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The choice that bacteria make between sporulation and competence when subjected
to stress provides a prototypical example of collective cell fate determination that is
stochastic on the individual cell level, yet predictable (deterministic) on the population
level. This collective decision is performed by an elaborated gene network. Considerable
effort has been devoted to simplify its complexity by taking physics approaches
to untangle the basic functional modules that are integrated to form the complete
network: (1) A stochastic switch whose transition probability is controlled by two order
parameters—population density and internal/external stress. (2) An adaptable timer whose
clock rate is normalized by the same two previous order parameters. (3) Sensing units
which measure population density and external stress. (4) A communication module that
exchanges information about the cells’ internal stress levels. (5) An oscillating gate of
the stochastic switch which is regulated by the timer. The unique circuit architecture
of the gate allows special dynamics and noise management features. The gate opens
a window of opportunity in time for competence transitions, during which the circuit
generates oscillations that are translated into a chain of short intervals with high transition
probability. In addition, the unique architecture of the gate allows filtering of external noise
and robustness against variations in circuit parameters and internal noise. We illustrate
that a physics approach can be very valuable in investigating the decision process and in
identifying its general principles. We also show that both cell-cell variability and noise have
important functional roles in the collectively controlled individual decisions.

Keywords: gene circuits, computational modeling, noise management, cell fate determination, sporulation and

competence, Bacillus subtilis, cell communication

INTRODUCTION
Genetically identical cells are capable of stochastically differentiat-
ing into various phenotypes with unique attributes. This survival
strategy allows a population to continuously assign specialized
cells to deal with possible drastic changes in conditions (Kaern
et al., 2005; Maamar and Dubnau, 2005; Süel et al., 2006, 2007;
Maamar et al., 2007; Schultz et al., 2007, 2012, 2013; Acar et al.,
2008; Losick and Desplan, 2008; Raj and van Oudenaarden, 2008;
Be’er et al., 2009, 2011; Ben-Jacob and Schultz, 2010; Sirota-Madi
et al., 2010). The stochastic differentiations into new phenotypes
that determine the fate of the cell are coordinated by cell-cell
communication, but still provide each cell with the flexibility to
choose its own phenotype according to the particular conditions
it encounters, while in harmony with other cells. Many different
phenotypes communicate and contribute for the greater good of
the colony by jointly performing a large variety of tasks (Aguilar
et al., 2007; Lopez and Kolter, 2010). Coordinated individual deci-
sions in a population of high cellular diversity require special
mechanisms to guarantee that the individual decisions (transi-
tion probabilities) are regulated by the state of the population
as a whole. As we will show, bacteria evolved intricate cell-cell

communication that is utilized to execute the collective deci-
sions. In addition, the decision circuits must have special capacity
for noise management, allowing the bacterium to determine fate
by “playing dice with controlled odds” (Ben-Jacob and Schultz,
2010). Cellular capacity to manage the odds entails both means
to regulate and program the noise level and means to encode the
effect of the noise on circuit performance (Maamar et al., 2007;
Schultz et al., 2007, 2009; Süel et al., 2007; Acar et al., 2008; Losick
and Desplan, 2008; Raj and van Oudenaarden, 2008). Several
studies have illustrated that circuit architecture, i.e., the connec-
tivity map of a circuit gene, can encode distinct noise behaviors
critical to the function implemented by the circuit (Kollmann
et al., 2005; Süel et al., 2006, 2007; Maamar et al., 2007; Cagatay
et al., 2009; Kittisopikul and Süel, 2010).

The decision-making between sporulation and competence is
a typical example of how genetic regulatory networks utilize noise
for performance of cellular differentiation. Many bacterial strains
(such as the in Bacillus subtilis used as the model species here),
ultimately respond to severe environmental stress (such as starva-
tion), by forming endospores—dormant cells that are extremely
resistant to various hazards such as heat, radiation and toxic

Frontiers in Cellular and Infection Microbiology www.frontiersin.org October 2014 | Volume 4 | Article 154 | 1

CELLULAR AND INFECTION MICROBIOLOGY

http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/about
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/journal/10.3389/fcimb.2014.00154/abstract
http://community.frontiersin.org/people/u/796
http://community.frontiersin.org/people/u/184140
http://community.frontiersin.org/people/u/189928
mailto:eshelbj@gmail.com
mailto:jonuchic@rice.edu
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Ben-Jacob et al. The physics of bacterial decision making

chemicals. The sporulation process involves an asymmetric divi-
sion, and is followed by termination of metabolic activity in the
daughter cell (i.e., the spore) and death by lysis of the mother
cell. Sporulation is not initiated spontaneously upon nutrient
limitation but kept as a last resort. Initially, cells employed many
other tactics to survive the stress. When facing stress, Bacillus sub-
tilis has been identified to differentiate into up to eight different
phenotypes. These phenotypes include flagellated motile cells that
seek for new food sources, cells that secrete hydrolytic enzymes
to scavenge extracellular polysaccharides and proteins and also
cannibal cells that feed on their peers (Aguilar et al., 2007; Lopez
and Kolter, 2010). When other tactics fail in surviving the stress,
sporulation is the fate chosen by a majority of the cells. Lysis of the
sporulating cells releases material that is taken up by a small num-
ber of competent cells. During sporulation, the individual cells are
able to switch into competence and can uptake from lysed cells the
genetic material that is used as a food source, as material for DNA
repair and even as new genetic information. The competent cells
can switch back into vegetative growth after about one day, and
proceed toward sporulation if still needed (Kuchina, 2011).

Bacterial decisions between sporulation and competence are
carried on by complex gene network comprised of many genes
interacted via complicated circuitry. We show that the network
complexity can be considerably simplified by taking physics
approach. This is done by reducing the complete integrated net-
work into simpler functional modules, and then further reducing
the modules into even simpler regulatory circuit motifs com-
prised of two or three genes. In the next section we present the
dynamics of simple gene circuits and their associated compu-
tational principles (Novák and Tyson, 2008; Lu et al., 2013a).
In the subsequent section we introduce how these circuits are
interplayed when connected to form the elaborate gene network
involved in bacterial decisions between sporulation and compe-
tence. We then show that it is possible to devise tractable models
for the individual modules and utilize them to reveal the underly-
ing general biological principles operative at the decision network
to execute collective decisions.

We also show that studying the decision system brings new
challenges from a physics perspective. For example, one of the
key modules is a stochastic switch whose transition probability is
regulated by the population density and population stress. From
a physics perspective this is like a system composed of two-state
elements with the transitions between the two states being cou-
pled to two order parameters with long-range interaction. The
stochastic switch is also regulated by a timer whose clock rate is
determined according to the stress sensed by the individual cell,
but is collectively normalized by the stress of the whole popula-
tion. The situation becomes even more challenging since the clock
rate is also regulated by the integration of stress at previous times.

The two modules controlling entrance into sporulation and
competence are coupled by a decision gate with special archi-
tecture giving rise to oscillatory dynamics (Schultz et al., 2009,
2013). Each oscillation opens a short interval with high transi-
tion probability, “turning oscillations into opportunity spikes”
(Schultz et al., 2013). We also explain that the gate has very special
noise management capabilities (Schultz et al., 2013). It is impor-
tant to note that while a physics approach can be very valuable in

investigation of the decision process and identification of general
principles, one has to keep in mind that unlike physical sys-
tems, biological systems evolved to perform tasks. Consequently
some fundamental new principles are involved. For example, both
cell-cell variability and noise have important functional roles in
the collectively controlled individual decisions.

