal wind
conditions and as a function of the site investigated, the con-
centrations of thermophilic actinomycetes and of thermotolerant
fungi at a distance of 600-1400 m from the site were 1-2 orders
of size greater than the background noise. Recer et al. (2001) ana-
lyzed the aerosol bio-concentration upstream and downstream of
a composting site, with sampling done roughly once a week over a
year. The authors concluded that the emissions could increase the
level of exposure to bioaerosols up to at least 500 m from the site.
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Table 3 | Microbial groups used to monitor bioaerosols from composting facilities from O’Gorman and Fuller (2008), Schlosser et al. (2009),
Persoons et al. (2010), Pankhurst et al. (2011), ADEME (2012), Le Goff et al. (2012), Schafer et al. (2013), and Betelli et al. (2013).

Microbial group Technique Background levels? Concentrations in aerosols
from composting facilities®
UFC, gene copies, or cells/m°® UFC, gene copies, or cells/m3
Mesophilic bacteria Culture 16+ 1.2 x 108 102-108
n=13
Total bacteria Epifluorescence 2.5+ 6.9 x 108 105-6.5 x 10°
microscopy (DAPI) n=16
Viable bacteria Solid-phase 23+1.9x10° 9 x 10%-2 x 108
cytometry n=16
Gram-negative bacteria Culture 10 -8 x 10°
Thermophilic bacteria Culture 10-1.6 x 10° 3x 10" -10°
Thermophilic actinomycetes Culture 102 - 4 x 107
Molds Culture 1.1 £ 0.8 x 10° 10" - 107
n=13
Aspergillus spp. 9 x 102 - 7 x 10%
Aspergillus fumigatus Culture <80 <102 -4 x 107
Saccharopolyspora rectivirgula gPCR 102 - 1.5 x 107
Saccharopolyspora rectivirgula and rel.¢ gPCR 19+23x10° 5 x 10% -4 x 107
n=16
NC38, phylotype affiliated to the gPCR 09+ 1.4x 108 2 x 10% -2 x 108
Thermoactinomycetaceae n=16
EQOS5, phylotype affiliated to gPCR 0.7 £1.9x 10° 10% -5 x 108
Thermomyces n=16
Thermoactinomyces vulgaris gPCR 3 x 102 -3 x 108

dconcentration in air collected in unaffected areas (samples collected upwind or in natural environments).

bconcentration in air from composting sites during activities causing bioaerosol emissions; concentrations are expressed as Unit Forming Colonies/m> for culture,

as gene copies/m? for gPCR, and as cells/m? for epifluorescence microscopy and cytometry.

¢The qPCR system targets partial 165 rDNA sequences from Saccharopolyspora rectivirgula and from phylotypes dominating 16S rDNA molecular inventories in

aerosol emitted on composting facilities, and having a close phylogenetic positioning to S. rectivirgula.

Lastly, according to Pankhurst et al. (2011), the reversion to lev-
els measured upstream will not take place at the same distance for
each of the different components of the bioaerosol. Actinomycetes
and Gram-negative bacteria did not return to upwind levels until
300-400 m downwind, although other bioaerosols (A. fumiga-
tus, endotoxins) reduced to concentrations statistically similar to
upwind within 250 m from site.

The concentration and composition of bioaerosols at a given
point in the environment close to a composting site will depend
on many factors. These include (Recer et al., 2001; Jones
and Harrison, 2004; Pankhurst et al., 2011): (i) the size and
topography of the composting site, (ii) the composting activ-
ities in progress and the technology used (which can modify
the level of emissions), (iii) the physical/chemical characteris-
tics (humidity, granulometry) of the microflora in the han-
dled compost and (iv) the meteorological conditions (wind
speed, temperature, hygrometry, hours of sunshine...). The
meteorological conditions are effectively the determining fac-
tor for the fate of the particulate material in the atmosphere
and, also, for the survival of microbes. Most of the microor-
ganisms caught up in aerosols (with the exception of those
having a protective form such as spores) would be rapidly
inactivated in air because of the process of desiccation, warm
temperatures or UV radiations (Mohr, 1997). It should be

noted that the effect of each of these factors remains poorly
characterized.

