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There are two theories that seek to explain the pathogenesis of cerebral malaria,
the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence
consistent with both ideas has accumulated from studies of the human disease and
experimental models. Thus, some combination of these concepts seems necessary to
explain the very complex pattern of changes seen in cerebral malaria. The interactions
between malaria parasites, erythrocytes, the cerebral microvascular endothelium, brain
parenchymal cells, platelets and microparticles need to be considered. One factor that
seems able to knit together much of this complexity is the cytokine interferon-gamma
(IFN-γ). In this review we consider findings from the clinical disease, in vitro models and
the murine counterpart of human cerebral malaria in order to evaluate the roles played by
IFN-γ in the pathogenesis of this often fatal and debilitating condition.
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SCOPE
It is 25 years since the first demonstration that the pro-
inflammatory cytokine interferon-γ (IFN-γ) drives the patho-
genesis of experimental cerebral malaria (Grau et al., 1989).
It therefore seems appropriate to revisit this topic and evalu-
ate progress in our understanding of the mechanisms involved,
as well as their significance for the pathogenesis of this life-
threatening (Molyneux et al., 1989; Newton et al., 2000) and
disabling (Molyneux et al., 1989; Kihara et al., 2006; John et al.,
2008) condition in human beings.

The production of IFN-γ in humans and mice occurs as part
of anti-malarial immunity. This role of the cytokine has been
reviewed recently (McCall and Sauerwein, 2010) and will not be
discussed here. Although IFN-γ also has been shown to play an
essential role in the pathogenesis of some other infectious dis-
eases that adversely affect the central nervous system (CNS), such
as pneumococcal meningitis (Mitchell et al., 2012), we here will
focus on the cerebral manifestations of severe malaria caused by
Plasmodium falciparum (Pf ). Furthermore, we will not deal with
the possible roles of the Type I interferons in cerebral malaria
(Vigario et al., 2007; Morrell et al., 2011; Ball et al., 2013; Palomo
et al., 2013).

INTERFERON-γ
The IFN-γ gene was cloned in 1982, though knowledge of the
existence of IFN-γ-like biological activity dates back a further two

decades (Billiau and Matthys, 2009). The cytokine has a molecu-
lar weight of 45 kDa and its gene is located on chromosome 12 in
humans and 10 in mice. It has an enormous range of actions upon
many cell types, in particular those involved in immunity, both
innate and adaptive, and inflammation. The IFN-γ-producing
cells of particular relevance to malaria include CD4+, CD8+, and
γδT lymphocytes, and Natural Killer (NK) cells.

IFN-γ signaling pathways have been well-characterized. The
IFN-γ receptor is composed of two chains and binding of the
cytokine leads to recruitment of the tyrosine kinases JAK1 and
JAK2. This leads to activation of STAT1, which homodimerizes,
enters the nucleus and initiates the transcription of Interferon
Response Factors that induce the expression of a wide range
of genes (Schroder et al., 2004; Saha et al., 2010). Other sig-
nal transduction pathways can be triggered by IFN-γ, and the
actions of the cytokine are negatively modulated by suppressor
of cytokine signaling proteins (Saha et al., 2010). Recombinant
IFN-γ and adenovirus vectors that express IFN-γ cDNA have
been trialed clinically, with some success, for a range of diseases
including chronic granulomatous disease, hepatitis, tuberculosis,
and certain cancers (see Miller et al., 2009 for review). Antibodies
that neutralize the cytokine’s actions have been used to treat
rheumatoid arthritis and multiple sclerosis (Miller et al., 2009).

Malaria immunity involves both the innate and adaptive
immune systems (Good et al., 2005; Riley et al., 2006).
Pro-inflammatory cytokines, in particular IFN-γ, drive the
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cell-mediated immune response that controls parasite numbers
early in the intraerythrocytic cycle, and antibody seems to be
responsible for “mopping up” and preventing recrudescence
(Good et al., 2005; Riley et al., 2006; McCall and Sauerwein,
2010).