GENE CIRCUITS DYNAMICS AND COMPUTATIONAL
PRINCIPLES
The decision networks involved in cell fate determinations have a
convoluted architecture of many interacting genes. Yet, the elab-
orated complexity of these signal transduction networks can be
simplified, since their organization is that of simpler modules that
are linked to each other, each with its own functional role. The
modeling of the modules themselves can be further simplified, as
they are comprised of regulatory motifs composed of just a few
genes (Lu et al., 2013a).

The main forms of regulation mechanisms for these circuits
fall into three categories: (1) Transcriptional regulation—proteins
called transcription factors (TF), which regulate the rate of the
gene transcription (expression) by binding to a specific segment
of DNA termed promoter. The TFs can be either excitatory (acti-
vator) which increase the transcription rate, or inhibitory (repres-
sor) which decrease the transcription rates. (2) Translational
regulation—special genes (miRNA), encode for short segments of
RNA which can bind to the mRNA of other genes and inhibit their
translation into proteins. (3) Post-translational modification—
many proteins are activated only by conformational changes after
being modified, such as when bound to a phosphate group in
a process called phosphorylation. Specialized proteins can phos-
phorylate or dephosphorylate other target proteins, and in some
cases can also auto-phosphorylate. In Figure 1 we introduce the
symbols adopted in this article to indicate the transcription reg-
ulations and phosphorylation regulation. We do not include
translational regulation, since it is not part of the example of
sporulation vs. competence decision network discussed in this
article.

TRANSCRIPTIONAL REGULATION
The most fundamental regulatory process is transcription regu-
lation. The same gene can regulate the transcription of various
genes and different genes can regulate the transcription of a given
gene, leading to a transcriptional regulatory network. The typi-
cal equations describing transcription activation and inhibition of
gene B by gene A are given by Equations (1) and (2) respectively.

dB/dt = gB0 + gBAH+
BA(A, n, A0) − kBB (1)

dB/dt = gB0 + gBAH−
BA(A, n, A0) − kBB, (2)

where gB0 is the basal transcription rate of gene B, kB is the spon-
taneous degradation rate of protein B and H+

BA(A, n, A0) and
H−

BA(A, n, A0) are the excitatory and inhibitory Hill functions
whose functional form are given by:

H+
BA(A, n, A0) ≡ (A)n/[(A0)n + (A)n] (3)

H−
BA(A, n, A0) ≡ (A0)n/[(A0)n + (A)n] (4)
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FIGURE 1 | Introduction of the gene circuit notations. (A)

Transcription and phosphorylation regulations. Blue arrows indicate
transcription activation. Red bars indicate transcription inhibition. Dashed
blue arrows indicate phosphorylation. Dashed red bars indicate
dephosphorylation. We also illustrate that a gene can be self-activator

or self-inhibitor. Some proteins can auto-phosphorylate (not shown here).
(B) The functional form of an excitatory Hill function describing the
action of an activator TF as is defined in the text. (C) The shape of an
inhibitory Hill function describing the action of a repressor TF as is
defined in the text.

where n is the rank of the Hill function (non-linearity or
cooperativity) and A0 is the midpoint concentration.

REGULATION BY PHOSPHORYLATION
Below we describe the mechanism of regulation of a protein
B by phosphorylation. B is phosphorylated by a kinase A and
dephosphorylated by a phosphatase C. The dynamics of B and
B∗ (phosphorylated B) are modeled by

dB/dt = gB − pAAB + dCCB∗ − kBB (5)

dB∗/dt = pAAB − dCCB∗ − k∗
BB∗, (6)

where pA is the phosphorylation rate of B by A and dC is the
dephosphorylation rate of B∗ by C. From a physics perspec-
tive, regulation by phosphorylation is a much faster process than
transcriptional regulation. Before the concentration of a protein
being transcriptionally regulated can feel the effects of changes
in the binding state of its promoter, it takes tens of minutes for
transcription of the genetic code into pre-mRNA, editing of the
pre-mRNA into mRNA, migration of the mRNA from the nucleus
(in eukaryotes) and translation into proteins. The timescale of
phosphorylation events is much shorter, in the order of seconds
or minutes. It is mainly determined by the time for diffusion
and colocalization of the two proteins, since the exchange of
phosphate is fast.

TRANSLATIONAL REGULATION
Translational regulation by miRNA plays a crucial role in eukary-
otic genetic regulation. In general, miRNA can inhibit the produc-
tion of the target protein by either degrading mRNA or inhibiting
translation. Compared to the equations for transcriptional reg-
ulation, those for translational regulation are more complex as
they involve dynamical equations for the miRNA, mRNA and the
proteins. Since translation regulation is not part of the example
of sporulation vs. competence decision network discussed in this
article, we do not present it here and direct the interested reader
to Ref (Ray et al., 2011; Lu et al., 2013a).

EXAMPLES OF SIMPLE GENE CIRCUITS
In Figure 2 we show examples of functional gene circuits (regula-
tory motifs) comprised of only a few interacting genes: the toggle
switch and the flip-flop circuits (Figure 2A), the self-activating

timer (Figure 2B), a gated switch (Figure 2C) and an oscillator
(Figure 2D).

DYNAMICAL SYSTEM APPROACH TO GENE CIRCUITS
Studying genetic circuits by a dynamical systems approach usu-
ally involves the following elements: analysis of fixed points and
their stability in the phase space, evaluation of the corresponding
bifurcation diagrams and investigation of noise effects and tran-
sitions between possible states. The approach is illustrated here
via the classical toggle switch (Figure 2A), a simple circuit that
already leads to interesting dynamics, described by the following
deterministic equations:

dA/dt = gA0 + gAH−
AB(B, nB, B0) − kAA (7)

dB/dt = gB0 + gBH−
BA(A, nA, A0) − kBB (8)

The circuit has two stable states, which can be described as logical
states (0,1) and (1,0)—low level of A and high level of B, and vice
versa. A more intricate variant is the asymmetric self-activating
toggle switch (SATS) in which one of the genes (say gene B) is a
self-activator. When the element is driven by an external signal I
acting as a transcription factor of A, the dynamics is modeled by

dA/dt = GA(I, B) − kAA (9)

dB/dt = GB(B, A) − kBB, (10)

where GX(A,B) is given by:

GX(A, B) = (gX,0 − gX,A − gX,B + gX,AB)H−(A, nA, A0)

H−(B, nB, B0) + (gX,B − gX,AB)H−(A, nA, A0)

+ (gX,A − gX,AB)H−(B, nB, B0) + gX,AB. (11)

Note that this is a general result, gene X can be one of the genes
A or B or the input signal I. gX,0, gX,A, gX,B and gX,AB are the
individual transcription rates when the promoter of the gene X
is in the free from, A-bounded form, B-bounded form and AB-
bounded form respectively. Equation (11) was derived from the
generic equation for the case of transcription regulation by two
TFs A and B when both TFs bind to the promoter of the gene B at
two different binding sites (Lu et al., 2013a).
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FIGURE 2 | Examples of simple functional gene circuits. (A) Examples
of two-gene circuits. Top is a classical toggle switch comprised of two
mutually inhibiting genes described in details in the next section. Bottom
is a classical flip-flop element comprised of two genes that are mutually
inhibiting in one direction and activating in the other. (B) Example of a
self-activating timer. Time is measured by the level of the phosphorylated
protein A∗, which is accumulated by external signal that phosphorylates A.
In typical timers the gene A is self-activated by A∗. (C) Example of an

inhibition gated switch. Gene B inhibits the self-activating gene C from
making transition into high expression (high level state). When the level of
protein A increases it inhibits the inhibition of C by B, thus permits a
stochastic transition into a state of high C. (D) Example of an oscillator
(termed in systems biology as a repressilator) comprised of an inhibition
loop among three genes. The origin of the oscillation is as follows: when
the level of A increases, it inhibits B. As a result, the level of C increases
leading to a decrease in the level of A and so on.