Pankhurst et al. (2012) showed how specific site parameters
such as compost process activity and meteorological conditions
affect bioaerosol communities, although more data are required
to qualify and quantify the causes for these variations. Overall,
our understanding as to how the microflora changes in aerosols
according to the composting process is limited.

USING MODELING TO ASSESS EMISSION FLUX AND
DISPERSAL

Models have been used to predict downwind concentrations
based on at- or near-source measurements (Swan et al., 2003).
Most authors have assumed that bioaerosol spores are sufficiently
small to model bioaerosols as a gas and to permit the use of
Gaussian dispersion models such as the Pasquill model, the US
EPA SCREEN3 and ADMS (Atmospheric Dispersion Modeling
System) (Drew et al., 2006). The literature on modeling the
dispersal of bioaerosols emitted by composting facilities is not
abundant. This is partly due to the fact that a facility’s source
term is difficult to calculate. Activities will produce episodic or
periodic releases of aerosols due to factors such as operational
cycles, fluctuations in the daytime temperature that alter the char-
acteritics of the emissions, or fluctuations in atmospheric pressure
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that dictate the initial release of pollutants. Furthermore, given
the range of activities (shredding, screening, turning, moving the
windrows. . .) there are often a number of sources which make
up a “source term” (Taha et al., 2006). Taha et al. (2006, 2007)
used source depletion curves drawn up for A. fumigatus and
actinomycetes during composting activities (turning, shredding,
screening) to estimate emission rates and then evaluated the dis-
tance at which concentrations fell to background levels using
SCREEN 3. They showed that bioaerosol concentrations are likely
to decrease to within acceptable levels before the UK Environment
Agency 250 m risk assessment threshold. Some rare studies have
combined bioaerosol dispersion modeling results with models
calculating human exposure (Dowd et al., 2000; Chalvatzaki
et al., 2012). Chalvatzaki et al. (2012) analyzed the effect of dust
emissions from open storage piles at a municipal solid waste com-
posting site and concluded that the exposure to PMg for an adult
who is not working at the composting site was 20-74% lower
compared to that of a worker at the composting site.

PROSPECTS FOR THE FUTURE

The impact of composting facilities on air quality in downwind
environments remains difficult to assess. In particular, the dis-
tance at which the bioaerosol concentration reverts to the level
of the background noise is still under debate. The different results
in the literature are due notably to the variable nature of emis-
sions as well as to the influence of diverse factors on aerosol
dispersal. Modeling studies can help to better assess bioaerosol
dispersal and facilitate conclusions concerning risk assessment.
Molecular techniques provide access to non-culturable microor-
ganisms and are widely used to monitor microorganisms in water
or soil. Integrating data obtained using molecular techniques
into modeling should enhance understanding of dispersal of
bioaerosols. Today, several microbial indicators with good speci-
ficity to compost origin are available which can be monitored by
qPCR. Combining molecular tools and modeling constitutes one
important future line of investigation.

When modeling dispersion, particle size and agglomeration
play an important role in the aerodynamics of bioaerosols.
Furthermore, these factors determine the penetration into the
human respiratory system. Additional field studies are required to
examine particle size distribution in bioaerosols emitted by com-
posting facilities along with the possible tendency of bioaerosols
to form aggregates.

Furthermore, the study carried out by Pankhurst et al. (2011)
showed differences in the dispersion of A. fumigatus, the acti-
nomycetes and Gram-negative bacteria. This can be explained
by the fact that the ecology of the micro-organisms, their phys-
iology and their mechanisms of dissemination (sporulating and
non-sporulating microorganisms) all influence the formation of
aerosols and their dispersion in the atmosphere. Thus, it is impor-
tant to gather more data on the emission rates and the dispersal
of the indicators used to trace the aerosols emitted by compost-
ing facilities, and, also, to compare them to the other microbial
components of the aerosols.

The changes in the microbial make-up of the aerosols emitted
at the different stages of the composting process must be better
characterized, in light of the microbial diversity of the source, i.e.,

the compost. This would help us to understand the mechanisms
of selection during aerosol emission, insofar as some microorgan-
isms are more prone to being aerosolized. Diversity studies could
also help in identifying the microbial agents responsible for effects
on health.