SEVERE MALARIA
Severe malaria is a set of systemic complications associ-
ated with Pf infection that includes cerebral malaria, which
is involved in a high proportion of fatal cases, particularly
in African children. This acute brain dysfunction leads to
coma and, in the absence of anti-malarial therapy, death.
Fortunately, this occurs in only a small percentage of Pf infec-
tions. Nevertheless, long-term neurological sequelae occur in a
substantial proportion of those who survive pediatric cerebral

malaria (Molyneux et al., 1989; Kihara et al., 2006; John et al.,
2008).

Histopathological observations and other evidence have estab-
lished that hemorrhage, sequestration of parasitized red blood
cells (PRBC) and leukocytes, and increased blood-brain barrier
permeability occur in both human and murine cerebral malaria
(Toro and Roman, 1978; Thumwood et al., 1988; Das et al., 1991;
Chan-Ling et al., 1992; Patnaik et al., 1994; Turner et al., 1994;
Brown et al., 1999a, 2001; White et al., 2001; van der Heyde
et al., 2001; Adams et al., 2002; Grau et al., 2003; Hunt and Grau,
2003; Taylor et al., 2004; Amante et al., 2010; Claser et al., 2011;
Cunnington et al., 2013). Examples of these phenomena from the
experimental model are shown in Figures 1–3.

Two mechanisms are considered to be important in CM
pathogenesis: microvascular obstruction leading to hypoxia, and

FIGURE 1 | Representative post-mortem histopathology findings in H

& E stained brain sections from (i) wild-type and (ii) IFN-γ−/−
C57BL/6 mice on day 6 post-inoculation with 1 × 106 PbA-PRBC. As
no difference was evident between uninfected mice and infected
IFN-γ−/− mice, only the latter are shown. (A) Olfactory bulb; (B)

Meningeal vessel; (C) Cerebellum. The brains of PbA-infected w/type

mice showed hemorrhage and leukocyte adhesion to the cerebral
vasculature (arrows), whereas no pathological findings were evident in
any IFN-γ−/− mouse. In this and later Figures (where appropriate) the
work was carried out according to national and State legislation on
animal experimentation, with approval from the University of Sydney
Animal Ethics Committee.
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FIGURE 2 | Brain edema and blood-brain barrier compromise after PbA

infection. Water content was calculated from wet and dry weight. Evans
blue, a dye that binds to circulating albumin, was injected intravenously 2 h
before mice were euthanased; the brain was perfused with saline,
removed, photographed, and water-extracted; the Evans blue content was
measured spectrophotometrically at 510 nm. (A) PbA-infected wild-type
mouse brains had significantly greater water content compared with
infected IFN-γ−/− mice at days 6 and 7 post-inoculation (∗p < 0.001,
Two-Way ANOVA with Bonferroni post-test). (B) PbA-infected wild-type
mice had significantly greater extravasation of Evans Blue dye into the brain
parenchyma on day 7 post-inoculation compared to infected IFN-γ−/− mice
on day 7 or 21 post-inoculation (∗p < 0.001, One-Way ANOVA with
Bonferroni post-test). Above each bar of the graph is shown a
representative brain from that experimental group. Columns and vertical
bars are mean ± s.e.m. (n = 5 per group).

immunopathological processes. Although some proponents of
the former mechanism discount the latter (White et al., 2013),
many researchers in the field consider that a combination of
these two best explains the outcomes of many published clinical,
pathological, experimental and genetic investigations of cerebral
malaria (Grau and De Kossodo, 1994; Hunt and Grau, 2003;
Mackintosh et al., 2004; Cunnington et al., 2013).

Microvascular obstruction in the brain occurs in human cere-
bral malaria. This is thought to be a consequence of binding of
Pf -parasitized erythrocytes (Pf -PRBC) to the vascular endothe-
lium through a parasite-encoded protein, Pf EMP1, that can inter-
act with a number of adhesion molecules (Warrell et al., 1988;
Berendt et al., 1994; Turner et al., 1994, 2013). Accumulation
of Pf -PRBC in brain microvessels is characteristic of pediatric
(Taylor et al., 2004) and adult (Ponsford et al., 2012) cerebral

malaria victims, with leukocytes also being present (Patnaik et al.,
1994; Grau et al., 2003; Taylor et al., 2004; Armah et al., 2005), and
is accompanied by lactate accumulation in the cerebrospinal fluid
(CSF) (White et al., 1985; Warrell et al., 1988; Molyneux et al.,
1989), consistent with the suggestion that oxygen supply to the
brain is compromised.

