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Protozoa are known to harbor bacterial pathogens, alter their survival in the environment
and make them hypervirulent. Rapid non-culture based detection methods are required
to determine the environmental survival and transport of enteric pathogens from point
sources such as dairies and feedlots to food crops grown in proximity. Grazing studies
were performed on a soil isolate of Tetrahymena fed green fluorescent protein (GFP)
expressing Escherichia coli O157:H7 to determine the suitability of the use of such
fluorescent prey bacteria to locate and sort bacterivorous protozoa by flow cytometry.
In order to overcome autofluorescence of the target organism and to clearly discern
Tetrahymena with ingested prey vs. those without, a ratio of prey to host of at least 100:1
was determined to be preferable. Under these conditions, we successfully sorted the two
populations using short 5–45 min exposures of the prey and verified the internalization
of E. coli O157:H7 cells in protozoa by confocal microscopy. This technique can be
easily adopted for environmental monitoring of rates of enteric pathogen destruction vs.
protection in protozoa.
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INTRODUCTION
Protozoa in the environment have been implicated as both
potential hosts harboring pathogens (Barker and Brown, 1994)
and as agents enhancing pathogen survival and pathogenicity
(Rasmussen et al., 2005; Bichai et al., 2008). Presence of the shiga
toxin-encoding prophage in Escherichia coli O157:H7 (EcO157) is
reported to enhance their survival in the food vacuoles of grazing
Tetrahymena pyriformis (Steinberg and Levin, 2007). The passage
of Salmonella enterica through and excretion from a soilborne
Tetrahymena species is reported to convey increased survival of
the organism (Brandl et al., 2005). However, protozoan predation
was linked to decreases in EcO157 populations in dairy wastewa-
ter (Ravva et al., 2010, 2013) but only three ciliate protozoa were
isolated in pure culture (Ravva et al., 2010). For these reasons and
difficulties in culturing environmental protozoa, it is important to
be able to identify protists in the environment which are actively
ingesting bacteria and providing a safe-haven for environmen-
tal persistence and transport of EcO157 and other human enteric
pathogens.

The study of bacterivory by protozoans by flow cytometry
presents several challenges, not the least of which is the dynamic
range demand on the instrument. In order to discern bacteria
from protozoa, they must bear some separately identifiable char-
acteristic. Size is an obvious choice and the different populations
can be observed according to their different locations on a side
scatter vs. forward scatter plot. Logarithmic scaling is required

to overcome the wide variation in size between the bacteria and
protozoa. Creative adjustment of signal threshold and detector
voltage levels is required when the ratio of protozoa to bacteria
is low (Rifa et al., 2002).

However, this gives us no information about protozoa that
have ingested bacteria. Generally, this means that the bacteria
are labeled with some fluorescent or otherwise identifiable com-
pound. Examples have included chemical staining of the prey
bacteria (Gonzalez, 1999; First et al., 2012), in vivo expression of
fluorescent proteins (Fu et al., 2003) and even bioluminescence
(Nelson et al., 2003).

Nonetheless, it is commonly observed that a variety of living
cells also exhibit a degree of fluorescence, i.e., auto fluorescence,
in the absence of any added fluorescent label. Protozoa typi-
cally being much larger than bacteria, they can be weakly auto
fluorescent and yet on a cellular basis produce a signal of the
same magnitude or greater than a single fluorescently labeled
bacterium (First et al., 2012).

These problems are further compounded when studying
organisms in environmental samples where the presence of other
matter, living and otherwise, makes the identification and sorting
of target populations even more difficult. In such cases, the use
of nucleic acid staining has proven useful in locating the target
organisms in the detritus (Lindström et al., 2002).

In this paper we examine some of these issues using a cil-
iate protozoan Tetrahymena species and pathogenic EcO157
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transformed to express green or red fluorescent proteins (GFP
or RFP).