More research is needed on analyzing the emission and dis-
persal of bioaerosols emitted by composting facilities in order to
better implement regulations by determining acceptable levels of
bioaerosols and defining buffer zones between compost sites and
nearby residential areas. Regulations should evolve together with
monitoring techniques and take into account recent advances in
molecular tools.

REFERENCES

ADEME. (2012). “The ADEME research program on atmospheric emissions
from composting: research findings and literature review,” in Agence de
PEnvironnement et de la Maitrise de 'Energie Report, French Environment and
Energy Management Agency, (Angers), 244.

Albrecht, A., Fischer, G., Brunnemann-Stubbe, G., Jickel, U., and Kidmpfer, P.
(2008). Recommendations for study design and sampling strategies for air-
borne microorganisms, MVOC and odours in the surrounding of composting
facilities. Int. J. Hyg. Environ. Health. 211, 121-131. doi: 10.1016/j.ijheh.2007.
05.004

Albrecht, A., Witzenberger, R., Bernzen, U., and Jackel, U. (2007). Detection of
airborne microbes in a composting facility by cultivation based and cultivation-
independent methods. Ann. Agric. Environ. Med. 14, 81-85. Available online at:
http://www.aaem.pl/pdf/14081.pdf

Beffa, T., Staib, E., Lott Fischer, ., Lyon, P.-F., Gumowski, P., Marfenina, O. E., et al.
(1998). Mycological control and surveillance of biological waste and compost.
Med. Mycol. 36, 137-145.

Betelli, L., Duquenne, P., Grenouillet, F, Simon, X., Scherer, E., Géhin, E., et al.
(2013). Development and evaluation of a method for the quantification of air-
borne Thermoactinomyces vulgaris by real-time PCR. J. Microbiol. Meth. 92,
25-32. doi: 10.1016/j.mimet.2012.10.009

Browne, M. L., Ju, C. L., Recer, G. M., Kallenbach, L. R., Melius, J. M., and Horn,
E. G. (2001). A prospective study of health symptoms and Aspergillus fumiga-
tus spore counts near a grass and leaf composting facility. Compost. Sci. Util. 9,
241-249. doi: 10.1080/1065657X.2001.10702041

Bru-Adan, V., Wery, N., Moletta-Denat, M., Boiron, P., Delgenes, J.-P., and
Godon, J.-J. (2009). Diversity of bacteria and fungi in aerosols during screen-
ing in a green waste composting plant. Curr. Microbiol. 59, 326-335. doi:
10.1007/500284-009-9438-3

Biinger, J., Antlauf-Lammers, M., Schulz, T. G., Westphal, G. A., Miiller, M.
M., Ruhnau, P, et al. (2000). Health complaints and immunological markers
of exposure to bioaerosols among biowaste collectors and compost workers.
Occup. Environ. Med. 57, 458—464. doi: 10.1136/0em.57.7.458

Biinger, J., Schappler-Scheele, B., Hilgers, R., and Hallier, E. (2007). A 5-year follow-
up study on respiratory disorders and lung function in workers exposed to
organic dust from composting plants. Int. Arch. Occup. Environ. Health. 80,
306-312. doi: 10.1007/500420-006-0135-2

Byeon, J. H., Park, C. W., Yoon, K. Y., Park, J. H., and Hwang, J. (2008). Size distri-
butions of total airborne particles and bioaerosols in a municipal composting
facility. Bioresour. Technol. 99, 5150-5154. doi: 10.1016/j.biortech.2007.09.014

Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T., and Lazaridis, M. (2012).
The effect of dust emissions from open storage piles to particle ambi-
ent concentration and human exposure. Waste Manag. 32, 2456-2468. doi:
10.1016/j.wasman.2012.06.005

Chiang, C. E, Yang, H. H., and Chi, T. W. (2003). Monitoring of bioaerosol emis-
sion from a sludge composting facility. Int. J. Appl. Sci. Eng. 1, 148—159. Available
online at: http://www.cyut.edu.tw/~ijase/index1_en.htm

Clark, C. S., Bjornson, H. S., Schwartz-Fulton, J., Holland, J. W., and Gartside, P.
(1984). Biological health risks associated with the composting of wastewater
treatment plant sludge. J. WPCF 56, 1269-1275.

