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Functional expression of dental plaque microbiota
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Dental caries remains a significant public health problem and is considered pandemic

worldwide. The prediction of dental caries based on profiling of microbial species involved

in disease and equally important, the identification of species conferring dental health

has proven more difficult than anticipated due to high interpersonal and geographical

variability of dental plaque microbiota. We have used RNA-Seq to perform global gene

expression analysis of dental plaque microbiota derived from 19 twin pairs that were either

concordant (caries-active or caries-free) or discordant for dental caries. The transcription

profiling allowed us to define a functional core microbiota consisting of nearly 60 species.

Similarities in gene expression patterns allowed a preliminary assessment of the relative

contribution of human genetics, environmental factors and caries phenotype on the

microbiota’s transcriptome. Correlation analysis of transcription allowed the identification

of numerous functional networks, suggesting that inter-personal environmental variables

may co-select for groups of genera and species. Analysis of functional role categories

allowed the identification of dominant functions expressed by dental plaque biofilm

communities, that highlight the biochemical priorities of dental plaque microbes to

metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar

fermentation. The wealth of data generated by deep sequencing of expressed transcripts

enables a greatly expanded perspective concerning the functional expression of dental

plaque microbiota.
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INTRODUCTION
Members of the oral microbial community play key roles in main-

taining oral health and as putative agents responsible for the

onset and progression of oral diseases. Previous studies have esti-

mated that greater than 700 species of microorganisms inhabit

the oral cavity (Moore and Moore, 1994; Darveau et al., 1997;

Kolenbrander, 2000; Hutter et al., 2003). The application of

high throughput, culture-independent metagenomics method-

ologies represents an approach that is well aligned with the

high species diversity of oral microbiota. Our previous efforts

to define the population structure of dental plaque microbiota

revealed an impressive radiation of species derived from a sub-

stantially smaller set of genera (Peterson et al., 2011; Walter

and Ley, 2011). The Streptococcus are dominant in dental plaque

microbiota but include a variety of additional genera such

as: Veillonella, Campylobacter, Neisseria, Gemella, Granulicatella

Capnocytophaga, and Fusobacterium. A comparison of the saliva

community composition of human subjects from China (Luo

et al., 2012; Ling et al., 2013), the USA (Cephas et al., 2011)

and the African continent (Nasidze et al., 2011) display a high

level of variability. In each case the dominant genera identified

are unique. The saliva microbiota of Chinese children featured a

high proportion of Streptococcus (∼40%) and Prevotella (∼25%)

and was complemented by 17 lower abundance genera (Ling

et al., 2013). Despite the commonality of a plant-based diet, the

saliva microbiota of human subjects from Sierra Leone (SL), the

Democratic Republic of Congo (DRC), and the Batwa pygmies

(BP) of Uganda display clear distinctions in community structure.

Streptococcus spp. represented ∼20% of the total in all groups. The

SL saliva microbiota is dominated by Enterobacter spp. (∼60%),

whereas the subjects from the DRC displayed a high proportion

of Serratia spp (∼25%) and a relatively high abundance of Rothia

spp. The other observed genera include taxa that are not sig-

nificantly represented in saliva microbiota previously reported.

These studies and others indicate that the microbiota may adopt a

relatively large number of configurations in both health and dis-

ease (Cephas et al., 2011; Nasidze et al., 2011; Luo et al., 2012;

Ling et al., 2013). The phylogenetic representation of related

species in bacterial communities confer functional redundancy

since their genomes encode a relatively high frequency of homol-

ogous protein functions. Such redundancy ensures that the loss

of individual species within the community is functionally well

tolerated and represents a likely basis of the high interpersonal

variation observed in oral microbiota.

A variety of factors such as: genetic, immunological, behav-

ioral, environmental, and mechanisms of vertical inheritance all

play a role in defining the oral microbial community composi-

tion. Among these factors those pertaining to environment and
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particularly diet may be the most influential. In this manner,

any case-control study attempting to relate microbial composi-

tion to features of the oral cavity in a state of health or disease is

severely hampered by the fact that unrelated individuals partici-

pating in these studies do not share the same environment. The

advantages of utilizing a twin study model, are numerous and

importantly allow control over host genetics and relevant envi-

ronmental factors, e.g., diet, vertical inheritance and lifestyle that

serve to increase study power.

The healthy adult oral microbiota represents a highly tuned

ensemble of species, selected for survival in a highly competi-

tive and challenging environment that features frequent flux in

dietary nutrients (Van der Hoeven and Camp, 1991), O2 concen-

tration (Diaz et al., 2002), temperature (Fedi and Killoy, 1992),

pH (Svensater et al., 1997), and energy metabolism (Palmer

et al., 2006; Jakubovics et al., 2008). The dental plaque biofilm

contains phylogenetically diverse acidogenic (acid-producers)

species many that are also aciduric (acid-tolerant). Dental plaque

biofilm-mediated sugar metabolism leads to the production of

organic acids that reduce the pH of the biofilm microenviron-

ment and represent key factor in the demineralization of the

tooth surface (van Houte, 1994). The availability of dietary car-

bohydrates is key to biofilm initiation and development (Paes

Leme et al., 2006). The production of acid may differentially

inhibit resident microbial populations. Microbial metabolism of

nitrogenous substrates has been attributed to the production of

small arginine peptides that may elevate pH (Burne and Marquis,

2000). Likewise urease activity may also serve to elevate pH

of the dental biofilm (Kleinberg, 2002). The dominance of the

Streptococci and other members of the Firmicutes, dictate the

overall fermentative activities in dental plaque.