Microvascular obstruction (Chan-Ling et al., 1992), hypoxia
(Hempel et al., 2011) and accumulation of lactate in the CNS
(Sanni et al., 2001; Rae et al., 2004) also occur in experi-
mental cerebral malaria [P. berghei ANKA (PbA) infection in
mice]. Reduced blood flow and metabolic changes consistent with
hypoxia also have been identified in this mouse model using mul-
timodal magnetic resonance (Penet et al., 2005). The cause of
vascular obstruction in murine cerebral malaria has not been
established, though leukocytes and PbA-PRBC accumulate in the
CNS microcirculation (Thumwood et al., 1988; Chan-Ling et al.,
1992; Amante et al., 2007; Miu et al., 2008a; Nie et al., 2009;
Ampawong et al., 2014).

Thus, a hypoxic metabolic profile and accumulation of PRBC
and leukocytes in the cerebral microcirculation are features of
both human and experimental CM. One of the great, unanswered
questions is why vascular obstruction does not lead to catas-
trophic neuronal damage, as it does in stroke. One possibility is
that any occlusive events and ischemia are very short-lived, which
is difficult to test. Another is that the hypoxic metabolic profile is
also influenced by processes independent of vascular obstruction,
such as the actions of cytokines (Rae et al., 2004; Parekh et al.,
2006).

Administration of an IFN-γ-neutralizing antibody led to the
concept that this cytokine is a key contributor to the pathogen-
esis of cerebral malaria in the PbA model (Grau et al., 1989).
This finding subsequently was confirmed with IFN-γ gene knock-
out (GKO) (Yanez et al., 1996; Sanni et al., 1998; Belnoue et al.,
2008) and IFN-γ receptor GKO (Amani et al., 2000) mice.
There is substantial evidence implicating other pro-inflammatory
cytokines in the pathogenesis of cerebral malaria, both human
and experimental (Clark and Rockett, 1994; Udomsangpetch
et al., 1997; Brown et al., 1999b; Engwerda et al., 2002; Hunt
and Grau, 2003; Schofield and Grau, 2005; Hunt et al., 2006).
Human genetic association studies have demonstrated links
between immune cell products and susceptibility to human
cerebral malaria (Kwiatkowski, 2005; Verra et al., 2009). Anti-
inflammatory molecules or processes, such as interleukin (IL)-10
(de Kossodo et al., 1997; Ho et al., 1998a), transforming growth
factor-β (Omer and Riley, 1998; Riley et al., 2006) and regulatory
T cells (Nie et al., 2007), appear to be important in malaria for
“damping down” innate immune responses and channeling the
development of effective adaptive immunity.

Interaction between microvascular obstruction and
immunopathology might occur in a number of ways. First,
pro-inflammatory cytokines, including IFN-γ, induce the
expression on endothelial cells of adhesion molecules (Wahl
et al., 1996; Weiser et al., 2007), which are capable of mediating
Pf -RBC and leukocyte interactions with the endothelium (Wahl
et al., 1996; Ho et al., 1998b). Indeed, IFN-γ and lymphotoxin
α, the two key pathogenetic cytokines in experimental cerebral
malaria (Grau et al., 1989; Engwerda et al., 2002), are strongly
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FIGURE 3 | Blood-brain barrier compromise during PbA infection, as

determined by immunohistochemical detection of fibrinogen within the

parenchyma of the olfactory bulb. (A) Uninfected control mouse; (B)

PbA-infected wild-type mouse at day 6 post-inoculation; (C) PbA-infected

IFN-γ−/− mouse at day 6 post-inoculation and (D) day 20–22 post-inoculation.
Blood-brain barrier permeabilization to protein is clearly evident within the
wild-type mouse, in which edematous changes also can be seen (arrows).
These changes were not seen in IFN-γ−/− mice at any stage of infection.