Cobb, N., Sullivan, P., and Etzel, R. (1995). Pilot study of health complaints
associated with commercial processing of mushroom compost in southeastern
Pennsylvania. J. Agromedicine 2, 13-25. doi: 10.1300/J096v02n02_03

Frontiers in Cellular and Infection Microbiology

www.frontiersin.org

April 2014 | Volume 4 | Article 42 | 7


http://www.cyut.edu.tw/~ijase/index1_en.htm
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

Weéry

Bioaerosols from composting facilities

Conza, L., Pagani, S. C., and Gaia, V. (2013). Presence of Legionella and free-living
amoebae in composts and bioaerosols from composting facilities. PLoS ONE
8:¢68244. doi: 10.1371/journal.pone.0068244

Darragh, A., Buchan, R., Sandfort, D., and Coleman, R. (1997). Quantification of
air contaminants at a municipal sewage sludge composting facility. Appl. Occup.
Environ. Hyg. 12, 190-194. doi: 10.1080/1047322X.1997.10389487

De Gannes, V., Eudoxie, G., and Hickey, W. J. (2013). Prokaryotic successions and
diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol.
133, 573-580. doi: 10.1016/j.biortech.2013.01.138

Dowd, S. E., Gerba, C. P., Pepper, I. L., and Pillai, S. D. (2000). Bioaerosol transport
modeling and risk assessment in relation to biosolid placement. J. Environ. Qual.
29, 343-348. doi: 10.2134/jeq2000.00472425002900010043x

Drew, G. H., Tamer, A., Taha, M. P. M., Smith, R., Longhurst, P. J., Kinnersley,
R., et al. (2006). “Dispersion of bioaerosols from composting facilities,” in
Proceedings of Waste 2006: Sustainable Waste and Resource Conference (Stratford-
upon-Avon, UK), 357-365.

Dutkiewicz, J., Pomorski, Z. J. H., Sitkowska, J., Krysinskatraczyk, E., Skorska, C.,
Prazmo, Z., et al. (1994). Airborne microorganisms and endotoxin in animal
houses. Grana 33, 85-90. doi: 10.1080/00173139409427837

Environment Agency. (2001). Health Effects of Composting. A Study of Three
Compost Sites and Review of Past Data. Bristol, UK: Environment Agency.

Environment Agency. (2010). Composting and Potential Health Effects from
Bioaerosols: Our Interim Guidance for Permit Applicants. Bristol, UK: Position
Statement 031, Version 1.0. Environment Agency.

Fischer, G., Albrecht, A., Jackel, U., and Kampfer, P. (2008). Analysis of airborne
microorganisms, MVOC and odour in the surrounding of composting facili-
ties and implications for future investigations. Int. J. Hyg. Environ. Health. 211,
132-142. doi: 10.1016/j.ijheh.2007.05.003

Fischer, G., Muller, T., Ostrowski, R., and Dott, W. (1999). Mycotoxins of Aspergillus
fumigatus in pure culture and in native bioaerosols from compost facilities.
Chemosphere 38, 1745-1755. doi: 10.1016/S0045-6535(98)00391-9

Gumonski, P. I, Dunoyer Geindre, S., and Latge, J. P. (1992). Evaluation of occupa-
tional risk factors for the workers in municipal composting facilities. Eur. Respir.
J. 5, 406—407.

Hansgate, A. M., Schloss, P. D., Hay, A. G., and Walker, L. P. (2005). Molecular char-
acterization of fungal community dynamics in the initial stages of composting.
FEMS Microbiol. Ecol. 51, 209-214. doi: 10.1016/j.femsec.2004.08.009

Heida, H., Bartman, E, and Vanderzee, S. C. (1995). Occupational exposure and
indoor air-quality monitoring in a composting facility. Am. Ind. Hyg. Assoc. J.
56, 39-43. doi: 10.1080/15428119591017295

Herr, C. E. W,, Nieden, A., Jankofsky, M., Stilianakis, N. I., Boedeker, R.-H., and
Eikmann, T. E (2003). Effects of bioaerosol polluted outdoor air on airways
of residents: a cross sectional study. Occup. Environ. Med. 60, 336-342. doi:
10.1136/0em.60.5.336

Hryhorczuk, D., Curtis, L., Scheff, P., Chung, J., Rizzo, M., Lewis, C., et al. (2001).
Bioaerosol emissions from a suburban yard waste composting facility. Ann.
Agric. Environ. Med. 8, 177-185.