MATERIALS AND METHODS
STRAINS AND CULTURE
Tetrahymena strain SSU was a soil isolate kindly provided by MT
Brandl (Brandl et al., 2005) of Produce Safety and Microbiology
Research Unit, USDA, ARS, Albany, CA. The protozoa were
enriched by the addition of E. coli strain DH5-α cells to aqueous
soil suspensions, purified and characterized by 18S rRNA gene
sequencing (Brandl et al., 2005). The stock culture was grown
and maintained in Neff ’s medium (Neff et al., 1964). Protozoa
concentrations were determined (Ravva et al., 2010) using the
most-probable number (MPN) method (Blodgett, 2010).

The prey organisms in the grazing experiments were EcO157
strains MM123 and MM127 derived from the Odwalla apple
juice outbreak strain RM1484 (Cooley et al., 2006; Ravva et al.,
2006, 2010). MM123 and MM127 are spontaneous rifampicin-
resistant (100 μg mL−1) mutants of RM2315 and RM2318
containing plasmids expressing genes for green fluorescent
protein GFP (pWM1029) and red fluorescent protein DsRed
(pWM1032, RFP), respectively. The EcO157 strains expressing
fluorescent proteins were transformed by WG Miller (Produce
Safety and Microbiology Unit) using the plasmids (pWM1029
and pWM1032) he constructed (Miller, Unpublished data). The
strains were grown at 37◦C on Luria-Bertani (LB) broth sup-
plemented with 50 μg mL−1 kanamycin. Cultures were resus-
pended in 0.01M PBS (pH 7.2) to an optical density of 0.3 at
600 nm to establish a working suspension of 108 cfu mL−1 and
diluted accordingly as needed. Actual concentrations were mon-
itored by serial dilution and plating on LB agar supplemented
with 50 μg mL−1 kanamycin. The fluorescent colonies were
counted on a UV Transilluminator (Model 3-3000, Fotodyne,
Hartland, WI).

GRAZING STUDIES
Grazing experiments were conducted using Tetrahymena SSU
at a concentration of about 104 protozoan cells mL−1 and live
prey concentrations ranging from 104 to 108 EcO157 cells mL−1

giving prey-predator ratios of 1 to 10,000:1. Tetrahymena SSU
grown in Neff ’s medium was amended with 0.01M PBS contain-
ing the appropriate concentration of EcO157 cells and incubated
at 25 ± 2◦C for various intervals during a 4-h period. One-
milliliter samples were taken at various intervals for fixation and
flow cytometry. Since working with live pathogens require addi-
tional safety measures, the uptake of live vs. heat-killed cells at
a prey concentration of 106 EcO157 cells mL−1 was compared
initially at various intervals during a 90-min period. Samples for
flow cytometry were fixed with 1% formalin for 10 min at room
temperature prior to sorting.

FLOW CYTOMETRY AND SORTING
The instrument used was a FACSVantage SE flow cytometer (BD
Biosciences, San Jose, CA) with an Enterprise II, water-cooled
Argon laser (Coherent, Santa Clara, CA). The green fluorescence
of GFP was quantified using a 530/30 nm bandpass filter and
a 630/22 nm bandpass filter was used for the red fluorescence

of RFP. Sheath fluid was either FACSFlow (BD Biosciences)
or preservative free BioSure flow cytometry sheath solution
(BioSure, Grass Valley, CA). The minimum useable nozzle diam-
eter was found to be 70 μm with these organisms. Nonetheless,
formalin fixation was required to obtain the Tetrahymena intact
after sorting. EcO157 cells were inactivated during the fixation
process.

CONFOCAL IMAGING
Internalization of GFP-EcO157 (MM123) in Tetrahymena was
monitored after sorting using a Leica TCS-NT confocal micro-
scope equipped HC PL FLUOTAR 20×/0.50 or 40×/0.70 or
63×/1.2 W PL APO objectives, with argon (488 nm), kryp-
ton (568 nm), and He/Ne (633 nm) lasers (Leica Microsystems,
Wetzlar, Germany) and using Leica TCS NT Software (v. 2.5) for
image analysis and preparation. The BP520/50 emission filter set
with 488nm laser excitation was used for visualizing the GFP flu-
orescence. The GFP fluorescence was assigned a green color in the
compiled images.

