
ORIGINAL RESEARCH ARTICLE
published: 11 December 2014

doi: 10.3389/fcimb.2014.00169

Modeling early events in Francisella tularensis
pathogenesis
Joseph J. Gillard1, Thomas R. Laws1, Grant Lythe2* and Carmen Molina-París2

1 Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
2 Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK

Edited by:

Chad J. Roy, Tulane University, USA

Reviewed by:

Lee-Ann H. Allen, University of
Iowa, USA
Max Maurin, Université
Aix-Marseille II, France

*Correspondence:

Grant Lythe, Department of Applied
Mathematics, School of
Mathematics, University of Leeds,
Leeds LS2 9JT, UK
e-mail: grant@maths.leeds.ac.uk

Computational models can provide valuable insights into the mechanisms of infection and
be used as investigative tools to support development of medical treatments. We develop
a stochastic, within-host, computational model of the infection process in the BALB/c
mouse, following inhalational exposure to Francisella tularensis SCHU S4. The model is
mechanistic and governed by a small number of experimentally verifiable parameters.
Given an initial dose, the model generates bacterial load profiles corresponding to those
produced experimentally, with a doubling time of approximately 5 h during the first 48 h
of infection. Analytical approximations for the mean number of bacteria in phagosomes
and cytosols for the first 24 h post-infection are derived and used to verify the stochastic
model. In our description of the dynamics of macrophage infection, the number of bacteria
released per rupturing macrophage is a geometrically-distributed random variable. When
combined with doubling time, this provides a distribution for the time taken for infected
macrophages to rupture and release their intracellular bacteria. The mean and variance
of these distributions are determined by model parameters with a precise biological
interpretation, providing new mechanistic insights into the determinants of immune and
bacterial kinetics. Insights into the dynamics of macrophage suppression and activation
gained by the model can be used to explore the potential benefits of interventions that
stimulate macrophage activation.
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1. INTRODUCTION
Francisella tularensis is a gram-negative bacterium that may be
inhaled in an aerosol, resulting in respiratory or pneumonic
tularemia (Oyston et al., 2004; Larsson et al., 2005; Oyston, 2008).
Of its four subspecies, F. tularensis subspecies tularensis (type A) is
the most lethal for humans, hence its designation as a category A
biothreat agent by the Centers for Disease Control and Prevention
(CDC). Much of the information describing its pathogenesis has
been compiled using an attenuated type B strain, known as live
vaccine strain (LVS) (Fortier et al., 1991; Ellis et al., 2002; Cole
et al., 2011). However, in this paper we are concerned exclusively
with F. tularensis type A, strain SCHU S4, which will be referred
to below simply as F. tularensis.

F. tularensis is able to subvert, resist, or evade killing by antimi-
crobial defenses (Bosio et al., 2007; Jones et al., 2012). It enters
alveolar macrophages (Ellis et al., 2002; Clemens et al., 2005; Hall
et al., 2008; Straskova and Stulik, 2012) and dendritic cells (DCs)
without inducing their classical activation (Mosser, 2003) or the
release of pro-inflammatory cytokines. It is phagocytosed by alve-
olar macrophages, but is able to survive and escape from the
phagosome to the cytosol in less than 1 h (Golovliov et al., 2003;
Jones et al., 2012). After multiple rounds of division in the cytosol,
the high bacterial load eventually causes the host macrophage
to rupture and die, releasing many bacteria (Cowley and Elkins,
2011).

By entering macrophages without alerting the innate immune
system, F. tularensis gains time for an initial growth of its pop-
ulation by replication in their hosts’ cytosols (Polsinelli et al.,
1994). The typical number of bacteria released from a ruptured
macrophage, initially infected by a single bacterium, is estimated
to be more than 100 (Wood et al., 2014). Further time is gained
by active suppression of the inflammatory response to the debris
from cell death. Infected macrophages and DCs display dimin-
ished responsiveness to lipopolysaccharide (LPS) (Telepnev et al.,
2003; Bosio et al., 2007). Despite rapid replication of bacteria and
rupture of host macrophages, F. tularensis does not elicit the typi-
cal pro-inflammatory responses associated with acute pulmonary
bacterial infections within the first 48 h of infection, consistent
with the hypothesis that F. tularensis induces local and systemic
production of the transforming growth factor TGF-β (Bosio et al.,
2007; Hall et al., 2008). Increased TGF-β levels have been found
in the lungs and spleen of SCHU S4-infected mice compared with
uninfected controls, 24 h post-infection (Bosio et al., 2007).