Ishii, K., Fukui, M., and Takii, S. (2000). Microbial succession during a composting
process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl.
Microbiol. 89, 768-777. doi: 10.1046/j.1365-2672.2000.01177.x

Jones, A. M., and Harrison, R. M. (2004). The effects of meteorological factors
on atmospheric bioaerosol concentrations- a review. Sci. Total Environ. 326,
151-180. doi: 10.1016/j.scitotenv.2003.11.021

Kampfer, P, Jureit, C., Albrecht, A., and Neef, A. (2002). “Imission of microorgan-
isms from composting facilities,” in Microbiology of Composting ed S. Klammer
(Berlin: Springer), 571-584.

Lacey, J., and Crook, B. (1988). Fungal and actinomycete spores as pollutants of
the workplace and occupational allergens. Ann. Occup. Hyg. 32, 15-533. doi:
10.1093/annhyg/32.4.515

Le Goff, O., Bru-Adan, V., Bacheley, H., Godon, J. J., and Wery, N. (2010).
The microbial signature of aerosols produced during the thermophilic
phase of composting. J. Appl. Microbiol. 108, 325-340. doi: 10.1111/j.1365-
2672.2009.04427 x

Le Goff, O., Godon, J.-J., Milferstedt, K., Bacheley, H., Steyer, J.-P.,, and Weéry,
N. (2012). A new combination of microbial indicators for monitoring com-
posting bioaerosols. Atmos. Environ. 61, 428-433. doi: 10.1016/j.atmosenv.2012.
07.081

Le Goff, O., Godon, J. J., Steyer, J. P., and Wery, N. (2011). New specific indicators
for qPCR monitoring of airborne microorganisms emitted by composting

plants. Atmos. Environ. 45, 5342-5350. doi:
06.052

Madelin, T. M., and Johnson, H. E. (1992). Fungal and actinomycete spore aerosols
measured at different humidities with an aerodynamic particle sizer. J. Appl.
Bacteriol. 72, 400—-409. doi: 10.1111/j.1365-2672.1992.tb01853.x

Millner, P. D., Bassett, D. A., and Marsh, P. B. (1980). Dispersal of Aspergillus fumi-
gatus from sewage sludge compost piles subjected to mechanical agitation in
open air. Appl. Environ. Microbiol. 39, 1000-1009.

Mohr, A. J. (1997). “Fate and transport of microorganisms in air,” in Manual of
Environmental Microbiology, eds C. J. Hurst, G. R. Knudson, M. J. McInerney,
L. D. Stetzenbach, and M. V. Wlater (Washington, DC: American Society for
Microbiology), 641-650.

Neef, A., Schifer, R., Beimfohr, C., and Kiampfer, P. (2003). Fluorescence based
rRNA sensor systems for detection of whole cells of Saccharomonospora spp. and
Thermoactinomyces spp. Biosens. Bioelectron. 18, 565-569. doi: 10.1016/S0956-
5663(03)00028-9

Nielsen, B. H., Wiirtz, H., Breum, N. O. and Poulsen, O. M. (1997).
Microorganisms and endotoxin in experimentally generated bioaerosols from
composting household waste. Ann. Agric. Environ. Med. 4, 159-168.

Nielsen, E. M., Nielsen, B. H., and Breum, N. O. (1995). Occupational bioaerosol
exposure during collection of household waste. Ann. Agric. Environ. Med. 2,
53-59.

O’Gorman, C., and Fuller, H. T. (2008). Prevalence of culturable airborne spores
of selected allergenic and pathogenic fungi in outdoor air. Atmos. Environ. 42,
4355-4368. doi: 10.1016/j.atmosenv.2008.01.009

Pankhurst, L. J., Deacon, L. J., Liu, J. , Drew, G. H., Hayes, E. T,
Jackson, S., et al. (2011). Spatial variations in airborne microorgan-
ism and endotoxin concentrations at green waste composting facili-
ties. Int. J. Hyg. Environ. Health. 214, 376-383. doi: 10.1016/j.ijheh.2011.
06.001