The individual members of the dental plaque community

are likely to belong to numerous and diverse functional net-

works. These networks may largely reflect cooperative activities

of species to maintain environmental homeostasis. For example,

the Veillonella exploit the metabolic activities of the dominant fer-

mentative microbes. The Veillonella are asaccharolytic and derive

energy from the metabolism of SCFAs (van der Hoeven et al.,

1975; Noorda et al., 1988) producing shorter chain length acids

with higher dissociation constants, thereby increasing the pH of

the biofilm microenvironment. These acid sinks are critical to

the growth and activity of the fermentative species. Interestingly,

some acidogenic Streptococcus and Granulicatella encode the L-

lactate dehydrogenase gene suggesting that they too may con-

tribute to acid remediation of dental biofilms (McLean et al.,

2012; Edlund et al., 2013).

In order to overcome the challenges associated with deter-

mining the species and functional activities of oral microbiota

that maintain oral health or drive disease we must improve our

understanding of how complex communities function and inter-

act with one another. We have sampled the dental plaque of a

large cohort of twin pairs in a longitudinal analysis spanning 3

years. Here we report on the transcriptional activity of the dental

plaque microbiota of a twin cohort to improve our understand-

ing of fundamental biochemical features of biofilm communities

and the inter-relationships that exist between species in a feast or

famine microenvironment.

MATERIALS AND METHODS

DENTAL CARIES PHENOTYPE DETERMINATION

Dental caries examinations were performed on 38 subjects [19

twin pairs, 6 monozygotic (mz), 13 dizygotic (dz)]. The twin pairs

were either concordant for dental health, C-F (n = 4 pairs), con-

cordant for dental caries C-A (n = 6 pairs), or discordant for

dental caries (n = 9 pairs). These subjects (5–7 years old) were

medically healthy and presented with only primary dentition.

This group of children resides in the suburbs of the city of Montes

Claros, State of Minas Gerais, Brazil. Water fluoride levels in this

city are less than optimal (<0.7 ppm) and dental check-ups for

this group were negligible.

ETHICS STATEMENT

Parents signed informed consent approved by New York

University and UNIMONTES (State University of Montes Claros)

institutional review boards after the children assented.

DENTAL CARIES EXAMINATIONS

We used a combination of three dental caries exams for accurate

characterization of dental caries phenotypes in C-F and C-A sub-

jects. These included: (1) Clinical examination of dental caries in

all teeth, assessed with the aid of artificial light and a dental mirror

according to NIDCR criteria (Kaste et al., 1996) to include white

spot lesions and cavitated lesions; (2) Digital imaging fiber-optic

trans-illumination (DIFOTI) recorded images of dental lesions

(incipient and frank lesions) to complement the caries clini-

cal examination (Schneiderman et al., 1997); (3) Quantitative

light fluorescence (QLF) profiled images of dental lesions simi-

lar to the DIFOTI procedure that are not readily captured by

visual examinations and complemented the caries clinical exam-

ination. C-A subjects had a range of 1–17 decayed tooth surfaces

whereas C-F subjects presented with a decay component = 0.

Caries-inactive (C-I) subjects presented with surfaces that had

restorations provided in previous visits.

DENTAL PLAQUE BIOFILM SAMPLING

Subjects were instructed to refrain from brushing or eating prior

to sampling. Therefore, the subjects had not consumed a meal

in at least 12 h prior to sample collection. Dental plaque sam-

ples were obtained using a sterile toothbrush passed slowly across

all tooth surfaces. We elected to collect an overall plaque sample

of the entire dentition rather than sampling site-specific surfaces

that are associated with health or disease to enable characteri-

zations that would otherwise be biomass limited. Moreover, our

previous studies demonstrate that the dental microbiota associ-

ated with localized healthy tooth surfaces and caries lesions are

similar within the same oral cavity (Corby et al., 2005). Dental

plaque was dislodged from the toothbrush by agitation for 1 min

into tubes containing 8 mL of sterile reduced transport fluid

(RTF) (Syed and Loesche, 1972) held at 4◦C prior to storage

at −80◦C.

BACTERIAL mRNA ISOLATION FROM DENTAL PLAQUE

Dental plaque samples were thawed and resuspended in

RNAprotect reagent (Qiagen Inc) and stored at −80◦C. RNA iso-

lation was performed following the procedure recommended by
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the manufacturer for the mirVana RNA isolation kit (Ambion).