synergistic in inducing the expression of vascular cell adhesion
molecule-1, intercellular adhesion molecule-1 (ICAM-1) and
E-selectin in mouse brain endothelial cells in vitro (Weiser et al.,
2007). Expression of these adhesion molecules on the cerebral
microvascular endothelium has been reported in human and
murine cerebral malaria (de Kossodo and Grau, 1993; Turner
et al., 1994; Bauer et al., 2002; Armah et al., 2005) and ICAM-1
GKO mice are protected against PbA-induced cerebral malaria
(Favre et al., 1999).

Second, the accumulation of PRBC and leukocytes in the cere-
bral microcirculation favors their interaction and might serve to
focus the production of immune/inflammatory products, such as
pro-inflammatory cytokines, in that critical location (Khaw et al.,
2013). This setting has been modeled in vitro using co-cultures
of mouse (El-Assaad et al., 2013) and human (Wassmer et al.,
2004, 2006a,b) brain endothelial cells and PRBC. Here, cytokines,
including IFN-γ, tumor necrosis factor (TNF) and lymphotoxin
α, lead to endothelial cell activation resulting in the local bind-
ing of platelets, which, in turn, enhances endothelial activation
and apoptosis (Wassmer et al., 2006a,b) (Figure 4), as discussed
in more detail below.

Finally, we recently have proposed that the effects of hypoxia
and cytokines might intersect at key locations in the pathogen-
esis of cerebral malaria, namely endothelial cells and astrocytes
(Combes et al., 2012), which are key components of the neu-
rovascular unit. Astrocytes influence the functions of all CNS
cells and have unique features that make them a strong candidate

to be a convergence point of ischemia and immunopathology
in the events leading to cerebral malaria (Combes et al., 2012).
They control the extracellular milieu of the CNS, modulate synap-
tic transmission, act as a bioenergetic regulator and influence
vascular properties, including blood-brain barrier integrity and
blood flow. Their central roles in these vital functions mean that
astrocytes often are a major determinant of the outcome of sev-
eral diseases that affect the CNS (Verkhrasky et al., 2009). For
example, in stroke, obstruction of an artery prevents oxygen and
glucose delivery to the downstream tissue. In the core of the
ischemic region, where the supply deficit is most severe, astrocytes
and neurons perish through a network of interrelated processes,
many of which are due to severe loss of intracellular ATP (Rossi
et al., 2007). Surrounding this core is the hypoperfused penum-
bral region, in which cellular ATP is less compromised. It is now
believed that astrocytes hold the key to whether neurons die, or
regain function, in the penumbral region in stroke (Nedergaard
and Dirnagl, 2005; Panickar and Norenberg, 2005; Trendelenburg
and Dirnagl, 2005; Takano et al., 2009). It is possible that they
have similar significance in cerebral malaria, where the occur-
rence of neuronal damage has been reported (Medana et al., 2002,
2007).

Astrocytes are target cells of IFN-γ, with outcomes such
as astrogliosis and production of chemokines (John et al.,
2003; Liberto et al., 2004). Changes in astrocyte morphology
and function occur early in the course of experimental cere-
bral malaria (Medana et al., 1996), as visualized in retinal
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FIGURE 4 | Enhancement of platelet-mediated endothelial cell

apoptosis after IFN-γ stimulation. HBEC were stimulated with IFN-γ
overnight prior to addition of platelets and RBC. Taxol treatment of HBEC
was used as the positive control. FITC-BrdU nuclear fragmentation was
quantified using the APO-Direct Kit (BD Biosciences) and an EPICS-XL flow
cytometer (Beckman-Coulter). Results are expressed as percentages of

cells undergoing apoptosis. HBEC, human brain endothelial cells; nRBC,
normal red blood cells; pRBC, parasitized red blood cells; PA, Palo Alto
strain of Plasmodium falciparum. In this and later Figures (where
appropriate) the work was carried out according to national and State
legislation on human experimentation, with approval from the University of
Sydney Human Ethics Committee.