Pankhurst, L. J., Whitby, C., Pawlett, M., Larcombe, L. D., McKew, B., Deacon, L.
J., et al. (2012). Temporal and spatial changes in the microbial bioaerosol com-
munities in green-waste composting. FEMS Microbiol. Ecol. 79, 229-239. doi:
10.1111/j.1574-6941.2011.01210.x

Peccia, J., and Hernandez, M. (2006). Incorporating polymerase chain reaction-
based identification, population characterization, and quantification of
microorganisms into aerosol science: a review. Atmos. Environ. 40, 3941-3961.
doi: 10.1016/j.atmosenv.2006.02.029

Persoons, R., Parat, S., Stoklov, M., Perdrix, A., and Maitre, A. (2010). Critical
working tasks and determinants of exposure to bioaerosols and MVOC
at composting facilities. Int. J. Hyg. Environ. Health. 213, 338-347. doi:
10.1016/j.ijheh.2010.06.001

Poulsen, O. M., Breum, N. O., Ebbehoj, N., Hansen, A. M., Ivens, U. L., Van
Lelieveld, D., et al. (1995). Sorting and recycling of domestic waste. Review of
occupational health problems and their possible causes. Sci. Total. Environ. 198,
33-56. doi: 10.1016/0048-9697(95)04521-2

Recer, G. M., Browne, M. L., Horn, E. G., Hill, K. M., and Boehler, W. E. (2001).
Ambient air levels of Aspergillus fumigatus and thermophilic actinomycetes in
a residential neighborhood near a yard-waste composting facility. Aerobiologia
17, 99-108. doi: 10.1023/A:1010816114787

Reinthaler, E. E, Marth, E., Eibel, U., Enayat, U., Feenstra, O., Friedl, H., et al.
(1997). The assessment of airborne microorganisms in large-scale compost-
ing facilities and their immediate surroundings. Aerobiologia 13, 167-175. doi:
10.1007/BF02694504

Reponen, T. A., Gazenko, S. V., Grinshpun, S. A., Willeke, K., and Cole, E. C. (1998).
Characteristics of airborne actinomycete spores. Appl. Environ. Microbiol. 64,
3807-3812.

Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J.,
et al. (2003). A survey of bacteria and fungi occurring during composting and
self-heating processes. Ann. Microbiol. 53, 349-410.

Sanchez-Monedero, M. A., and Stentiford, E. 1. (2003). Generation and disper-
sion of airborne microorganisms from composting facilities. Trans. IChemE. 81,
166-170. doi: 10.1205/095758203765639861

Sanchez-Monedero, M. A., Stentiford, E. I., and Urpilainen, S. T. (2005). Bioaerosol
generation at large-scale green waste composting plants. J. Air Waste. Manag.
Assoc. 55, 612—618. doi: 10.1080/10473289.2005.10464652

Schifer, J., Kimpfer, P., and Jickel, U. (2011). Detection of Saccharopolyspora rec-
tivirgula by quantitative real-time PCR. Ann. Occup. Hyg. 55, 612-619. doi:
10.1093/annhyg/mer018

10.1016/j.atmosenv.2011.

Frontiers in Cellular and Infection Microbiology

www.frontiersin.org

April 2014 | Volume 4 | Article 42 | 8


http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

Wery

Bioaerosols from composting facilities

Schifer, J., Klug, K., Van Kampen, V., and Jéckel, U. (2013). Quantification of
Saccharopolyspora rectivirgula in composting plants: assessment of the rele-
vance of S. rectivirgula. Ann. Occup. Hyg. 57, 875-883. doi: 10.1093/annhyg/
met010

Schlosser, O., Huyard, A., Cartnick, K., Yanez, A., Catalan, V., and Do Quang,
Z. (2009). Bioaerosol in composting facilities: occupational health risk
assessment. Water Environ. Res. 81, 866-877. doi: 10.2175/106143009X4
07258

Shen, D. K., Noodeh, A. D., Kazemi, A., Grillot, R., Robson, G., and Brugere, J. E.
(2004). Characterisation and expression of phospholipases B from the oppor-
tunistic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 239, 87-93. doi:
10.1016/j.femsle.2004.08.019