According to the analysis of the model, asymmetric SATS
can have three coexisting meta-stable states for some specific
parameters and input signal. The corresponding phase space for
a given input signal is illustrated in Figure 3A and the bifur-
cation diagram as function of the input signal is presented in
Figure 3B. In Figures 3C,D we show two examples (for two
values of the input signal) of the 1-dimensional effective poten-
tial obtained by integrating the equations along the dA/dt =
0 nullcline. Here, we assume that A reaches to steady states
much faster than B. The common analysis for the effective
potential will be explained in detail in Section The Stochastic
Switch.

INTEGRATED GENE CIRCUITS
Simple regulatory motifs do not necessarily have a stand-alone
function, but act as core elements integrated within func-
tional modules. These modules are further integrated to form
task-performing large-scale gene circuits such as the bacterial
sporulation-competence decision network (Schultz et al., 2009)
studied here. These decision systems (e.g., the meiosis regula-
tory network in yeast, Nachman et al., 2007, and the epithelial-
mesenchymal decision networks in embryonic and cancer cells,
Ben-Jacob et al., 2012) typically contain decision modules which
are integrated with sensing and communication units. These
units process information from various input signals and regulate
the operation of the decision module. The sensing units detect
information about the environment and the communication
units exchange information between different cells to coordinate
individual decisions.

Generally speaking, there are four main types of decision
modules: (1) Inhibition gated stochastic switches like the ComK-
ComS stochastic switch studied here. (2) Toggle switch based
modules that are comprised of coupled self-activating toggle
switches (SATS). These modules are common in the regulation
of cell fate determination during embryonic development and
tumorigenesis. (3) Feed-Forward-Loop (FFL) based modules that
are comprised of coupled FFLs (some of which have also a back-
ward coupling, FFBL, so they can have multiple states). (4) Mixed
modules which are comprised of coupled SATS and FFLs.

FIGURE 3 | Asymmetric SATS driven by an external signal I. The results
shown in this figure were computed, for the schematic circuit depicted in
(A), from Equations (9) and (10). (A) Phase-space showing the nullclines for
a specific value of the input signal I when three meta-stable states coexist.
(B) The bifurcation diagram as function of the input signal. The green solid
lines represent the stable fixed points, while the green dotted lines
represent the unstable fixed points. The two specified cases: two
meta-stable states (the bistability on the left, I = 70), and three coexisting
meta-stable states (tristability on the right, I = 83). Panels (C,D) show a
1-dimensonal effective potential computed along the dA/dt = 0 nullcline for
I = 70 and I = 83 respectively. Green circles mark the stable fixed points
and the green stars mark unstable saddle fixed points (Adopted from Lu
et al., 2013a).

GENE CIRCUITS’ ARCHITECTURE, NOISE MANAGEMENTS AND TASK
PERFORMANCE
Although each decision module type has specific circuit archi-
tecture, they can all share similar features—transitions between
coexisting two or more meta-stable states. This poses the
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fundamental question as to why a gene circuit of particular
architecture is selected to execute a function that could, in prin-
ciple, be performed by alternative architectures. Recent stud-
ies began to focus on the fundamental issue of Architecture-
Noise-Performance relations of gene circuits in the context of
Feed-Forward-Loop (FFL) motifs (Acar et al., 2008; Losick and
Desplan, 2008) and showed that circuits that give rise to similar
deterministic dynamics using different architecture have very dif-
ferent response to noise. Consequently it has been proposed that
the Architecture-Noise-Performance relations may have driven
evolutionary selection of the gene circuit architecture according
to the desired effect of noise (e.g., rare vs. frequent transitions).

With regard to decision modules, it means that different archi-
tectures will give rise to different noise management character-
istic and hence different transition rates and different functional
dependence of the transition rates of the input signals. We pro-
pose that the specific architecture of the sporulation-competence
decision network has been selected to guarantee that the decision
process of the individual cells will be highly coordinated and exe-
cuted within similar time windows, in a way that only a small
fraction (about 5–10% of the cells) will make the transition into
competence.

GLOBAL VIEW OF THE SPORULATION-COMPETENCE
DECISION-MAKING SYSTEM
Years of intensive experimental studies identified the tens of
key regulatory genes and measured the associated physiological
parameters that are involved in the sporulation-competence deci-
sion process of domesticated B. subtilis. Considerable effort has
been devoted to simplify the complexity of this elaborated net-
work (Figure 4A) by untangling the basic functional modules that
are integrated to form the complete network (Schultz et al., 2009,
2013). It is now realized that the key modules are (Figure 4B): (1)
a stochastic switch whose transition probability is normalized by
signals from other cells; (2) an adaptable timer whose clock rate
is normalized by the cell stress and signals from other cells; (3)
two sensing units; (4) a communication module; (5) an oscillating
gate of the stochastic switch which is regulated by the timer.

THE STOCHASTIC SWITCH
At the heart of the decision of entrance into competence lies a pos-
itive feedback loop involving the master regulator ComK, which
is kept at low levels by active degradation by degrader complex
MecA (Figure 4C). Fluctuations can lead ComK to cross a thresh-
old for self-activation and initiation of competence. This simple
design implements a stochastic switch in which the odds of acti-
vation can be adjusted by controlling the basal levels of ComK.
When the level of ComS is increased, a larger fraction of the
degradation complex MecA is taken up by ComS degradation,
allowing ComK levels to increase. This is the mechanism by which
the level of ComS regulates the basal levels of ComK and con-
sequently the probability of transitions into competence. Since
the level of ComS is determined by information received from
the sensing and communication units regarding the population
density and stress, the transition probability of the individual cell
is controlled by these order parameters describing the state of
the group (population). In addition to the above, the stochastic

switch is kept closed (ComK is inhibited) by a decision gate which
is regulated to open by the phosphorylation timer.

THE ADAPTABLE TIMER
Since sporulation is a last resort, the cell needs to be sure to
exhaust all other possibilities before the commitment. The circuit
responsible for timing the initiation of sporulation (Figure 4D)
integrates several different stress signals into a phosphorelay that
ends in the activation of sporulation master regulator Spo0A.
While high levels of activated Spo0A∗ will irreversibly commit
the cell to sporulation, intermediate levels will play a role in the
selection of most other alternative phenotypes. The phosphorelay
effectively works as an internal timer for the cell, which measures
exposure to stress and coordinates phenotypic changes under the
right circumstances. The timer clock rate of the individual cell
is regulated by the experience of stress and information received
from other cells (regarding the group stress). From a physics per-
spective, the adaptable timer presents an interesting element that
has a “proper time” determined by an interplay between the local
field (the stress sensed by the individual cell) and the group order
parameter (the population stress). In addition, as is discussed
later, the level of Spo0A∗ feeds back and regulates (via the tran-
scription factor σ H) the stress sensing system. Therefore, the local
field at a given time is regulated by the time integral of the local
stress and the population stress at previous time.

Note that since the dynamics of ComS (directly) and Spo0A∗
(via the decision gate) affect the transition probability, in prin-
ciple, an external observer cannot predict the decision of the
individual cell unless it has information about the history of the
entire population.

THE OSCILLATING GATE
Sporulation and competence are distinct fates that are induced
by similar signals. Once the cell is on its path toward sporula-
tion and Spo0A∗ starts to accumulate, a decision gate (Figure 4E)
links the decision of the two processes and opens a “window of
opportunity” for transitions into competence. A special archi-
tecture with an incoherent loop of three consecutive inhibitions
generates oscillations, opening the gate for short periods of time
in which inhibition of the stochastic switch is lifted, thus giving
rise to an increase in the transition probability (probability pulse).