The purified RNA was evaluated subjectively using the Agilent

Bioanalyzer and quantitated using a UV spectrophotometer. We

used hybridization-based subtraction methods to remove human

and bacterial rRNA sequences from samples as described in detail

http://www.hmpdacc.org/RSEQ/.

RNA-Seq DATA ANALYSIS

We assembled a reference genome database comprised of 206

oral species (134 unique species groups) for read mapping. The

RNA-Seq data was processed through a pipeline that performs

a series of quality control steps. First, raw reads were examined

using the FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) tool. Quality scores were calculated based on

Illumina 1.5 encoding. Trimming of low quality base calls were

conducted using Trimmomatic (http://www.usadellab.org/cms/?

page=trimmomatic) by removing terminally located low quality

bases (Phred scores <30) and cutting of reads when average

quality dropped below 30. Finally, reads of 60 bases or less were

removed from further analysis. The remaining reads were then

evaluated for the presence of bacterial or human rDNA sequences

using SortMeRNA (http://bioinfo.lifl.fr/RNA/sortmerna/) by

filtering based on the default databases that include 16S, 23S,

18S, 5.8S, 5S, and 28S rRNAs. Sequences with similarity to these

sequences are removed from further analysis. The remaining

reads were then aligned to reference genomes using STAR aligner

(https://code.google.com/p/rna-star/). In cases where sequence

reads map to more than one location in a reference genome,

or to more than one reference genome, the best alignment was

selected. Sequence reads mapping sporadically and at a very low

frequency to reference genomes (104 genomes) were dropped

from further analysis.

GENE EXPRESSION ANALYSIS

Raw read counts from sequence alignment were assessed

using htseq-count tool within the HTSeq python suite (http://

www-huber.embl.de/users/anders/HTSeq/). For further analysis,

the raw read counts were read into R/Bioconductor version 3/2.13

and were scaled using DESeq scaling factors (Anders and Huber,

2010) following log2 transformation (a constant +1 was added

prior log2 transformation). Reads greater than 40 bases were used

for mapping and 2 mismatches were allowed for mapping reads

to reference genomes.

FUNCTIONAL ANALYSIS

rRNA filtered reads were uploaded to the MG-RAST analysis

platform for functional analysis (Meyer et al., 2008). Functional

data from MG-RAST analysis was retrieved using matR pack-

age (https://github.com/MG-RAST/matR) and further analyzed

using R/Bioconductor.

RESULTS AND DISCUSSION

The majority of metagenomic analyses conducted thus far on

the dental plaque microbiota have surveyed and compared the

phylogenetic composition of communities associated with den-

tal health and disease in the supra- and sub-gingival domains of

the oral cavity. While informative, these studies do not provide

insights into the functional features of these communities. Dental

biofilms are comprised of metabolically active, metabolically

inactive and dead cells. In order to evaluate the metabolically

active cells of supragingival dental plaque biofilms we have con-

ducted a survey of the RNA expression to gain insights of those

functions that are important for survival and fitness in the highly

competitive dental plaque biofilm. The species and relative con-

tribution of transcripts to the transcriptome is largely consistent

with our previous phylogenetic profiling results (Peterson et al.,

2013) with respect to the genera and species present and their

overall proportions within the community.

HUMAN COHORT AND RNA-Seq ANALYSIS

We performed RNA-Seq analysis of RNA isolated from dental

plaque biofilms derived from 19 twin pairs. These subjects were

given dental examinations that allowed each twin pair to be clas-

sified as belonging to one of three phenotypic classes (C-F, C-A,

or C-I). RNA from each sample was subjected to RNA-Seq using

the Illumina GSA platform to generate 100 base reads. An aver-

age of ∼32.4 million reads/sample (range = 23–40 million) were

generated. We created an oral cavity reference genome database

consisting of a total of 206 reference genome sequences, repre-

senting 134 unique oral species. These sequences and the associ-

ated SOPs developed for microbial mRNA enrichment is available

through http://www.hmpdacc.org/RSEQ/. Despite attempts to

remove human and bacterial rDNA sequences, high levels of these

sequences remained and were removed in silico. Table 1 summa-

rizes the human cohort and bacterial sequences used for mapping.

An average of ∼55% of reads generated were readily mapped

to HMP reference genomes emphasizing the overall relevance of

selected genomes and utility of this community resource.

GENETICS, ENVIRONMENT, AND CARIES PHENOTYPE AS

DETERMINANTS OF TRANSCRIPTIONAL RELATEDNESS

Based on the relative abundance and origin of the profiled tran-

scripts, we generated a dendrogram of the samples to assess

whether twin pairs clustered more tightly than unrelated indi-

viduals and whether caries phenotype altered those relationships

(Figure 1). Fourteen of the 19 twin pairs were most similar to each

other with respect to their gene expression patterns, suggesting

that either genetic and/or environmental factors are significant

determinants of dental plaque microbiota gene expression pat-

terns. To evaluate the influence of host genetics on transcriptional

profiles, we compared the linkage of MZ and DZ twin pairs.