Because F. tularensis prevents immune recognition and the
production of pro-inflammatory cytokines for up to 72 h
post-infection (Jones et al., 2012), the subsequent response is
hypercytokinetic and often fatal (Cowley and Elkins, 2011).
Damage-associated molecular patterns (DAMP), such as the
high-mobility group protein B1 (HMGB1), are detected at above
normal levels in blood serum only after 72 h post-infection
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(D’Elia et al., 2013). Treatment of mice with anti-HMGB1 anti-
body causes a more effective immune response, characterized by
increased levels of the interferon IFN-γ , which can widen the
window of opportunity for antibiotic therapy (D’Elia et al., 2013).

Several notable examples of within-host mathematical mod-
els of infection have been published. For instance, in the con-
text of Mycobacterium tuberculosis infection, Day et al. (2009)
have considered the balance between populations of classically
and alternatively activated macrophages (Gordon, 2003; Gordon
and Martinez, 2010; Mattila et al., 2013). Their mathematical
model, a system of ordinary differential equations (ODEs), is
based on the two-compartment model (lung and lymph node)
of Marino and Kirschner (2004). A hybrid model of M. tubercu-
losis that is agent-based in the lung compartment and a system
of ODEs in the lymph node compartment has also been devel-
oped (Marino et al., 2011). Day et al. (2011) developed a two-
compartment ODE model of host response to inhalation anthrax,
while the deterministic computational model of Gutting (2014),
that describes the bacterial kinetics of inhalational anthrax in
New Zealand white rabbits, is a physiological-based bio-kinetic
model in which one compartment is the lumen of the airways
and the other the rabbit body. A two-compartment model, with
movement of cells on a a two-dimensional lattice, has been devel-
oped by Attie and Daefler (2013). However, there are no prior
examples of mechanistic computational models of F. tularensis
SCHU S4 infection that have been developed for the explicit pur-
pose of supporting the investigation and development of medical
treatments.

Research into the development of treatments for F. tularensis
infection revolves around the use of validated animal models to
gain understanding of the mechanisms of pathogenesis and host
response and to explore potential targets for intervention. The
aim of the present study is to develop a computational model
based on the BALB/c mouse model of inhalational SCHU S4
infection, that can be used as an investigatory tool to support
experimentalists. Such a model must represent the key pro-
cesses mechanistically; be determined by biologically relevant and
measurable parameters; accurately simulate bacterial growth and
proliferation, as observed in vivo, and offer the facility to represent
medical interventions explicitly.

We present a stochastic model of F. tularensis SCHU S4 infec-
tion, with an object-oriented design that facilitates the addition of
further levels of complexity in the future. The model includes bac-
terial replication in macrophages and three spatial compartments
for which experimental results have been reported by D’Elia et al.
(2013). We model the immune subversion tactics employed by
F. tularensis during infection ensuring that, even after phagosomal
escape, infected macrophages are in a deactivated state in which
they are not able to induce inflammatory responses (Gordon,
2003; Mantovani et al., 2004; Bosio et al., 2007; Dai et al., 2013;
Gillette et al., 2014; Martinez and Gordon, 2014). We shall refer
to this macrophage state as “suppressed.” While macrophages
exhibit a continuum of activation states (Mosser and Edwards,
2008), in our computational model we restrict attention to the
most pertinent states, wherein macrophages become classically
activated either by the effect of pro-inflammatory signals or
in the presence of sufficient concentrations of IFN-γ . Thus,

macrophages are represented broadly as resting, suppressed or
activated. For this paper we consider in detail the first 48 h of
infection and focus principally on events in the lung compart-
ment. Immune response is dominated by resident macrophages
during this early phase, therefore these phagocytes are considered
primarily.

By being able to describe the pathogenesis computationally, we
can gain insight into processes that are not necessarily accessi-
ble though experimental means. Ultimately, this work is a step
towards a capability for conducting in silico investigations to help
design in vivo experiments for evaluating candidate therapeutics
for highly dangerous pathogens.