THE INTEGRATED DECISION SYSTEM
Figure 4A illustrates how the above modules are integrated
together with the stress sensing unit, the cell density sensing unit
and the communication unit into a decision system that will
choose the cell’s fate.

THE STOCHASTIC SWITCH
The stochastic switch that controls entrance into competence,
illustrated in Figure 4C, is composed of the master regu-
lator ComK, a degradation complex MecA and a peptide
ComS. Self-activation of ComK through a positive feedback
loop requires its levels to rise above a certain threshold, but
ComK levels are kept low by active degradation by MecA.
At this stage, fluctuations in the basal expression of ComK
are not sufficient to reach the threshold for self-activation.
ComS has its production linked to quorum sensing signals,
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FIGURE 4 | Global presentation of the sporulation/competence decision

system. (A) Representation of the complete network. (B) Schematic
representation showing the 5 modules that constitute the network. (C) This
three-elements switch is comprised of: 1. a self-activator gene (ComK) whose
value determines the transitions—the cell enters into competence above
threshold level of ComK (this is why it is called competence master
regulator). 2. A regulator gene (ComS) whose level is determined by input
from the sensing and communication units. 3. A degrader complex (MecA)
which degrades both the ComK protein and the ComS peptide in a
competitive manner. The red parallel lines indicate regulation by degradation.
(D) This two-element timer is comprised of: 1. the sporulation master
regulator gene (Spo0A) which is self-activated by Spo0A∗ (the
phosphorylated Spo0A) (Novák and Tyson, 2008; Kuchina, 2011). Once the
level of Spo0A∗ exceeds a threshold value, the cell commits to sporulation

(the sporulation process begins and cannot be reversed). This is why Spo0A
is called the sporulation master regulator. In addition to Spo0A, the adaptable
timer is comprised of a regulator Spo0B which regulates the clock rate—the
rate of accumulation of Spo0A∗—according to the rate its protein is
phosphorylated by input from the stress sensing unit and the communication
unit. When the level of Spo0B∗ is decreased (the stress is lifted), Spo0A∗ can
phosphorylate Spo0B. This process leads to decrease in the level of Spo0A∗
meaning reversing the timer. (E) This three-element gate allows transition
into competence only within a “window of opportunity” between two values
of Spo0A∗. The special architecture of the circuit leads to generation of
oscillatory behavior within the window of opportunity. As is shown in details
further below (see Section The Decision Gate), within each oscillation the
gate opens for a short time during which the inhibition of the stochastic
switch is lifted.

and competes for degradation with ComK by binding to
the same degradation complex. When production of ComS
is increased, a larger fraction of the degradation complex
is taken up by ComS degradation, allowing ComK levels to
increase. ComS expression effectively controls the basal lev-
els of ComK and therefore also controls the probability that
fluctuations will lead to self-activation and the transition to
competence.

MODELING THE ComK-MecA-ComS CORE ELEMENT
The operation of the ComK-MecA-ComS circuit has been studied
in detail by modeling as a dynamical system with two variables—
the concentrations of ComK and ComS (concentration of the

degradation complex is fairly constant). It has been proposed that
the ComK-MecA-ComS circuit can act as a bi-stable system, an
excitable system, or both, depending on parameters (Maamar and
Dubnau, 2005; Süel et al., 2006, 2007; Schultz et al., 2007; Leisner
et al., 2008). Either excitable or bi-stable, the module acts as a
stochastic switch, the action of which can be described as activa-
tion over an effective energy barrier, whose height is regulated by
the concentration of ComS.

Here we focus on the transitions into competence and hence
in the effect of ComS on ComK. It should be mentioned, for
completeness, that the exit from competence back to the veg-
etative state is regulated by the inhibition of ComS by ComK
(note that this inhibitory link is not shown in Figure 4C). Taking
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this inhibition into account, the stand-alone dynamics of the
ComK-MecA-ComS circuit is modeled by,

dS/dt = gS0 + gSKH−
SK(K, nSK, K0S)

− �SS/[1 + (S/�S) + (K/�K)] (12)

dK/dt = gK0 + gKKH+
KK(K, nKK, K0K)

− �KK/[1 + (S/�S) + (K/�K)] (13)

S and K in these equations represent the number of peptides
ComS and proteins ComK respectively. We note that these equa-
tions are written following the notation used here and they agree
with the equations presented in Schultz et al. (2007) in the limit
that the basal production rates gS0 and gK0 are small. Typical
examples of the corresponding phase space of these equations are
shown in Figure 5 superimposed with an effective potential which
represents the effect of noise as is explained in the figure captions.

THE STOCHASTIC SWITCH AS A PARTICLE IN A POTENTIAL WELL
Here we are interested in the case that the production of ComS
is regulated by the sensing system. Hence, S (ComS) is treated as
a control parameter in Equation (13), which models the switch
operation in this case. In this one dimensional case, the time
dynamics of K (ComK) can be viewed as the overdamped (high
friction) dynamics of a particle moving under the action of
external force F(K,S), given by,

dK/dt = F(K, S) (14)

F(K, S) = gK0 + gKKH+
KK(K, nKK, K0K)

−�SS/[1 + (S/�S) + (K/�S)] (15)

Note that F(K,S) equals to the right hand side of Equation 13 for a
fixed S. We note that when S is treated as a control parameter, the
unstable competence fixed point becomes metastable. However,
doing so has an effect on the transitions from the competence

FIGURE 5 | Typical phase space for the standalone

ComK-MecA-ComS model. The nullclines for dK/dt = 0 are marked
green lines and the ones for dS/dt = 0 are marked red lines. (A) For
set of parameters which correspond to one stable fixed vegetative point
and one unstable competent fixed point. (B) For set of parameters
with bistability—coexistence of two metastable fixed points. The
superimposed effective potential was evaluated (Schultz et al., 2007) by

solving the stochastic equations (including the probability of binding and
unbinding) to evaluate the probability density, P(K,S), at the ComK-ComS
2-dimentional phase space. The effective potential is defined as −log(P).
Note that for (A) the effective potential shows a predominantly flat
region corresponding to the excursions into competence and for (B) it
shows two wells as the system can sporadically switch between the
two metastable states (Adopted from Schultz et al., 2007).

FIGURE 6 | The stochastic switch as a particle in a potential well. (A)

The bifurcation diagram as function of S acting as a control parameter
described by Equations (14) and (15). The model parameters are selected
such that the model exhibits bistability for S1 < S < S2. Details about
the model parameters are given in Schultz et al. (2007, 2013). The red
line shows the competence state that is associated with high ComK

levels; the green line shows the vegetative state that is associated with
low ComK levels. The dotted blue line shows the saddle points along the
above two stable steady states. The green, red and blue circles in (B)

illustrates the competence, vegetative and saddle point steady states
respectively. (B) The effective potential [Equation (16) for a specific value
S = S0 shown in (A)].
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state and not on the transitions into the competence state which
are the focus in this review. We use a set of parameters corre-
sponding to bistable behavior in K, which could correspond to
either the bistable or excitable model in a two-variable problem.

In Figure 6A we show the bifurcation diagram as function of
S for the above 1-dimentional model. The bifurcation diagram
reveals that below a certain concentration of ComS S1, vegetation
(low concentrations of ComK) is the only stable state, and the
system cannot enter competence. Above this threshold, the com-
petence state, with high concentrations of ComK, coexists with
the vegetative state. This bistability exists up to another concen-
tration S2, above which the vegetative state does not exist. Usually,
this threshold is well above the normal concentrations of ComS in
bacteria.