Among the six MZ twin pairs, four (66%), displayed linkage,

compared to 10 of the 13 DZ twin pairs (76%). A comparison

of the linkage relationships among discordant MZ and DZ twin

pairs revealed that 100% of all discordant MZ (n = 3) and DZ

(n = 6) twin pairs displayed linkage. These results suggest that

genetic and/or environmental factors are dominant to caries sta-

tus as determinants of gene expression patterns. This conclusion

is supported by the finding that only 50% of the concordant

twin pairs displayed linkage. The sample size evaluated here does

not allow definitive conclusions with respect to the relative influ-

ence of genetic determinants compared to environmental factors.

To achieve statistical support for these conclusions will require

analysis of a larger number of twin pairs in longitudinal studies.
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Table 1 | Human subjects and RNA-Seq statistics.

Subject Caries status Twin Filtered Reads %

type reads mapped

2011 CA (1DS) DZ 10404431 4690029 45.00

2012 CA (1DS) DZ 5048821 2354837 46.64

2051 CF MZ 15163860 6133805 40.45

2052 CF MZ 8491819 3268038 38.49

2061 CA (2 DS) DZ 5800355 2923616 50.41

2062 CF DZ 4998861 2226509 44.54

2125 CA (17 DS) MZ 5073718 2840183 55.98

2126 CA (6 DS, 3 FS) MZ 10255337 5437838 53.03

2169 CF MZ 5972974 3424681 57.34

2170 CA (1 DS) MZ 7949869 4376808 55.05

2191 CF MZ 6787165 3702907 54.56

2192 CF MZ 5722083 2966892 51.85

2225 CF MZ 7297864 3168223 43.42

2226 CI (1 FS) MZ 9301393 2330247 25.06

2233 CF DZ 4126376 1797372 43.56

2234 CF DZ 5318936 2206502 41.48

2241 CA (1 DS) DZ 3397928 1915754 56.38

2242 CA (1 DS) DZ 4145884 2601872 62.76

2269 CA (2 DS) DZ 3734615 2510588 67.23

2270 CF DZ 3417500 2042613 59.77

2283 CI (2 FS) DZ 5031738 3139713 62.40

2284 CA (1 DS) DZ 4358907 2199217 50.45

2309 CF DZ 9571270 3922570 40.98

2310 CF DZ 7731245 2351980 30.42

2354 CA (1 DS) DZ 4077295 2275040 55.80

2355 CA (1 DS) DZ 1073838 464318 43.24

2930 CF DZ 3873870 2279747 58.85

2931 CA (3 DS) DZ 4071273 2225255 54.65

2954 CA (15 DS, 2 FS) DZ 7338017 3247379 44.26

2955 CA (9 DS, 2 FS) DZ 10133068 4293062 42.37

2991 CA (1 DS) DZ 5331302 3270152 61.34

2992 CF DZ 3267126 1265071 38.72

3214 CF MZ 4008044 1758551 43.87

3215 CA (1 DS) MZ 6357380 3360013 52.85

3306 CA (1 DS) DZ 3773687 2163623 57.34

3307 CF DZ 3748232 2198571 58.65

4131 CA (1 DS) DZ 3656778 2075715 56.77

4132 CF DZ 6734529 4223948 62.73

DS, decayed surface; FS, filled surface.

The apparent lack of association between caries status and gene

expression linkage in twin pairs must be interpreted with caution

since linkage is dictated by global features of the transcriptome. It

is expected that gene expression patterns that distinguish C-F and

C-A subjects may involve the altered expression of a small fraction

of the transcriptome and therefore would not be revealed by this

analysis. In addition, some subjects went from a state of health

to disease within a follow-up visit. It is possible therefore, that

these subjects possessed a C-A signature at baseline, despite being

clinically C-F. Detailed analysis of expression patterns to identify

those genes that may clearly distinguish C-F and C-A subjects are

ongoing and not reported here.

GENE EXPRESSION OF GENERA PRESENT IN DENTAL PLAQUE

MICROBIOTA

In contrast to phylogenetic profiling of microbiota, RNA-Seq

data permits the analysis of metabolically active members of

the supragingival dental plaque biofilm. We detected transcripts

mapping to 27 genera that spanned six orders of magnitude in

abundance (Figure 2). Consistent with their numerical domi-

nance in dental plaque, transcripts expressed by Streptococcus spp.

were the most abundant (53% of total), nearly five times more

than those expressed by the next most prevalent genera Veillonella

spp. (11%) and Capnocytophaga spp. (11%). Transcripts from

these genera together with Gemella spp. (5%) and Neisseria spp.

(3%) comprised 83% of all mapped transcripts. Within indi-

viduals, additional genera contributed significantly to the dental

plaque transcriptome (>1%) including: Aggregatibacter spp. (6

subjects), Fusobacterium (3 subjects), Haemophilus spp. (8 sub-

jects), Lachnoanaerobaculum spp. (8 subjects), Lachnospiraceae

spp (4 subjects), Leptotrichia (6 subjects), and Parvimonas spp.