wholemounts. The retina parallels the pathological changes in the
brain in both human and experimental cerebral malaria (Chan-
Ling et al., 1992; White et al., 2009), and retinal changes have con-
siderable diagnostic and pathophysiological significance in the
human condition (Beare et al., 2004; White et al., 2009; Birbeck
et al., 2010). Astrogliosis in murine malaria is seen in cerebral
malaria but not in severe anemia (Medana et al., 1996; Ampawong
et al., 2014). Accompanying this astrocyte activation is produc-
tion of CXCL10 (Miu et al., 2008a). Morphological changes in
astrocytes have been reported in the brain and retina in human
severe malaria (Medana et al., 2002; White et al., 2009), which,
by analogy with other CNS diseases (Panickar and Norenberg,
2005; Rossi and Volterra, 2009), could be in part a response to the
occurrence of neuronal damage. Local production of cytokines
and a hypoxic environment also might play a role, as discussed
above.

Endothelial cells are another pivotal cell type that affects the
CNS in infectious diseases (Combes et al., 2012). The endothe-
lium becomes activated in cerebral malaria and its roles include
the expression of adhesion molecules (de Kossodo and Grau,
1993; Turner et al., 1994; Favre et al., 1999; Bauer et al., 2002;
Armah et al., 2005), production of chemokines (Miu et al.,
2008a), release of microparticles (Combes et al., 2006, 2010),
generation of pro-coagulant factors (Grau et al., 1997) and inter-
actions with platelets (Lou et al., 1997; Wassmer et al., 2006a)
(Figure 4). Several of these processes are stimulated by IFN-γ, and
endothelial dysfunction is induced by hypoxia in other conditions
(Jelic and Le Jemtel, 2008). Hypoxia/reoxygenation was found to

dramatically enhance the stimulatory effect of TNF on ICAM-1
upregulation in human brain microvascular endothelial cells
(Figure 5).

Thus, the activities of astrocytes and endothelial cells are influ-
enced by both pro-inflammatory cytokines and hypoxia, pro-
cesses that are widely considered to be relevant in the context of
cerebral malaria.

SOURCE OF IFN-γ IN SEVERE MALARIA
In human volunteers infected with Pf sporozoites, IFN-γ is ini-
tially detectable at around one to two days after initiation of
blood stage infection (Walther et al., 2006). These processes have
been modeled in vitro using co-culture of Pf -PRBC and human
peripheral blood mononuclear cells (HPBM) from malaria-naïve
donors. In this system, IFN-γ is produced with similar kinet-
ics to that seen in vivo (Artavanis-Tsakonas and Riley, 2002).
Some studies have argued that γδT cells expressing NK cell recep-
tors may be the dominant source of IFN-γ (Hensmann and
Kwiatkowski, 2001; D’Ombrain et al., 2007). However, substan-
tial evidence supports a model in which the parasite is initially
sensed by myeloid cells, which in turn stimulate NK cells to pro-
duce IFN-γ via contact and cytokine signals (Artavanis-Tsakonas
and Riley, 2002; Baratin et al., 2005; Korbel et al., 2005; Newman
et al., 2006). Following this initial production of IFN-γ by NK
cells (within the first 24 h in culture), αβT cells may then dom-
inate the IFN-γ response (Horowitz et al., 2010). In vivo, some
leukocyte-Pf -iRBC interactions may take place in the cerebral
microcirculation and, interestingly, IFN-γ expression by HPBM
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FIGURE 5 | Effect of hypoxia-reoxygenation on TNF-induced ICAM-1

upregulation in human brain microvascular endothelial cells.

Human brain endothelial cells (HBEC) were exposed to 1% O2 for
18 h, then returned to normoxia, stimulated or not with 50 ng/mL

TNF and ICAM-1 mRNA was quantified at the designated time
points using a PhosphorImager® SI (Molecular Dynamics). TNF,
tumor necrosis factor; ICAM-1, intercellular cell adhesion
molecule-1.

is substantially enhanced when co-cultured with Pf -PRBC in the
presence of brain endothelial cells (Khaw et al., 2013), a process
that requires the presence of NK cells.