For values of ComS such that S1 < S < S2, noise can induce
spontaneous transition from the low K state to the high K state
(from the vegetative to the competent state). From physics per-
spective, the transition can be described as transitions of an
overdamped particle over a potential barrier (the high dissipation
limit of Kramers theory) as is illustrated in Figure 6B. The poten-
tial and the potential barrier for a given value So, are defined as
follows:

dU(K, So)/dK ≡ −F(K, So) (16)

�U(So) ≡ −
∫

Kv−>Kb
[F(K′, So)]dK′ (17)

Note that the “potential” U(K,So) has units of [protein
number]2/[time] as is explained in Schultz et al. (2013).

Exploiting the “particle in a well” picture and assuming a
Gaussian white noise level ε, the transition probability per unit
time τ, from the vegetation into the competence state, for a given
value S = So, is given by

τ = � exp[−�U(S0)/ε]. (18)

� is the attempt frequency according to Kramers theory in the
high dissipation limit: � = γωV/ωB where γ is the effective fric-
tion and ωV and ωB are the second derivatives (frequencies) of
the potential at KV and KB respectively. We emphasize that the
effective noise is associated with binding and unbinding of ComK
to its own promoter and the binding and unbinding of ComK and
ComS to the complex MecA. Therefore, a more accurate approx-
imation should involve extension of Kramers theory for the case
of state dependent shot like noise. In either case the transition
probability strongly depends on the potential barrier �U(S =
So). Since the potential barrier decays rapidly to zero from S =
S1 to S = S2, the transition probability is very sensitive to the
value of ComS as a control parameter. For systems with multi-
ple components, similar formulism remains applicable, where the
corresponding landscape can be defined as U = −log(P) (see Lu
et al., 2014b, for a generic landscape construction method based
on the WKB approximation).

COLLECTIVE CONTROL OF THE INDIVIDUAL TRANSITION PROBABILITY
Cell density and population stress control the level of ComS,
and hence the transition probability of each individual cell.

More specifically, the quorum sensing pheromone ComX, whose
level is proportional to the population density, activates the
production of ComS via the quorum sensing ComP-ComA two-
component circuit (Comella and Grossman, 2005). The level
of ComS is further controlled by the population stress through
control of the ComP-ComA circuit by input received from the
communication unit.

The collective control of competence transitions of individual
cells by cell-cell signaling guarantees that the competence phe-
notype will only be selected at higher colony densities and high
stress, when free DNA is more abundant in the environment.
The regulation of competence initiation is therefore inserted in
a context of high social complexity in the B. subtilis lifecycle,
where accumulation of stress signals dictates cell decisions. In
other words, the basal expression of ComK that determines the
odds of competence transitions is ultimately regulated by the two
order parameters that describe the state of the population. The
values of these order parameters are sensed by all cells in a neigh-
borhood, in order to collectively control the individual transition
probabilities.

GATING OF THE STOCHASTIC SWITCH
While collective order parameters control the transition probabil-
ity of the stochastic switch of an individual cell, a special decision
gate composed by AbrB and Rok prevents competence transi-
tions. The gate opens and allows transitions only after the cell
has been exposed to sufficiently high stress, for sufficiently long
time (as measured by the adaptable timer described in the next
section). The special oscillating dynamics of the decision gate is
presented in section The Decision Gate. The gate prevents the
transition into competence by transcription inhibition of ComK
by both of its genes—AbrB and Rok—independently (Figure 4E).
When these effects are incorporated, Equation (15) is replaced by
the following dynamical equation:

dK/dt = [
gK0 + gKKH+

KK(K, nKK, K0K)
]
�(B, R)

−�SS/[1 + (S/�S) + (K/�S)] (19)

�(B, R) = H−
KB(B, nKB, B0)H−

KR(R, nKR, R0) (20)

We note that the “ComK inhibition” I defined in Schultz et al.
(2013) is equal to [1 − �(B, R)] (the rational in that article was
that I = 0 when there is no inhibition). The above equations com-
bined with the calculations of the transition probability are used
in section The Decision Gate to evaluate the transition probability
of the gated stochastic switch.

THE ADAPTABLE TIMER
BIOCHEMICAL BACKGROUND: SENSING AND INFORMATION
TRANSFER BY PHOSPHORYLATION
Kinases are special enzymes that are able to transfer a phosphate
group in a process called phosphorylation. Kinases can recognize
and phosphorylate other kinases, in a cascade, until the phosphate
group reaches the final target, usually activating or deactivat-
ing an effector protein by conformational changes (Bijlsma and
Groisman, 2003; Veening et al., 2005). Phosphorylation cas-
cades are a common strategy used by cells to integrate many
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levels of control into a process, forming networks where spe-
cialized enzymes can introduce, transfer, or remove phosphate
groups from the cascade. These regulatory networks operate at
much faster timescales than those involving the expression of
genes. Kinases can use different amino acids to bind to the
phosphate group, which means they can have different affinities.
While some kinases divide their time between the phosphorylated
and unphosphorylated state, other kinases transfer the phos-
phate immediately upon phosphorylation. The concentrations
of the former are of great importance to the flow of phosphate
through the system, while the concentrations of the latter are
not important as long as they are abundant enough not to be
rate-limiting. Some kinases can auto-phophorylate in response to
signals and introduce phosphates into the cascade, while enzymes
called phosphatases specialize in removing phosphate from their
substrates. Phosphatases are often connected to communication
modules and exert control over the flow of phosphates through
the system.

A typical mechanism of control in response to a signal is the
two-component system. It is composed of a histidine kinase and a
response regulator. Histidine kinases have lower affinity for phos-
phate, transferring it immediately upon phosphorylation. They
often auto-phosphorylate in response to signals. Response regu-
lators are activated upon phosphorylation and carry out the effect
in response to the signal. They are usually kinases or transcrip-
tion factors. A typical operation of a two-component system starts
with a histidine kinase h, undergoing auto-phosphorylation in
response to a signal s. A response regulator r is quickly phospho-
rylated by h and becomes active.

TIME MEASUREMENT BY GENE CIRCUIT
Several aspects need to be taken into consideration by the cell
when choosing the correct time to sporulate. As soon as condi-
tions worsen and the cell enters the stationary phase the clock
starts ticking, but in an ever-changing environment where sev-
eral noisy stress signals have to be taken into consideration, the
cell needs to filter out the environmental noise. Therefore, the
cell fate decision follows integrating several stress signals over
sufficient time. Five different kinases respond to different stress
signals. They integrate the information and transfer it to the
timer via a cascade of phosphate propagation, which ends in
phosphorylation of Spo0A.

BIOLOGICAL PROPER TIME—COLLECTIVE NORMALIZATION OF THE
CLOCK RATE
Since Spo0A∗ acts as an activator of Spo0A, the information
transfer leads to a rapid progression of the effective “proper
time” which is represented by the level of Spo0A∗ (Shafikhani
and Leighton, 2004; Schultz et al., 2009). From a physics per-
spective it means that the proper time is the time normalized
by the experienced stress level. More specifically, the clock rate
(rate of accumulation of Spo0A∗), is adjusted according to the
severity of the stress, as in an hourglass with an adjustable neck.
It can even be set backwards in case of alleviation of the condi-
tions. The phosphorelay is composed of two two-element circuits
acting in series: a sensing two-component system (KinA-E –
Spo0F) that measures cell stress, and a regulatory two-component

circuit (Spo0B – Spo0A) that determines the entry into sporula-
tion. KinA-E are five histidine kinases which autophosphorylate
in response to different stress signals. This phosphate is quickly
transferred to serine kinase Spo0F, which is subject to dephos-
phorylation by the communication unit according to information
received from other cells. Histidine kinase Spo0B quickly shut-
tles phosphate between Spo0F and Spo0A, the final destination.
As phosphate is transferred down the phosphorelay, it starts the
accumulation of Spo0A∗, which induces the production of a
sporulation specific sigma factor σH. σH activates the transcrip-
tion of Spo0F, allowing higher information flow (larger flow of
phosphate) through the system. Concentrations of the histidine
kinases are not important, since they do not keep the phosphate
very long, and are in abundance.