(1 subject). These findings underscore the interpersonal variation

in the genera contributing to the dental plaque biofilm transcrip-

tome. It will be of interest to correlate the 16S rDNA profiles of

these subjects to determine the extent that transcript abundance

is related to relative species abundance.

GENE EXPRESSION OF SPECIES PRESENT IN DENTAL PLAQUE

MICROBIOTA

Several studies to date have surveyed the dental plaque biofilm

and saliva microbiota using culture independent 16S rDNA

sequencing (Lazarevic et al., 2010; Jiang et al., 2013; Yang et al.,

2014). Attempts to define a core microbiome are challenging

due to high interpersonal and geographic variability in micro-

biota composition and a strong shift toward the use of short read

sequencing technologies that generally allow only genus level enu-

meration (Griffen et al., 2011; Li et al., 2013). The RNA-Seq data

mapped to the reference genomes of 79 unique species. A signifi-

cant number of reads mapped to 58 unique species in all subjects

suggesting that they may represent a substantial fraction of a core

dental plaque biofilm microbiota. It will be of interest to deter-

mine whether this core microbiome definition extends to addi-

tional geographies beyond the cohort examined here. Displayed

as an aggregate, the transcripts expressed by individual species

are relatively continuous over a broad abundance range (Figure

S1). Transcripts derived from just 9 species including: S. sanguinis

(16%), S. mitis (10%), V. parvula (9%), Capnocytaphaga sp. (9%),

S. oralis (8%), Streptococcus sp. (7%), G. haemolysans (5%), S. gor-

donii (4%), and Neisseria sp. (3%) represented 71% of the dental

plaque microbiota’s transcriptome. An additional six species pro-

duced transcripts at 2% abundance. S. mutans was among these

moderate abundance species. An additional 16 species produced

transcripts at 1% of the total transcriptome. Together these 31

species account for 99% of the mapped transcripts observed in

this cohort.

The frequency of observed transcripts expressed by individ-

ual species also spanned six logs in magnitude (Figure 3). The

abundance of transcripts generated by individual species is vari-

able across subjects, varying by approximately two logs or less.

The variation in transcript abundance across human subjects is
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FIGURE 1 | Dendrogram of twin pairs based on RNA expression patterns.

FIGURE 2 | Transcript abundance of representative genera in dental plaque biofilms. Pie chart representing the proportions of transcripts mapping to 27

genera observed in 19 twin pairs.
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FIGURE 3 | Abundance of the dental plaque core microbiota. Box and whisker plot. Outliers shown as dots represent values 1.5 times great or less than the

upper and lower quartile, respectively.

consistent with numerous reports describing the high interper-

sonal variation in phylogenetic representation of supragingival

dental plaque (Bik et al., 2010; Gross et al., 2010). Streptococcus

spp., with the exception of S. mutans displayed rather limited

variation in transcript abundance across subjects, whereas other

species display markedly increased variability. The transcripts

expressed by Fusobacterium nucleatum were detected over a range

of 4 logs. Approximately 40% of the species displayed extreme
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transcript abundance variation (>2 SD from the mean). It is

notable that many of the outliers tend to be over-represented

with respect to the mean as illustrated by those expressed by

Leptotrichia hofstadii, suggesting that in some instances the abun-

dance of these species may be highly over-represented in subjects.

The transcript abundance generated by species, of moderate and

low abundance display the largest variation. These results pro-

vide a set of parameters that define fluctuations in phyla as it

relates to health and disease states. It is evident from these results

that species-specific transcriptional variability may range from

biologically significant to inconsequential.

FUNCTIONAL NETWORKS BASED ON GENE EXPRESSION

CORRELATIONS

The relative abundance of species within the dental plaque biofilm

community is dictated by numerous and mostly undefined signals

present in the microenvironment. These signals are both host and

microbe-generated. The cooperative and antagonistic relation-

ships amongst resident species in dental plaque biofilms suggest

that the abundance of individual species and their transcripts is

not independent of the activities of other species (Tong et al.,

2008; Tamura et al., 2009). This speculation is strongly supported

by the data. We used Spearman correlation to address whether the

transcriptional activities of individual taxa display relationships

(Figure 4). Correlations based on transcript abundance across

subjects indicate that the majority of correlations amongst genera

are positive. Multiple Streptococcus spp. display weak positive cor-

relations with one another. This relationship may reflect the large

overlap in sugar utilization potential encoded by these genomes

that provide broad similarities in environmental conditions that

co-select for increased growth and/or metabolic activity. This

trend is evident for a number of other genera wherein mem-

ber species display correlated transcriptional activity. Exceptions

included: Gemella spp. (G. elegans and G. adjacens) and Rothia

spp. (R. aeria and R. dentocariosa) that do not appear significantly

correlated. Actinomyces spp. and Lautropia mirabilis display tran-

scriptional activity that is largely anti-correlated with the majority

of the dental plaque community, suggesting that the signals favor-

ing their metabolic activity may be distinct compared to the

majority of the dental plaque microbiota.

