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Microbial acquisition of nutrients in vivo
is a fundamental aspect of infectious dis-
eases, and is a potential target for anti-
microbial therapy. Part of the innate
host defense against microbial infection
is nutritional restriction of access to
sources of host nutrients (Abu Kwaik and
Bumann, 2013; Eisenreich et al., 2013).
Despite this host nutritional restriction,
there has been a long held presumption
that the host cell cytosol has sufficient
nutrients for any intracellular pathogen,
although many bacteria fail to grow in
the host cytosol if they are microinjected
(Goetz et al., 2001). However, recent stud-
ies on the two intra-vacuolar pathogens
Anaplasma phagocytophilum (Niu et al.,
2012) and Legionella pneumophila (Price
et al., 2011) and the cytosolic pathogen
Francisella tularensis (Steele et al., 2013)
have clearly shown that the levels of amino
acids in the host cell cytosol are below the
threshold sufficient to meet the tremen-
dous demands for carbon, nitrogen and
energy to power the robust intracellu-
lar proliferation of these pathogens (Abu
Kwaik and Bumann, 2013). Therefore,
these intracellular pathogens have evolved
with efficient strategies to boost the levels
of host amino acids to meet their demands
for higher levels of carbon, nitrogen and
energy sources (Abu Kwaik and Bumann,
2013; Fonseca and Swanson, 2014). There
is an emerging paradigm of specific micro-
bial strategies that directly trigger the host
cell to boost the cellular levels of essential
microbial nutrients, and this paradigm has
been designated as “nutritional virulence”
(Abu Kwaik and Bumann, 2013). This
opinion article is focused on nutritional
virulence of L. pneumophila.

In the aquatic environment, L. pneu-
mophila proliferates within proto-
zoa, which impact bacterial ecology
and pathogenicity (Al-Quadan et al.,
2012). Upon transmission to humans,
L. pneumophila proliferates in alveolar
macrophages within the Legionella-
containing vacuole (LCV) that is
ER-derived and evades lysosomal fusion
(Figure 1). Within both evolutionar-
ily distant host cells, the Dot/Icm type
IV secretion system of L. pneumophila
injects ∼300 protein effectors (Zhu et al.,
2011; Luo, 2011a) that govern biogenesis
of the LCV and modulate a myriad of cel-
lular processes to enable intra-vacuolar
proliferation (Figure 1) (Luo, 2011b;
Richards et al., 2013).

Amino acids are the main sources of
carbon, nitrogen and energy for L. pneu-
mophila, which metabolizes them through
the TCA cycle (Pine et al., 1979), but also
metabolizes minor amounts of glucose
in vitro using the Entner-Doudoroff path-
way (Eylert et al., 2010; Price et al., 2011).
Although L. pneumophila utilizes amino
acids as the main sources of carbon and
energy, the pathogen is auxotrophic for
seven amino acids (Cys, Met, Arg, Thr, Val,
Ile, and Leu) (Eylert et al., 2010; Price et al.,
2014). Remarkably, there is a high level of
synchronization in amino acids auxotro-
phy between L. pneumophila and its host
cells, which has likely played a factor in
nutritional evolution of L. pneumophila as
an intra-vacuolar pathogen (Price et al.,
2014).

Interestingly, intra-vacuolar L. pneu-
mophila up-regulates its own amino
acids transporters, indicating increased
demands for amino acids in the

intra-vacuolar environment (Bruggemann
et al., 2006; Faucher et al., 2011; Eisenreich
et al., 2013). Since the generation time of
intra-vacuolar L. pneumophila is ∼40 min,
this organism requires high levels of amino
acids to be imported from the host cytosol
into the LCV lumen (Schunder et al.,
2014). A long-held presumption has been
that the host cell cytosol is rich in nutrients
for invading pathogens.

However, recent studies clearly indi-
cate that the basal levels of host cellular
amino acids are below the threshold suf-
ficient for the robust intra-vacuolar pro-
liferation of L. pneumophila (Sauer et al.,
2005; Wieland et al., 2005) To achieve
that needed threshold, L. pneumophila
promotes host proteasomal degradation
(Price et al., 2011) of LCV-decorated
polyubiquitinated proteins (Dorer et al.,
2006; Price et al., 2009, 2011; Lomma et al.,
2010) mediated by the AnkB effector.

Within human macrophages and
amoeba, the AnkB translocated effector
of L. pneumophila strain AA100/130b
is localized to the cytosolic face of the
LCV membrane through host-mediated
farnesylation of its C-terminal CaaX
motif (Figure 1) (Price et al., 2010; Al-
Quadan et al., 2011; Al-Quadan and
Kwaik, 2011). On the LCV membrane,
AnkB interacts with the host SCF1 ubiq-
uitin ligase (Figure 1) (Bruckert et al.,
2014). As a bona fide F-box effector
(Ensminger and Isberg, 2010; Lomma
et al., 2010; Price and Abu Kwaik, 2010),
AnkB triggers decoration of the LCV
with Lys 48-linked polyubiquitinated
proteins that are targeted for protea-
somal degradation (Figure 1) (Price
et al., 2011). The metabolomic profile

Frontiers in Cellular and Infection Microbiology www.frontiersin.org August 2014 | Volume 4 | Article 111 | 1