RESULTS
We compared both GFP and RFP EcO157 for the grazing studies
and found that there was no significant advantage of one over the
other. Both strains gave good signal strength but the Tetrahymena
was observed to autofluoresce with approximately equal intensity
to the average single bacterial fluorescence signal in either case
(data not shown). Because of this autofluorescence, the uptake of
bacteria is preferably several-fold in order to significantly resolve
the bacterivorous protists from the non-feeding population.

The plot in Figure 1 shows a typical time course of fluores-
cence uptake by Tetrahymena feeding on GFP-EcO157 with an
initial concentration of 106 mL−1. Neither heat nor formalin fix-
ation had an adverse effect on GFP fluorescence of the individual
E. coli bacteria. Therefore, either method could be used to inacti-
vate the pathogenic bacteria for safety concern when sorting but

FIGURE 1 | Uptake of live vs. heat killed cells of GFP-EcO157 by

Tetrahymena monitored over time as the mean and median green

fluorescence intensity. Open symbols indicate the case where the E. coli
were heat killed prior to feeding. Initial EcO157 concentration was 106 cells
mL−1. Predator-prey ratio was 1:100.
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we chose to use formalin fixation subsequent to feeding so that
the bacteria could be fed to Tetrahymena live. In any case, the plot
shows a rapid uptake of EcO157 whether live or heat killed, the
latter yielding somewhat more peak fluorescence internalization.

As Tetrahymena feeds on EcO157 cells, there is a broadening of
the green fluorescence of the population and a shift to higher aver-
age fluorescence (Figure 2). Because neither Tetrahymena nor the
GFP-EcO157 cells have a narrow fluorescence distribution (fluo-
rescence due to autofluorescence in the former case and GFP in
the latter) we do not see discrete increases in fluorescence, i.e. it is
not possible from the histograms to discern separate populations
according to the numbers of bacteria ingested per cell.

The overall fluorescence of a protozoan cell at any given time is
determined by the rate at which it is ingesting fluorescent bacteria,
the rate at which it is excreting or digesting fluorescent bacteria,
the rate at which the GFP is inactivated inside the Tetrahymena as
well as the cell’s autofluorescence. The ingestion rate is expected

to be a function of bacterial concentration and at low enough
concentration, the rates of digestion and/or excretion may pre-
dominate such that significant fluorescence accumulation is not
possible.

Indeed, we found that the initial concentration of prey is a vital
parameter in determining the maximum uptake of fluorescence.
This is clearly shown in Figures 3, 4. At the lower initial concen-
trations of 104 and 105 bacteria mL−1, the feeding Tetrahymena
did not develop enough fluorescence to be clearly discerned from
the non-feeding population. On the other hand, as Figure 4
shows, there were very few cells which had no increased fluo-
rescence when the initial bacterial concentrations were 107 and
108 bacteria mL−1. The mean fluorescence of the individual
E. coli and unfed Tetrahymena in this experiment were 18 and 16,
respectively, on the scale shown.

We sorted Tetrahymena with high and low levels of green
fluorescence. Figure 5 shows confocal images of example cells

FIGURE 2 | Time course of green fluorescence uptake of

Tetrahymena (104 cells mL−1) in the presence of an initial

concentration of 106 mL−1 live GFP-EcO157. Time and mean

fluorescence intensities are indicated in each histogram. Predator-prey
ratio was 1:100. See Figure 1 for comparative uptake of heat killed
cells.
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FIGURE 3 | Influence of prey concentration on uptake of live

GFP-EcO157 cells by Tetrahymena.

sorted from these regions verifying the presence and absence of
ingested GFP-EcO157 in the two sorted groups. In this example,
the main confounding parameters were the high concentration of
background bacteria which were 1000-fold more prevalent (107

EcO157 cells: 104 protozoa mL−1) than the Tetrahymena beside
the approximately equal fluorescence intensity of the empty
Tetrahymena and the single GFP-EcO157 cell. However, even
when we added additional debris the feeding Tetrahymena could
be identified from the background.