FIGURE 4 | Spearman Correlation matrix of the dental plaque core microbiota. Blue indicates positive correlation and yellow indicates negative correlation.
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FIGURE 5 | Functional Networks. Positively correlated (green) and anti-correlated (red) transcripts define networks. The thickness of lines indicates the

strength of the correlation.

We identified several genera/species displaying both correlated

and anti-correlated transcriptional activity. These relationships

define functional networks representing a spectrum of simple

and complex community relationships (Figure 5). A deeply inte-

grated network involving, predominantly positive interactions

are evident. It is interesting that this high-density network is

highly diverse in its membership and includes more than half

of the observed genera. The high-density cluster of interactions

is relatively devoid of Streptococcus spp. Somewhat surprising,

the Streptococcus display a range of mostly weak positively cor-

related networks that are relatively independent of the expression

patterns of the majority of the microbial community. High inter-

personal and geographic variation of dental plaque microbiota

has hampered our ability to identify the microbial signatures asso-

ciated with dental health and disease. The network relationships

observed suggest that the fluctuations of single species are in

many instances likely to be accompanied by shifts in other species

in the network. These functional networks represent a potentially

simplifying framework and may represent a more effective way

to compare features of microbiota associated with health and dis-

ease. It is possible that genera unique to particular geographies

may belong to the functional networks observed and described

below.

One positively correlated network includes the genera

Bacteroides, Eubacterium, Filifactor, and Fusobacterium (complex

I). The abundance of transcripts generated by these genera span

approximately two logs and vary across subjects in a coordinated

manner (Figure 6). With some exceptions, the Fusobacterium

are the most abundant genera within this network, whereas

the remaining genera are more variable in relative abundance.

The species membership of this network includes: F. nuclea-

tum, Fusobacterium periodonticum, B. oral an uncharacterized

Eubacterium spp., and Filifactor alocis. The mixed dominance

relationships of this network across subjects may suggest that the

signals that regulate the growth behavior are complex.

Another positively associated network includes the genera

Peptostreptococcus spp., Bacteroides spp., Campylobacter spp.,

Johnsonella spp., and Parvimonas spp. (complex II) The rela-

tive abundance of this network is more tightly linked, compared

to complex I. The variation in abundance across subjects is

slightly more than 1 log (Figure S2). However, the dom-

inance relationships of complex II are more variable. The

species comprising this network are Peptostreptococcus stoma-

tis, Bacteroidetes oral, Campylobacter concisus, an uncharacter-

ized Campylobacter spp., Johnsonella ignava, an uncharacterized

Parvimonas spp., Lachnospiraceae bacterium, and Lachnospiraceae
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oral. The observed fluctuations are relevant in that certain con-

figurations drive the abundance of Parvimonas and other genera

into an abundance range that may be of biochemical consequence

to the microenvironment.

A third network including: Haemophilus spp.,

Lachnoanaerobaculum spp., and Aggregatibacteria spp. (complex

III) display both positive and negative correlations (Figure 7).

The abundance of transcripts expressed by Haemophilus spp. and

FIGURE 6 | Functional Network in dental plaque microbiota, complex I. The y-axis displays read counts on a log scale. The x-axis displays subjects in the

order shown in Table 1.

FIGURE 7 | Functional Network in dental plaque microbiota, complex III. The y-axis displays read counts on a log scale. The x-axis displays subjects in the

order shown in Table 1.
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Aggregatibacteria spp. are tightly linked, generally differing by less

than 5-fold. By contrast, the abundance of Lachnoanaerobaculum

spp. is anti-correlated with respect to these genera. When

Haemophilus spp. and Aggregatibacteria spp. transcript levels are

high, Lachnoanaerobaculum spp. transcript levels are low and

vice-versa. Inspection of Figure 5 shows that Aggregatibacteria

spp. are positively correlated with the high density functional

network, whereas the Haemophilus spp. is only indirectly linked

to the large network, based on its strong positive interactions

with Aggregatibacteria spp. The behavior of this complex may

be the result of specific niche associated signals that favor the

outgrowth of one group and reciprocally inhibit the other. It is

of potential interest that members of this complex “aggregate”

at a point where transcripts generated by each member genera

are in the range of 0.5% of the total. It is unclear whether this

aggregation point has biological significance or represents a point

of complex equilibrium, the balance of which can be disturbed

in predictable ways. The species involved in this network are

H. aegyptus and an uncharacterized Haemophilus spp. and two

Aggregatibacter spp., A. segnis and A. aphrophilus.

The genera: Leptotrichia spp., Lautropia spp., and

Lachnospiraceae spp. define another network involving pos-

itive and negative correlations (Figure S3). The transcript

abundance generated by Leptotrichia spp. and Lachnospiraceae

spp. is positively correlated and anti-correlated with respect to

Lautropia spp. (complex IV). An analysis of these correlations

at the species level revealed the network members to include:

L. hofstadii, L. bacterium, L. oral, Leptotrichia goodfellowii, and

L. mirabilis. Referring to Figure 5, we see that L. mirabilis is

conspicuous in its nearly exclusively anti-correlated relation-

ships. The majority of the anti-correlated relationships involve

many of the genera making up the high-density network. The

Lachnospiraceae are generally dominant in this network, although

relatively frequent co-dominance with Leptotrichia are observed.