CELLULAR AND INFECTION MICROBIOLOGY

http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/about
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/journal/10.3389/fcimb.2014.00111/full
http://community.frontiersin.org/people/u/23222
http://community.frontiersin.org/people/u/174167
http://community.frontiersin.org/people/u/15320
mailto:abukwaik@louisville.edu
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Price et al. Nutritional virulence of Legionella

FIGURE 1 | Generation of a surplus of host amino acids by

L. pneumophila and their import into the LCV. The AnkB effector is
translocated into macrophages and amoebae by the Dot/Icm type IV
secretion system of L. pneumophila. AnkB is immediately farnesylated and
anchored into the cytosolic face of the LCV membrane where it interacts with
the eukaryotic SCF1 ubiquitin ligase complex. The AnkB effector functions as
a platform for the docking of Lys 48-linked polyubiquitinated proteins to the

LCV that are subsequently degraded by the proteasome, which generates a
surplus of cellular amino acids above the threshold necessary for
intra-vacuolar proliferation. The amino acids are likely imported into the LCV
through various host SLC amino acid transporters in the LCV membrane, but
the identity of the transporters is still to be determined. The amino acids are
acquired by L. pneumophila through numerous ABC transporters and amino
acid permeases such as the threonine transporter PhtA.

of L. pneumophila-infected amoeba and
human cells have shown an AnkB-
dependent dramatic rise in the levels
of all cellular amino acids (Price et al.,
2011), and this is initiated rapidly upon
bacterial attachment to the macrophage
plasma membrane (Bruckert et al., 2014).
Importantly, inhibition of host protea-
somal degradation abolishes intracellular
proliferation of L. pneumophila strains
AA100/130b and Philadelphia (Dorer
et al., 2006; Price et al., 2011). The
L. pneumophila-generated surplus of host
cell amino acids may explain the lack
of an intracellular defect for the lysine
and tryptophan auxotrophic mutants
of L. pneumophila (Mintz et al., 1988;
Ensminger et al., 2012).

Loss of AnkB in two independent iso-
lates (AA100 and Paris) results in varying
degrees of failure in intra-vacuolar pro-
liferation and attenuation in the mouse
model of Legionnaires’ disease (Al-
Khodor et al., 2008; Lomma et al., 2010).
These defects for the AA100 strain are
totally overcome upon supplementation of

a mixture of amino acids in macrophages,
amoeba and in the mouse model, sim-
ilar to genetic complementation (Price
et al., 2011). Importantly, silencing of the
host SCF1 ubiquitin ligase, interference
with Lys48-linked polyubiquitination, or
inhibition of the host proteasomes block
intra-vacuolar proliferation of L. pneu-
mophila, but the block is relieved upon
supplementation of an excess mixture of
amino acids (Price et al., 2009, 2011).
Surprisingly, the intra-vacuolar prolifera-
tion defect of the ankB mutant is rescued
by many individual amino acids, such
as Cys, Ala or Ser, which are essential
or metabolically favorable for L. pneu-
mophila (Pine et al., 1979). Interestingly,
although Gln is the most abundant
amino acid in human cells, supplemen-
tation of infected hMDMs with excess
Gln alone efficiently rescues the ankB
mutant (Price et al., 2011), while Glu
is a major source of carbon and energy
in vitro (Pine et al., 1979). These findings
indicate that the basal levels of cellu-
lar amino acids are below the threshold

sufficient for intra-vacuolar proliferation
of L. pneumophila.

Remarkably, pyruvate or citrate supple-
mentation is as effective as amino acids in
rescuing the intra-vacuolar growth defect
of the ankB mutant, which indicates that
the LCV is capable of importing these two
substrates that can feed the TCA cycle, in
addition to the documented reliance of
intra-vacuolar L. pneumophila on amino
acids (Schunder et al., 2014). In addition,
L. pneumophila utilizes glucose through
the Entner-Doudoroff pathway, which
is required for proliferation within the
amoeba host (Eylert et al., 2010). During
inflammation, macrophages undergo up-
regulation of glucose uptake and anaerobic
glycolysis (Warburg-effect), which gener-
ates additional pyruvate (Eisenreich et al.,
2013), and it is likely that both glu-
cose and pyruvate are imported by the
LCV. In addition, L. pneumophila-infected
macrophages exhibit a pro-inflammatory
phenotype. Taken together, it is likely
that a multi-prong nutritional virulence
strategy is utilized by L. pneumophila to
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generate and retrieve a diversified port-
folio of sources of carbon and energy
from the host cell. The host solute car-
rier (SLC) family of membrane proteins
(Cedernaes et al., 2011; Schioth et al.,
2013) that transport various compounds,
including amino acids, TCA intermedi-
ates, glucose, lipids, and drugs are likely
to be involved in import of various com-
pounds by the LCV membrane (Figure 1)
(Wieland et al., 2005). Future studies
should unravel the host metabolites and
the mechanism of their import into the
LCV lumen, and subsequently by the
bacterial membrane. Deciphering micro-
bial nutrition and metabolism in vivo is
essential for our understanding of host-
microbe interaction, and nutrient retrieval
strategies by intracellular pathogens are
potential targets for therapy.
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