In experimental murine cerebral malaria the relative contri-
bution of different cell subsets to levels of circulating IFN-γ is
largely dependent upon on the stage of infection. Serum levels
of IFN-γ at times prior to development of the cerebral complica-
tions are at least partially under the control of genes in the Natural
Killer Complex loci, which suggests that early IFN-γ derives from
either NK or NKT cells (Hansen et al., 2003, 2005, 2014). This
early production of IFN-γ by NK cells is dependent upon IL-
12 from dendritic cells (Ryg-Cornejo et al., 2013). Use of IFNγ

reporter mice reinforced that such production was largely from
NK cells, whereas at late stages of infection, immediately prior to
and during neurological disease, CD4+ and CD8+T cells are the
predominant sources (Villegas-Mendez et al., 2012).

TARGETS AND CONSEQUENCES OF IFN-γ IN CEREBRAL
MALARIA
In addition to systemic production of IFN-γ, in the experimental
model IFN-γ mRNA is strongly expressed in brain homogenates
late in the course of PbA infection, with differences of degree
between various brain regions (Figure 6). The IFN-γ receptor
is widely expressed throughout the hemopoetic, cardiovascular
and CNSs, providing many targets for this cytokine in cerebral
malaria (Figure 7). Many cell populations that have been impli-
cated in the pathogenesis of the condition may respond to IFN-γ,
for example various types of leukocytes, endothelial cells and
brain parenchymal cells such as astrocytes and microglia. These
have been extensively studied in model systems, both in vivo
and in vitro. For obvious reasons this type of intervention-driven
hypothesis testing is impossible in human cerebral malaria, which
sometimes has led to skepticism about the roles of IFN-γ and
other cytokines in the human disease. Of course, this caveat

applies equally to every other hypothesis about the pathogenesis
of severe malaria. Gene expression analysis in experimental cere-
bral malaria has revealed the induction of many IFN-γ-dependent
genes in the CNS (Lovegrove et al., 2007; Miu et al., 2008b) and
an equivalent post-mortem study in the human condition is a
worthwhile goal.

During PbA infection, current evidence supports a model in
which recruitment of leukocytes, in particular CD8+T cells, by
IFN-γ-dependent processes is a key outcome. Blood-brain barrier
compromise in experimental cerebral malaria clearly is driven by
IFN-γ since it is greatly attenuated in GKO animals (Figures 1–3).
Importantly, coincident accumulation of PbA-PRBC and CD8+T
cells is essential for pathogenesis (McQuillan et al., 2011). IFN-
γ drives sequestration of both PbA-PRBC (Amante et al., 2010;
Claser et al., 2011) and CD8+T cells (Belnoue et al., 2008; Miu
et al., 2008a) in the brain microvasculature. Although leuko-
cytes are commonly found within cerebral microvessels in human
and experimental cerebral malaria, there is little entry into the
brain parenchyma. However, this is still a form of inflammation,
albeit intravascular rather than intratissular. Signals originating
within the parenchyma that impact upon immune and inflam-
matory cells include CXCL10 production by astrocytes (Miu et al.,
2008a), as discussed below.

Both CD4+ and CD8+T lymphocytes play obligatory roles
in experimental cerebral malaria (Grau et al., 1986; Yanez
et al., 1996; Belnoue et al., 2002; Villegas-Mendez et al., 2012).
Parasite antigen-specific CD8+ cytotoxic lymphocytes are gen-
erated in murine cerebral malaria (Lau et al., 2011), possi-
bly through interactions with Clec9A dendritic cells (deWalick
et al., 2007; Lundie et al., 2008; Piva et al., 2012). CD8+T cells
recruited to the brain microvasculature in this system do not
carry out their pathogenetic function through IFN-γ produc-
tion (Villegas-Mendez et al., 2012). Instead, there is good evi-
dence supporting cross-presentation of malaria antigens on CNS
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FIGURE 6 | IFN-γ mRNA in various brain regions in murine cerebral

malaria. C57BL/6 mice were inoculated with 2 × 105 PbA-PRBC, their
brains removed on day 6 post-inoculation and dissected into regions prior to
homogenization. RT-PCR was performed as described elsewhere (50).
Horizontal lines and vertical bars are mean ± s.e.m. of fold differences vs.
equivalent samples from uninfected mice.