One subject, showed Lautropia dominance and was associated

with uncharacteristically low abundance of transcripts expressed

by Lachnospiraceae and Leptotrichia.

A fifth functional network consisting of the genera

Streptococcus spp., Parvimonas spp., Eubacterium spp. and

Campylobacter spp. (complex V) was noted (Figure S4). The

transcripts produced by these genera are positively correlated but

anti-correlated with Streptococcus spp. The species involved in

this network include: Campylobacter concisus, and an uncharac-

terized Campylobacter spp., Parvimonas spp. Eubacterium spp. It

was difficult to identify any species within the Streptococcus that

exhibited uniform anti-correlated transcription suggesting that

the growth inhibiting influence of the Streptococcus within this

network likely involves the combined activities of two or more

species. It may be speculated that the overall balance between the

Streptococcus and the remainder of the complex is based on sugar

availability, since the fermentative Streptococcus may thrive under

conditions that differ from the remainder of the complex that

are primarily asaccharolytlic (Campylobacter spp., Parvimonas

spp. Eubacterium spp.). Despite various reports of antagonistic

relationships among Streptococcus spp., we do not observe

such anti-correlated relationships at the level of transcription.

The transcripts produced by the two most abundant species,

S. sanguinis and S. mitis are positively correlated, however it is of

potential interest that in instances where S. mitis is numerically

dominant to S. sanguinis, the level of the S. sanguinis tran-

scripts are reduced, suggesting that S. mitis may directly inhibit

S. sanguinis when it is the most abundant species present.

An additional anti-correlated network (complex VI) includ-

ing the numerically dominant genera Gemella spp. are strongly

anti-correlated with those produced by Actinomyces spp. (Figure

S5). From this data it is not clear, whether the conditions promot-

ing high transcriptional activity of the Gemella spp. is inhibitory

to Actinomyces spp., or if conversely the conditions selecting

for elevated transcriptional activity of Actinomyces is inhibitory

to Gemella spp. When analyzed at the species level, we identi-

fied A. massiliensis and G. haemolysans as the members of this

network.

FUNCTIONAL ANALYSIS OF DENTAL PLAQUE BIOFILM GENE

EXPRESSION

Using the SEED subsystems role categories within the MG-RAST

metagenomic analysis tool we see that despite the relatively large

interpersonal variation in species-specific transcription, the rep-

resentation of functional role categories is more homogeneous

across subjects (Figure 8). This result is consistent with previous

reports based on the analysis of functional annotation of metage-

nomic DNA sequences (Human Microbiome Project, 2012). The

breadth of functions expressed at >1% of the total is substantial

and descriptions of each are beyond the scope of this manuscript.

A detailed analysis of these functions is ongoing. The most abun-

dant and variable functional role category involves transcripts

encoding functions pertaining to protein translation (range =

13–28%). The most abundant transcripts expressed by the den-

tal plaque microbiota encode ribosomal subunit biogenesis (8.9%

of total), and transcripts derived from the translation elongation

factors, EF-Tu and EF-G (4% of total). The next most transcrip-

tionally abundant functional category relates to carbohydrate

utilization (∼10% of total). The functions contributing to this

role category include those involved in glycolysis/gluconeogenesis

and the Entner-Doudoroff pathway that convert glucose to pyru-

vate. Transcripts encoding RNA polymerase subunits were also

prevalent.

Transcripts encoding functions related to monosaccha-

ride and disaccharide metabolism represent a significant por-

tion of the dental biofilm transcriptome (∼15% of total).

Transcripts encoding enzymes for the metabolism of allose,

galacuronate/glucuronate, gluconate, ribose, sorbitol/sorbose,

tagatose/galctitol, fucose, rhamnose, and xylose were observed.

In most subjects the transcripts encoding enzymes for the

metabolism of tagatose (a stereoisomer of fructose) and galactitol

(generated by the metabolism of lactose and subsequent conver-

sion to galactose) were the most highly represented, although in

three subjects the dominant transcripts in this category encoded

enzymes involved in sorbitol (the sugar alcohol form of glucose)

and sorbose metabolism. In general, transcripts encoding di-

saccharide metabolism were more prevalent than those encoding

monosaccharides by a factor of ∼2. The most abundant tran-

scripts associated with di-saccharide metabolism, encoded func-

tions involved in lactose and galactose metabolism, although in a
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FIGURE 8 | Functional role categories expressed in dental plaque biofilm.

few subjects, transcripts encoding trehalose metabolism functions

were the most abundant in this category.

We observed a relatively large number of transcripts encod-

ing functions related to the Calvin Benson cycle, a CO2 fixa-

tion pathway used in plants. The vast majority of reads (74%)

related to this pathway corresponded to GAPDH, fructose-

bisphosphate aldolase (9%), phosphoglycerate kinase (5%), triose

phosphate isomerase (2%) likely reflecting the glycolytic pathway.