THE DECISION GATE
The decision gate allows transition into competence only within
a “window of opportunity” between two values of Spo0A∗. The
part of the decision gate constituted by Spo0A-AbrB-Spo0E oscil-
lates within that window of opportunity. Spo0A∗ is dephospho-
rylated by Spo0E, which is transcriptionally inhibited by AbrB,
which in turn is transcriptionally inhibited by Spo0A∗. These
three genes form a special repressilator-like architecture (Elowitz
and Leibler, 2000). The classical repressilator is a well-studied
gene circuit consisting of a 3-gene inhibition loop, i.e., gene A
represses gene B that represses gene C, which in turn represses
A (ABC for short). The circuit has been implemented experi-
mentally in a cell, and showed oscillatory behavior (Elowitz and
Leibler, 2000).

TRANSCRIPTION DRIVEN REPRESSILATOR
To better understand the functional role of the various features
of the Spo0A-AbrB-Spo0E circuit, we first inspect the dynamics
of a classical ABC that is transcription driven by an external sig-
nal S. The deterministic equations of such driven repressilator are
given by:

dA/dt = [gA + gAAH+
AA(A, nAA, A0A)

+ gASS]H−
AC(C, nAC, C0A) − kAA (21)

dB/dt = gBH−
BA(A, nBA, A0B) − kBB (22)

dC/dt = gCH−
CB(B, nCB, B0C) − kCC (23)

The gene base production rates are gX (X stands for A, B and C
respectively) and the corresponding protein degradation rates are
kX. Note that Equation (21) contains a term for A self-activation.

These three-coupled ordinary deterministic equations of the
repressilator model, define a 3-dimensional phase space. When it
comes to 3-dimensional phase space, the nullclines are replaced
by nullsurfaces. For dA/dt = 0, dB/dt = 0 and dC/dt = 0. In
Figure 7A we show the nullsurfaces, the flow in the phase space
and the trajectory of the limit cycle for a specific value of the
driven signal S for which oscillatory solution exist. The corre-
sponding time dynamics of the number of proteins is show in
Figure 7B. In Figure 7C we show the bifurcation diagram as func-
tion of the driving signal and in Figure 7D we shown the time
dynamics when the signal is increased in time.
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FIGURE 7 | The dynamics of a driven self-activating repressilator. The
results are for the model presented in Equations (21–23) when A is
self-activating and is also linearly driven by an external input signal (Schultz
et al., 2013). (A) The 3-diemnsional phase space for level of the input
signal which corresponds to oscillating dynamics. The figure shows the
nullsurfaces, the flow in the phase space and the limit cycle of the
oscillating dynamics. (B) Time dependence of the number of proteins for

the oscillating dynamics. (C) The bifurcation diagram as function of the
input signal. The solid blue lines are the upper and lower bounds of the
(B) levels during the stable oscillation, while the dashed blue line shows
the mean (B) levels. The red cross and yellow cross show the left and
right bifurcation points. (D) The dynamics when the input signal is
increased in time from the oscillating to the non-oscillating regions of the
bifurcation (Adopted from Schultz et al., 2013).

It has been shown (Schultz et al., 2013), that for specific
choices of “realistic” circuit parameters, the oscillatory behavior
start above a threshold signal level S1 and exist up to a second
higher signal level S2. The “realistic parameters” used in the sim-
ulations were selected to fit typical protein concentrations and
time scales of protein synthesis and degradation, and were scaled
to fit the case of the in vivo engineered repressilator (Elowitz
and Leibler, 2000) such that time is measured in minutes and
the concentrations in number of proteins per cell (Schultz et al.,
2013). A variant of the classical repressilator in which A is self-
activated was also investigated since self-activation of Spo0A plays
important role in the dynamics of the Spo0A-AbrB-Spo0E circuit.

PHOSPHORYLATION DRIVEN REPRESSILATOR
The Spo0A-AbrB-Spo0E circuit can be regarded as a phospho-
rylation driven self-activating repressilator where A∗ (Spo0A∗),
the phosphorylated Spo0A, inhibits B (AbrB) which inhibits E
(Spo0E). Moreover, E dephosphorylates A∗, while the input signal
(IS = S) phosphorylates A. A is activated by A∗. The correspond-
ing deterministic dynamics is described by the following coupled
equations for A, A∗, B and E:

dA/dt = [gA + gAAH+
AA(A∗, nAA, A∗

0AA)]
− phASISA + dphA∗EEA∗ − kAA (24)

dA∗/dt = phASISA − dphA∗EEA∗ − kA∗A∗ (25)

dB/dt = gBH−
BA∗(A∗, nBA∗ , A∗

OBA∗)

H−
BB(B, nBB, B0BB) − kBB (26)

dE/dt = gEH−
EB(B, nEB, B0EB) − kEE, (27)

where phAS is the rate constant of the Spo0A phosphorylation
by the input signal, and dphA∗E is the rate constant of Spo0A∗
dephosphorylation by Spo0E. H−

BB(B, nBB, B0BB) is the inhibitory
Hill function describing the self-inhibition of AbrB. In Figure 8
we show example of the oscillatory behavior of the Spo0A-AbrB-
Spo0E circuit. This figure illustrates (as explained in Schultz et al.,
2013) that the phosphorylation/dephosphorylation regulation,
instead of transcription regulation, enables the confinement of
the oscillations within a narrower time window. This permits bet-
ter coordination between the decisions made by different cells. We
also show in the figure that while the gate can exhibit oscillations
for a wide range of parameters (as shown in Schultz et al., 2013),
not all parameter sets generate oscillations.

TURNING OSCILLATIONS INTO OPPORTUNITIES
AbrB and Rok are both self-inhibitory genes that also act as an
inhibitor of ComK (Figure 9A). The dynamic equation describing
the concentration of Rok models the inhibition of Rok by AbrB by
an inhibitory Hill function H−

RB(B, nRB, B0), which is multiplied
by inhibitory Hill function H−

RR(R, nRR, B0) representing the self-
inhibition of Rok (Albano, 2005; Schultz et al., 2013). Thus, the
deterministic dynamics of Rok is described by

dR/dt = gRH−
RB(B, nRB, B0)H−

RR(R, nRR, R0) − kRR. (28)
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FIGURE 8 | The dynamics of transcription driven and phosphorylation

driven repressilators. (A,B) Show the two genetic circuits. (C) Shows
their typical dynamical properties. (a) Time dynamics for the transcription
driven repressilator circuit in (A), where gene A is self-activation and we
consider a Hill signal response (see Equation 10). The signal is linearly
increased at rate 0.125 proteins per min. The plot shows levels of
protein A (red solid line), B (navy solid line) and C (light blue solid line).
(b) The bifurcation diagram associated to plot (a). The plot shows the
range of the protein B levels as the function of the constant signal level

(X-axis). When the signal level is below or above the two bifurcation
points as shown in brown and orange, the circuit is at a stable steady
state (the protein level is shown in black). Between these bifurcation
points, the circuit exhibits oscillation. The plot shows both the maximum
and minimum levels of protein B (solid blue line) and the average levels
(dotted blue line). (c,d) show similar plots but for the phosphorylation
driven circuit in (B), where circuit parameters yield oscillation (case I).
(e,f) are similar to (c,d), but for parameters that do not lead to
oscillations (case II) (Adopted from Schultz et al., 2013).