DISCUSSION
The feeding of fluorescent protein labeled prey bacteria is a use-
ful tool to identify and sort bacterivorous protozoa, at least in the
case of the ciliate Tetrahymena. The ultimate level of fluorescence
incorporation is determined by the rates of uptake, excretion and
loss due to digestion. It is reported that GFP is unstable and loses
fluorescence in the acidic food vacuoles of protozoa even when
the bacteria are not completely digested (Parry et al., 2001). We
found the fluorescence to be sufficiently persistent in fixed cells to
be analyzed and sorted by FACS as well as to be visualized under
confocal microscopy. On the other hand, if GFP was persistent in
undigested, intact bacteria excreted by Tetrahymena (Brandl et al.,
2005; Steinberg and Levin, 2007), we should have been able to
identify fluorescent vesicles but this was not the case during a 4 h
incubation in this study. However, we did observe vesicles filled
with GFP-EcO157 (the same strain) expelled from environmental
protozoa 2 days after ingestion (Ravva et al., 2010) and inter-
nalized GFP-EcO157 cells were detected in protozoa even after
14 days.

One of the hurdles in utilizing this technique is the incor-
poration of sufficient fluorescence in the protozoa to obtain
a separately identifiable population from within environmental
samples. This can be overcome by using a sufficient concentra-
tion of labeled prey that gives signal significantly higher than the
autofluorescence of the target protozoa and other biological and
non-biological components. In the environment, the concentra-
tion of host and prey would almost certainly be lower than the
levels used here. But there seems to be a concentration of prey

FIGURE 4 | Histograms showing increasing levels of green

fluorescence in Tetrahymena after 1 h of feeding with initial

concentrations of GFP-EcO157 from 104 cells mL−1 (top) to 108 cells

mL−1 (bottom). Each histogram represents a 10-fold increase in initial
concentration.

below which bacterivory is disfavored or at least below which
the ingestion rate is too slow relative to excretion and digestion
to allow sufficient accumulation of fluorescence to discern. This
observation is consistent with the report of Steinberg and Levin
that Tetrahymena grazing on EcO157 ceases below concentrations
of about 105 bacteria mL−1 (Steinberg and Levin, 2007) which
they attribute to minimum consumption requirement for growth
(Watson et al., 1981).

Ingestion rates have been measured by using uniformly flu-
orescent microspheres (Lavin et al., 1990). Because of the high
uniformity of such particles, populations with discrete numbers
of ingested particles can clearly be discerned on fluorescence
histograms of the protozoa. Although it is not possible with
GFP-EcO157 which are not so uniform in size and fluores-
cence, this method may be used to determine within 5–45 min if
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FIGURE 5 | Confocal images of example Tetrahymena sorted from high

(A) and low (B) green fluorescence gate regions. Initial EcO157
concentration was 107 mL−1. Cells were fixed after 30 min of grazing. Bars
in images are 40 μm in length.

environmental protozoa are responsible for significant decreases
(Ravva et al., 2010, 2013) of enteric pathogenic bacteria in agri-
cultural environments. Since, isolation and characterization of
protozoa in the environment is extremely difficult for use in
direct tests to measure the uptake of pathogenic bacteria, flow
cytometry appears to be an ideal method in sorting and culturing
protozoa based on their relative uptake of fluorescence-labeled
organisms. We used flow cytometry earlier to characterize bac-
teria from urban aerosols (Hernlem and Ravva, 2007). Feasibility
studies with environmental samples are needed to determine if
protozoa preferentially harbor and transport enteric pathogens
from point sources (dairies and feed lots) to fruit and vegetable
crops grown in proximity.
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