Other transcripts encoding transketolase, ribose-5-phosphate

isomerase, ribulose phosphate 3-epimerase, participate in the

pentose phosphate pathway. Therefore, the reads assigned to

the Calvin Benson cycle in dental plaque microbiota samples

represent enzymes with overlapping functions in glycolysis

and the pentose phosphate pathway. The transcripts encod-

ing for sugar alcohol utilization were predominantly associated

with ethanolamine utilization (∼50% of total) and mannitol

utilization (∼25% of total).

OXIDATIVE STRESS

The dental plaque microbiota produces a substantial number of

transcripts encoding stress response adaptations including detox-

ification, heat shock, osmotic and oxidative stress. The majority

of stress response transcripts (50–75% of total) were associ-

ated with oxidative stress suggesting that oxidative stress may
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be the dominant stressor of dental biofilm microbial commu-

nities (∼2% of all transcripts). Two inter-related systems are

dominant within this group, transcripts encoding superoxide

dismutase, that mediate the conversion of superoxide to molec-

ular O2 and H2O2. These transcripts represented 22% of those

related to oxidative stress and 0.4% of the total transcriptome.

It is interesting to note that this reaction is H+ consuming and

given its relative abundance may play a role in acid remediation

in dental plaque. An impressive number of transcripts are pro-

duced by dental plaque biofilm encoding functions that serve to

metabolize (detoxify) superoxides and peroxides. Peroxiredoxins

(9% of oxidative stress transcripts, 0.2% of total transcrip-

tome) alter their redox state in order to convert H2O2 to H2O.

This enzyme activity represents a potential biomarker of squa-

mous cell carcinomas (Huang et al., 2011; Jancsik et al., 2013).

Transcripts encoding catalase (1% of oxidative stress genes) per-

forms the same conversions in the biofilm community using an Fe

redox process. Interestingly, another prominent set of transcripts

encoding ferroxidase (4% of oxidative stress genes), an enzyme

that reduces Fe2+ to Fe3+ while consuming H+. Ferritin-like pro-

teins also have ferroxidase activity and were expressed at similar

levels as ferroxidase. The relevance of this pathway is based on the

damaging effects of ferrous Fe2+ in the presence of H2O2 on Fe-S

cluster containing proteins.

RESISTANCE TO ANTIBIOTICS AND TOXIC COMPOUNDS

The transcripts encoding resistance to antibiotics and toxic com-

pounds was of interest. The majority of transcripts encode func-

tions pertaining to metal tolerance and regulation. Large and

diverse systems devoted to the maintenance of metal homeosta-

sis underscores the relative importance of these systems. More

than 16% of transcripts within this group encode mercury (II)

reductase (EC 1.16.1.1). This enzyme mediates the generation of

NADPH accompanied by the reduction of Hg to Hg2+. Copper

homeostasis is maintained by P-type ATPases that use cellular

energy (ATP) to pump Cu2+ ions out of the cell. These sys-

tems are greatly expanded compared to those functions related to

other metals and toxins including cadmium, cobalt and arsenic.

Transcripts involved in antibiotic resistance were difficult to

interpret since many transcripts assigned to this group pertain

to proteins that when mutated confer resistance to antimicro-

bial drugs. However, transcripts encoding the acriflavin resis-

tance complex (AcrA and AcrB), that confers protection to cells

from hydrophobic inhibitors including many common antibi-

otics in use today were prevalent. Transcripts corresponding to

this multi-drug efflux system were 4% of the total in this group.

Additionally, 1.6% of transcripts within this group encode a puta-

tive macrolide-specific efflux system. Transcripts encoding for

proteins involved in acid stress and bacteriocins represented only

minor components of the dental plaque biofilm’s transcriptome

across all subjects, including those with high caries activity.

SUMMARY

The results presented here have provided a number of unique

insights with regard to the biochemical priorities and the environ-

mental and/or genetic influence on these patterns of the dental

plaque biofilm microbiota. Gene expression patterns amongst

some genera are coordinated. Previous studies have attempted to

recognize associations between features of the microbiota (indi-

vidual genera or species) and dental health/disease. These studies

have been confounded by an inability to control genetic and envi-

ronmental factors, high interpersonal and geographical variation

of dental biofilm communities. The recognition of functional

networks operational in dental plaque communities may be of

importance since it reduces the number of independent variables

that may define dental health and caries activity. A longitudi-

nal study of these networks as human subjects transition from

C-F to a C-A phenotype will provide a direct test of the biologi-

cal significance of these networks. The dental biofilm microbiota

devotes a significant amount of its transcriptional potential to

the expression of proteins that substantially remediate superox-

ides and peroxides and H+ produced by fermentative bacterial

species. Maintenance of metal homeostasis, particularly of Fe2+

that are damaging to Fe-S cluster containing proteins in the pres-

ence of H2O2, also uses biochemical processes that consume H+.

These important stress response pathways may represent a pre-

viously overlooked system used by dental biofilm microbiota to

cope with a low pH microenvironment.
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