Therefore, the oscillations in AbrB induce reciprocal oscillations
in Rok but with some small phase shift (Figure 9B). At each oscil-
lation there exists a short time interval during which both AbrB
and RoK levels are sufficiently low that the mutual inhibition of
ComK is lifted (the gate is opened) as is shown in Figure 9C.
Each opening of the gate leads to a temporary increase in the
basal concentration of ComK (Figure 9D), which in turn raises
the probability of a transition into competence. In the presence
of noise, the resulting increase in the level of ComK leads to an

increase in the probability per unit time of transition into com-
petence, as is shown in Figure 9E. The final outcome is that the
decision gate opens a window of opportunity with several spikes
of transition probability (one for each oscillation) and, hence, the
accumulated transition probability increases in steps (Figure 9F).

In the example shown in Figure 9 the accumulated probability
of competence transitions is about 0.06. Despite that the probabil-
ity depends on the circuit parameters, we note that, with “realistic
parameters,” the accumulated transition probability is typically
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FIGURE 9 | Typical dynamics of the AbrB-Rok decision gate. (A) The
circuit diagram for the AbrB-Rok gating. (B) The reciprocal oscillatory
dynamics of both the AbrB and Rok. (C) The time dynamics of the
ComK Inhibition (I = [1 − �(B,R)]). The red dash line shows the
threshold level of I, below which the system allows competence

transition. (D) The time dynamics of ComK. (E) The corresponding
transition probability per unit time showing the “opportunity spikes”
produced at each oscillation. (F) The corresponding accumulated
probability of competence transitions before commitment to sporulation
(Adopted from Schultz et al., 2013).

between 0.01 and 0.1, which agrees well with experimental obser-
vations.

NOISE MANAGEMENTS
Cell fate determinations are carried out with special capacity
for different noise management by the different modules. For
example, the ComK stochastic switch is driven by noise that
is required for transitions into competence, where the ComK
positive feedback loop is activated when fluctuations lead the
ComK concentration to cross a certain threshold. On the other
hand, the adaptable timer has to integrate stress signals over time
and filter out environmental noise (Schultz et al., 2009, 2013).
If the cell fails to do so, undesirable stress fluctuations would
lead to a bad decision to sporulate at wrong times. The AbrB-
Rok decision gate bridges these two modules that have opposite
requirements of noise response. Therefore, efficient coordina-
tion between these modules calls for special noise management
characteristic associated with distinct circuit architecture. In this
section we show that the special architecture of the AbrB-Rok gate
affords special noise management capabilities; it can efficiently

filter out external noise and at the same time adds to the noise in
the regulation of ComK (low concentration—high noise) (Ben-
Jacob and Schultz, 2010). We also show that the circuit harnesses
noise to be less sensitive to the circuit parameters thus utilizing
noise to reduce the effect of cell-cell variability. Thus, we inves-
tigated the role of the AbrB-Rok gate in managing external and
internal noise.

FILTERING OUT EXTERNAL NOISE
It has been shown that the cell decision-making between sporu-
lation and competence is insensitive to external noise for the case
where the parameters allow oscillations (such as the one presented
in Figure 7). More specifically, we showed that noise on the input
signal only slightly changes the accumulated transition probabil-
ity into competence (Schultz et al., 2013). In other words, the
circuit functions to integrate the stress signals while filtering out
noise, guaranteeing a robust response. In Figure 9 we show that
addition of external noise to a system with non-oscillating param-
eters (such as the one presented in Figure 7) leads to oscillations,
yet the accumulated transition probability is only slightly affected.
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FIGURE 10 | The effect of external noise for the non-oscillating case

shown in Figure 8. (A) A typical dynamical behavior—dynamics of
protein levels for all Spo0A (including both Spo0A and Spo0A∗, solid red
line), Spo0A∗ (dash red line), AbrB (solid navy line) and Spo0E (solid
yellow line). (B) The corresponding dynamics of the ComK inhibition

I = [1 − �(B,R)] defined in Equation (20). (C) The accumulated transition
probability into competence before commitment to sporulation. (D) Time
dynamics of the input signal I. The I value is zero at time 0, and
approaches to about 3 (in A.U.) at time 800 mins. (Adopted from Schultz
et al., 2013).

MANAGEMENT OF INTERNAL NOISE
We used a stochastic approach to investigate the management of
internal noise for the AbrB-Rok gate. Here, instead of using differ-
ential equations that depict the deterministic dynamics, we mod-
eled the system by considering protein binding and unbinding,
synthesis and degradation as stochastic events. The probabilities
of having each stochastic event are set to match the rate constants
in the deterministic equations, while the noise level is adjusted
by choosing different levels of binding and unbinding rates, taken
from Schultz et al. (2013). The system was then simulated with
the Gillespie algorithm (Gillespie, 1977).

For circuit parameters which allow oscillations in the deter-
ministic case (the oscillatory case), the internal noise makes the
oscillations to be less ordered, yet accumulated transition proba-
bility is kept almost unchanged, as is illustrated in Figures 11, 12
(Schultz et al., 2013). For parameters that do not show oscilla-
tory dynamics in the deterministic case, the internal noise has a
greater effect. It can induce oscillations that look similar to those
for the case where the deterministic dynamics is oscillatory, as is
shown in Figure 10. Yet, the noise has only weak effect on the
accumulate transition probability as is shown in Figure 11. So,
the unique architecture of the AbrB-Rok gate allows the system
to have oscillatory dynamics even when there is no oscillation in
the deterministic limit. Moreover, the special noise management
makes the dynamics more robust against variations in the circuit
parameters.

The results in this section illustrate the special noise manage-
ment capabilities of the decision gate. The special architecture
of this element leads to oscillations that are less sensitive to
circuit parameters and less sensitive to internal noise. For param-
eters whose deterministic dynamics is not oscillating, noise can
generate oscillations, rendering the operation of the gate to be less

sensitive to cell-cell variations in circuit parameters. Being driven
by phosphorylation instead of transcription, the repressilator has
a narrow and well-defined “window of opportunity” and is less
sensitive to fluctuations in external stress.

TOWARD POPULATION LEVEL—LOOKING AT THE
ENSEMBLE
GLOBAL DESCRIPTION OF THE COMMUNICATION UNIT
In order to synchronize neighboring cells, additional mechanisms
exist where the cell sends and receive signals that are informative
of their stress levels. The ones that are of particular interest for
the decision between competence and sporulation are the quo-
rum sensing (described earlier) and the Rap system. The Rap
system expresses a series of phosphatases that act by slowing
down the accumulation of stress and also exports matching sig-
naling peptides that inactivate these same phosphatases (Core
and Perego, 2003; Smits, 2007; Bischofs et al., 2009; Schultz
et al., 2009). These signals are then averaged in the environ-
ment and re-imported to regulate the action of the phosphatases,
guaranteeing robustness of the colony against cell-to-cell vari-
ations. There are over 11 different pairs of Rap proteins and
their matching pheromones identified in B. subtilis, including
many redundant ones. We will illustrate their mechanism by the
showing the role of RapA. When a cell senses stress, it starts
speeding in the path to sporulation by accumulating Spo0A∗.
RapA is induced by quorum sensing and slows down the accu-
mulation of Spo0A∗ by dephosphorylating Spo0F∗. At the same
time, the matching pheromone PhrA is exported to the environ-
ment. As the concentration of PhrA in the environment reaches
convenient levels, all cells have their RapA proteins inactivated
at the same time, guaranteeing a synchronized entrance into
sporulation.
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FIGURE 11 | The effects of internal noise on the circuit dynamics.