Song, J., Weon, H. Y., Yoon, S. H., Park, D. S., Go, S. J., and Suh, J. W. (2001).
Phylogenetic diversity of thermophilic actinomycetes and Thermoactinomyces
spp. isolated from mushroom composts in Korea based on 16S rRNA gene
sequence analysis. FEMS Microbiol. Lett. 202, 97-102. doi: 10.1111/j.1574-
6968.2001.tb10786.x

Steger, K., Sjogren, A. M., Jarvis, A., Jansson, J. K., and Sundh, I (2007).
Development of compost maturity and Actinobacteria populations during full-
scale composting of organic household waste. ] Appl. Microbiol. 103, 487—-498.
doi: 10.1111/j.1365-2672.2006.03271.x

Swan, J. R. M., Kelsey, A., Crook, B., and Gilbert, E. J. (2003). Occupational
and Environmental Exposure to Bioaerosols From Composts and Potential Health
Effects — a Critical Review of Published Data. Sudbury: Health & Safety
Executive.

Sykes, P., Jones, K., and Wildsmith, J. D. (2007). Managing the potential pub-
lic health risks from bioaerosol liberation at commercial composting sites in
the UK: an analysis of the evidence base. Resour. Conserv. Recycl. 52:410. doi:
10.1016/j.resconrec.2007.05.005

Sykes, P., Morris, R. H. K., Allen, J. A., Wildsmith, J. D., and Jones, K. P. (2011).
Workers’ exposure to dust, endotoxin and $-(1-3) glucan at four large-scale
composting facilities. Waste Manag. 31, 423-430. doi: 10.1016/j.wasman.2010.
10.016

Taha, M. P. M., Drew, G. H., Longhurst, P. J., Smith, R., and Pollard, S. J. T. (2006).
Bioaerosol releases from compost facilities: evaluating passive and active source

terms at a green waste facility for improved risk assessments. Atmos. Environ.
40, 1159-1169. doi: 10.1016/j.atmosenv.2005.11.010

Taha, M. P. M., Drew, G. H., Tamea, A., Hewings, G., Jordinson, G. M.,
Longhurst, P. J., et al. (2007). Improving bioaerosol exposure assessments
of composting facilities - comparative modelling of emissions from different
compost ages and processing activities. Atmos. Environ. 41, 4504-4519. doi:
10.1016/j.atmosenv.2006.12.056

Taha, M. P. M., Pollard, S. J. T., Sarkar, U, and Longhurst, P. (2005).
Estimating fugitive bioaerosol releases from static compost windrows: feasi-
bility of a portable wind tunnel approach. Waste Manag. 25, 445-450. doi:
10.1016/j.wasman.2005.02.013

Van Kampen, V., Deckert, A., Hoffmeyer, E., Taeger, D., Brinkmann, E., Briining, T.,
etal. (2012). Symptoms, spirometry, and serum antibody concentrations among
compost workers exposed to organic dust. J. Toxicol. Env. Health, Part A. 75,
492-500. doi: 10.1080/15287394.2012.674918

Van Tongeren, M., Van amelsvoort, L., and Heederik, D. (1997). Exposure to
organic dust, endotoxins and microorganisms in the municipal waste industry.
Int. J. Occup. Environ. Health. 3, 30-36. doi: 10.1179/0eh.1997.3.1.30

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 28 December 2013; paper pending published: 12 February 2014; accepted:
19 March 2014; published online: 04 April 2014.

Citation: Wéry N (2014) Bioaerosols from composting facilities—a review. Front. Cell.
Infect. Microbiol. 4:42. doi: 10.3389/fcimb.2014.00042

This article was submitted to the journal Frontiers in Cellular and Infection
Microbiology.

Copyright © 2014 Wéry. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Cellular and Infection Microbiology

www.frontiersin.org

April 2014 | Volume 4 | Article 42 | 9


http://dx.doi.org/10.3389/fcimb.2014.00042
http://dx.doi.org/10.3389/fcimb.2014.00042
http://dx.doi.org/10.3389/fcimb.2014.00042
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Bioaerosols from composting facilities—a review
	Introduction
	Microbial Diversity
	Impact on Health of the Exposure to Aerosols Emitted from Compost
	Dispersal of Composting Aerosols in the Surroundings
	Using Modeling to Assess Emission Flux and Dispersal
	Prospects for the Future
	References