FIGURE 7 | Summary of processes relevant to cerebral malaria that are

stimulated by IFN-γ, as derived from experimental models. PRBC,
parasitized red blood cell; BBB, blood-brain barrier.

microvascular endothelial cells (Howland et al., 2013) and recog-
nition by CD8+ cytotoxic lymphocytes leading to endothelial
damage in a perforin- and granzyme B-dependant manner
(Potter et al., 1999, 2006; Nitcheu et al., 2003; Haque et al., 2011).
This may be the basis of the compromised blood-brain barrier
described earlier.

IFN-γ is essential for accumulation of CD8+T cells within
the brain microvessels during experimental cerebral malaria
(Belnoue et al., 2008). IFN-γ produced prior to end stage disease
drives production of the CXCR3-binding chemokines CXCL9
and CXCL10 (Campanella et al., 2008; Miu et al., 2008a). There
is strong evidence that CXCL9 or CXCL10 and their receptor

FIGURE 8 | Activation of endothelial indoleamine dioxygenase-1 by

IFN-γ does not affect growth of co-cultured Plasmodium

falciparum. Pf -PRBC or uninfected RBC (uRBC) were cultured
together with human brain endothelial cells (line HBEC-5i) for 72 h.
Parasite growth as Plasmodium falciparum histidine rich protein-2
(PfHRP-2) was determined by ELISA. Under the same conditions, the
IFN-γ treatment previously had been demonstrated to deplete
tryptophan and cause kynurenine formation (data not shown),
indicating expression and activity of IDO-1. Values are mean ± s.e.m.
of triplicate determinations in a single experiment.

CXCR3 are required for the development of murine cerebral
malaria (Belnoue et al., 2008; Campanella et al., 2008; Van den
Steen et al., 2008; Miu et al., 2008a; Nie et al., 2009). NK cells
localize to the brain vasculature from around day 4 post-infection
and can mediate sequestration of αβT cells in an IFN-γ- and
CXCR3-dependent manner (Hansen et al., 2007). Alternatively,
adoptive transfer studies using IFNγ-deficient recipients have
suggested that IFN-γ produced by CD4+T cells is the dominant
source of IFN-γ that is involved in induction of CXCR3 ligands,
CD8+T cell sequestration and development of clinical disease
(Villegas-Mendez et al., 2012). Importantly, higher plasma and
CSF levels of CXCL10 are seen in Ghanaian children with cerebral
malaria, compared to those with severe malaria and non-malaria
cases (Armah et al., 2007). Furthermore, polymorphisms in the
human CXCL10 gene that affect plasma CXCL10 correlate with
the incidence of cerebral malaria, particularly in males, in a man-
ner consistent with the data from the experimental studies in
mice (Wilson et al., 2013). Thus, this IFN-γ-regulated chemokine
appears to be involved in the disease process in both human and
murine cerebral malaria.

The effects of IFN-γ have been studied in endothelial cell-
platelet-PRBC co-cultures, which involved the human brain
microvascular endothelial cell line 5i, human platelets from nor-
mal donors and the Palo-Alto (PA) strain of Pf (Wassmer et al.,
2006a). While TNF is only able to upregulate ICAM-1, VCAM-1,
and CD40 on endothelial cells, IFN-γ also induces CD36 upreg-
ulation (Petzelbauer et al., 1993). As shown in Figure 4, IFN-γ
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FIGURE 9 | IFN-γ and the immunopathology of cerebral malaria.