Panel (A) Is for the oscillating case; Panel (B) is for the
non-oscillating (b) case. The simulations were performed by Gillespie
algorithm. Panels (a) show the dynamics of the protein levels for
each gene for specific realization where unbinding rate is 5 per min

for both the oscillating and the non-oscillating cases shown in
Figure 7. Panels (b) show the dynamics of the ComK Inhibition
I = [1 − �(B,R)], defined in Equation (20). Panels (c) show the
accumulated transition probabilities for competence (Adopted from
Schultz et al., 2013).

SIMPLIFIED MODELING OF CELL-CELL COMMUNICATION AS
EXCHANGE INTERACTIONS
Despite the complicated nature of these pathways, one can sim-
plify the modeling of cell-cell communication by introducing
feedback terms to the input signal. The feedback term is modeled
to be proportional to the master regulator of the process, with lev-
els taken from all interacting cells and with a time delay to account
for the processes in the signal transduction. Intuitively, the time
delay for inter-cellular communication should be larger than that
for the intra-cellular communication because of the diffusion of
the pheromones.

As a step toward modeling the effect of cell-cell communica-
tion we present here a simple example of two interacting cells as
is illustrated in Figure 13A. The equations for the input signals for
each of the cells, including input from the other cell and feedback
from Spo0A∗ (A∗), are given by

S1(t) = c + mt + q11A∗
1(t − τ2) + q21A∗

2(t − τ1) (29)

S2(t) = c + mt + q12A∗
2(t − τ2) + q22A∗

1(t − τ1), (30)

where c + mt is the linear signal initially presented in the single
cell modeling of the Spo0A circuit, c = 0.25, m = 0.0028, τ1 =
10 min, τ2 = 5 min, and qij(i, j = 1, 2) are four coupling con-
stants. Here, we assume q11 = q22 = q,q12 = q21 = 0.8q. The
equations for the Spo0A circuit are the same as Equations
(24)–(27).

In Figure 13B we show the results for a special case in which
the uncoupled cell 1 is oscillating while cell 2 has non-oscillating
stand-alone dynamics. We found that coupling between the two
cells induce oscillations in both cells within similar “window of
opportunity.” These results illustrate the special architecture of
the decision gate coupled with the communication unit leading
to coordinated decisions.

CONCLUSIONS
Here we introduced the physics of bacterial decision-making
using the intricate network used by B. subtilis for fate deter-
mination between sporulation and competence as our guiding
example. The idea was to illustrate that taking physics approach
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enables us to simplify the complexity of the integrated decision
network by identifying the basic functional modules and to study
the dynamics of each module by further reduction into very
simple gene circuits of only two or three components. From a
physics perspective, one of the great challenges posed by col-
lective decisions is to understand the special interplay between
the individual cell and the population as a whole. More specifi-
cally, the challenge is to understand the noise management feature
which leads to coordinated (or collectively controlled) stochastic
decisions on the single cell level with predicted outcome on the
population level. While each cell is freely to choose its own fate,
the sporulation/competence ratio is collectively regulated to suit
current conditions according to the requirement of the colony as
a whole.

We showed that the decision-making during stochastic cell
differentiations has a special capacity of noise managements

FIGURE 12 | Effects of the unbinding rates on the accumulated

transition probability for the oscillating (Case I) and non-oscillating

(Case II) cases. See Schultz et al. (2013) for details. Case I: crosses and
navy line (shown in Figure 8A); Case II: stars and red line (shown in
Figure 8B) (Adopted from Schultz et al., 2013).

at different circuit modules and different times in line with a
desired function. For instance, it is undesirable to have noise in
the adaptable timer (in the Spo0A phosphorylation pathway).
Fluctuations in stress experienced by the individual cell must
not lead to a decision to sporulation at inconvenient times since
it could be harmful to the whole colony. Thus, the system has
evolved to filter out transient activations and guarantee a robust
response by integrating stress signals over time (Schultz et al.,
2009). On the other hand, noise drives the ComK stochastic
switch, where the ComK positive feedback loop is only activated
when fluctuations in the ComK concentration lead it to cross a
certain threshold.

An important yet less studied aspect of the sporula-
tion/competence decision system is the AbrB-Rock decision gate,
whose task is to regulate the opening/closing of the ComK
stochastic switch based on the Spo0A timer. Efficient perfor-
mance of coordination between two modules with opposite noise
requirements calls for distinct circuit architecture with special
dynamics and noise management characteristic.

Taking a physics approach, we searched for general princi-
ples and suggested that physics modeling helps to understand
the operation-architecture principles of the decision gate: (1)
“Inhibition of inhibition”—Spo0A∗ inhibits the gate while the
gate further inhibits ComK. (2) Circuit motif of phosphory-
lation driven repressilator. (3) “Window of opportunity” with
oscillatory dynamics. “Inhibition of inhibition” has the advan-
tage in that the gate is insensitive to the noise from Spo0A∗
(high concentration—low noise) and meanwhile it adds to the
noise in the ComK regulation (low concentration—high noise)
(Ben-Jacob and Schultz, 2010). Since each oscillation increases
the transition probability to competence of each cell by steps, we
believe it has the advantage to improve coordination between cells
as is discussed below.

As was mentioned earlier, the noise management of the gate
makes its operation to be less sensitive to the circuit parame-
ters (which describes cell-cell variations). Being phosphorylation

FIGURE 13 | The gate dynamics of two coupled cells. (A) The schematic circuit illustrating the coupling between the two cells and the feedback from the timer
to the sensing system. (B) Left—The standalone dynamics of an oscillating and a non-oscillating cell. Right—The dynamics of the two cells when they are coupled.
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driven (rather than transcription driven), the repressilator has
a narrower and more well-defined “window of opportunity.”
Besides, it is less sensitive to noise in the external stress.

Because neither sporulation nor competence is beneficial to a
single cell, it is crucial that the decision to commitment to sporu-
lation vs. escape into competence is made within a time frame
that is coordinated with the other cells. Here, the phosphorylation
driven repressilator motif enables narrow windows with the oscil-
lating dynamics, which is important for cell-cell coordination. At
each oscillation the cell secrets a pheromone signal when level of
Spo0A∗ (through the regulation of the Rap communication mod-
ule) increases. Meanwhile, Spo0A∗ has a positive feedback with
time delay via its activation of Spo0F, and the cell receive signals
from the other cells.

Looking ahead, the novel principles discovered in the context
of sporulation vs. competence decision-making are likely to be
relevant to some other cases of collective decisions of stressed
bacteria, such as fratricide, cannibalism, and spore germination
if conditions are improved. The adoption of different pheno-
types by genetically similar members of the colony has interesting
aspects relating to game theory. The adoption of a certain phe-
notype brings advantages and comes at a cost to the cell, and
these advantages and costs depend not only on the environment,
but also on the decisions of other cells in the colony. Decisions
about the cell’s fate are made in negotiations with neighboring
cells, corresponding to a game where the players exchange infor-
mation with each other. Strategies are not necessarily optimized
by the cells personal interests, but also by the common good of
the colony. Unlike most games, time is an important aspect of the
formulation of bacterial decision-making. In the case of sporu-
lation, for instance, the cell needs to choose the right time to
initiate the highly energy consuming process. If a cell sporulates
too early, conditions might improve and leave the cell abandoned
by their peers. If a cell waits in a low energy consumption state,
there might be less competition in case conditions get better. If
a cell waits too long, there might not be enough resources left
to complete the sporulation process. It is also worth mentioning
that physics-based approach can be applied to understand the fat
determination of some other biological systems, such as meiosis
differentiation in yeast (Nachman et al., 2007), Epithelial-to-
mensenchymal transitions in metastatic cancer (Lu et al., 2013a,b,
2014a; Tian et al., 2013; Zhang et al., 2014) and phenotypic vari-
ability in mammalian progenitor cells (Chang et al., 2008; Wang
et al., 2011).
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