Schematic based on intervention studies in experimental cerebral
malaria. For discussion of possible relevance to human cerebral malaria
see text. Solid lines indicate direct actions (e.g., release of IFN-γ) or
transitions (e.g., activation of CD8+T cells to CD8∗), broken lines

indicate influences of secreted factors (IFN-γ and CXCL10). Ag, malaria
antigen; BBB, blood-brain barrier; ICAM-I, intercellular adhesion
molecule-1; μparticles, microparticles; NK, Natural Killer cell; PLT,
platelets; TGF-β1, transforming growth factor-β1; VCAM-1, vascular cell
adhesion molecule-1.

can enhance platelet binding to endothelial surfaces, presum-
ably via CD36 and/or ICAM-1, and increase the proportion of
brain endothelial cells that undergo apoptosis, as measured by
FITC-BrdU nuclear fragmentation, when compared to those co-
cultured with either PRBC or platelets alone. The effect of IFN-γ
(20.0% of apoptotic cells) is however weaker than that of lym-
photoxin α and TNF (25.5 and 45.2%, respectively) (Wassmer
et al., 2006a). Stimulation of brain endothelial cells by IFN-γ
also enhances their microparticle release, with different kinetics
and response frequencies of cells compared to TNF stimulation
(Latham et al., 2013).

Taken together, these data indicate that IFN-γ participates in
cerebral malaria pathogenesis by affecting endothelial integrity.

A less commonly known product of the endothelium in
cerebral malaria is indoleamine dioxygenase-1 (IDO-1), one
of three intracellular enzymes that convert tryptophan into
N-formylkynurenine. This is the first step in the kynurenine
pathway, which leads to the production of numerous biologically-
active molecules (Ball et al., 2009). IDO-1 expression is regulated
by IFN-γ. As reviewed previously (Hunt et al., 2006; Combes
et al., 2012), the kynurenine pathway is activated in human
(Medana et al., 2003) and experimental (Sanni et al., 1998) cere-
bral malaria. IDO-1 expression is induced by IFN-γ selectively
in endothelial cells in murine malaria infections (Hansen et al.,
2004). This probably is a tissue protective response, but one that
can become dysregulated in the brain during PbA infection, con-
tributing to abnormalities in neuronal function (Hunt et al.,
2006). A striking imbalance in kynurenine pathway metabolites
in favor of the neuroexcitotoxin quinolinic acid is observed in

the mouse brain as the neuronal symptoms develop (Sanni et al.,
1998). However, IDO-1 GKO mice are not protected against fatal
cerebral malaria (Miu et al., 2009), although pharmacological
inhibition of the production of deleterious metabolites through
the kynurenine pathway does reduce mortality (Clark et al., 2005;
Miu et al., 2009). These somewhat conflicting findings require
explanation.

Activation of the kynurenine pathway in endothelial cells
restricts the growth of some bacteria, viruses and parasites (Adam
et al., 2005), probably via depletion of tryptophan. However,
this is not true of Pf (Figure 8). At the systemic level, the IFN-
γ/IDO-1/kynurenine axis appears to be an important mechanism
contributing to the hypotension associated with murine malaria
(Wang et al., 2010), but this has not been investigated to date in
the clinical disease.

SUMMARY AND CONCLUSIONS
Research during the last 25 years has put considerable flesh on the
bones of the concept that IFN-γ is a major driving factor in the
pathogenesis of cerebral malaria (Figure 9). Immunopathological
studies employing interventions, most prominently the use of
gene knockout mice, have provided a great deal of molecu-
lar information about the multiple levels of IFN-γ involve-
ment in experimental cerebral malaria. There is no similarly
comprehensive body of evidence derived from studies of the
human condition. However, harking back to undergraduate lec-
tures, “absence of evidence is not the same as evidence of
absence.” Some of the relevant correlative evidence reported in
clinical or post-mortem studies has been summarized in this
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article. We contend that further investigation of how the two
major proposed mechanisms of cerebral malaria pathogene-
sis might interact, and the roles of IFN-γ therein, would be
beneficial. To this end, we also strongly agree with the senti-
ment expressed at the 2010 Keystone Symposium on Malaria
that “experimental and human studies should be more closely
linked so that they inform each other, and that there should
be wider access to relevant clinical material” (Langhorne et al.,
2011).
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