2. MATERIALS AND METHODS
2.1. MODEL DESCRIPTION
In this section the development of a computational model of the
early stages of F. tularensis infection, following aerosol exposure,
is presented. The simplest stochastic models of cell populations
are birth-and-death processes (Taylor and Karlin, 1998; Stirzaker,
2005; Lythe and Molina-París, 2011), where the size of the popu-
lation changes by one cell at a time, due to the death or division of
one of the cells in the population. Such models can be extended
to multi-dimensional Markov processes, where the variables are
the numbers of cells in distinct populations (Wood et al., 2014).
Here, we maintain the framework of evolution of the system
by a series of discrete events, extending the description of the
population by giving each macrophage four attributes: a spatial
location, a state of activation, a number of phagosomal bacte-
ria, and a number of cytosolic bacteria. Events are no longer
restricted to birth and death of cells; they affect the number, or
the attributes, of cells of different types. The prescription of the
mathematical model is an enumeration of the possible events and
how their rates depend on parameters, and on the current state
of the system. Given the parameters and their values, numerical
solutions are generated using the Gillespie algorithm (Gillespie,
2007). Code for the model is included as supplementary
material.

For comparison with experimental results (D’Elia et al., 2013),
the spatial compartments we consider are lung, spleen and liver.
Free bacteria suffer one of three fates: phagocytosis, migration
or death. Migration between compartments is via the blood to
a destination chosen randomly according to relative probabili-
ties that are proportional to the actual weights of the organs. The
host phagocytic cells, initial targets of the infection in the lung,
are believed to be macrophages (Cowley and Elkins, 2011). Other
types of cells are expected to act as hosts in other parts of the
body but, for the purposes of this study, they will be referred to as
macrophages. Similarly, at a later stage of infection, new phago-
cytes will migrate to the infected organs, but in this study the
number of phagocytic cells only changes due to the rupture and
death of infected macrophages.

2.2. REPRESENTATION OF MACROPHAGES
Macrophages are modeled as individual computational objects
that possess the following attributes, which change during the
infection process:
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1. A spatial location, l: either lung, liver or spleen.
2. An integer number of bacteria in phagosomes, b. Initially 0,

this attribute is set to 1 if a bacterium enters the macrophage.
Values of b greater than 1 are allowed, but are rare in the first
48 h post-infection.

3. An integer number of bacteria in the cytosol, c, initially 0.
When a bacterium escapes from a phagosome, the corre-
sponding values of b and c are decreased and increased by 1,
respectively. Each bacterial replication event, that occurs with
rate β per cytosolic bacterium, increases c by 1.

4. A state of activation, a initially equal to 0 (corresponding to a
resting state). Ingestion of a bacterium, or the effect of TGF-
β, causes the macrophage to be put into a suppressed (or
unresponsive) state, a = −1.

2.3. MODELING EARLY STAGES OF PATHOGENESIS IN THE LUNGS
The basic dynamics of F. tularensis infection are illustrated in
Figure 1. The mechanics of deposition in the alveolar space,
which precedes infection, are outside the scope of our model.
Therefore, the assumed initial state of the system at time t = 0,
is that a dose of N free bacteria is located in the alveolar spaces, in
proximity of M resting macrophages. Macrophage infection and
bacterial replication then take place according to the following
rules:

1. Macrophages internalize bacteria into a phagosome with
rate ρ.

2. Free bacteria die with rate μ.
3. Phagocytosed bacteria escape from phagosome to cytosol with

rate φ.
4. In the cytosol, bacteria divide with rate β.

FIGURE 1 | Mechanism of F. tularensis pathogenesis. Top line: A
bacterium (blue), ingested by a macrophage (green), escapes from the
phagosome to the cytosol. Central line: In the cytosol, bacteria proliferate,
eventually (bottom line) provoking rupture and death of the macrophage
and release of a large number of bacteria.

5. Macrophages rupture and die, releasing their bacteria, with
rate equal to δ multiplied by the number of bacteria in their
cytosol.

6. Free bacteria leave the lung, with rate γ , and migrate to other
parts of the body.

7. Macrophages change their state of activation, to a sup-
pressed (or unresponsive) state with rate ν, or to the clas-
sically activated state with rate determined by the IFN-γ
concentration, G(t).

2.4. PARAMETRIZATION OF THE MODEL
Parameter values were obtained from experimental literature and
are summarized as follows:

• The initial number of macrophages in the alveolar space,
where the initial dose is assumed to come to rest after inhala-
tion, is typically M = 104 (Condos et al., 1998; Marino and
Kirschner, 2004). The rate of phagocytosis per macrophage, ρ,
is taken to be 0.01 h−1 (Marino and Kirschner, 2004).

• The death rate of free bacteria is set to μ = 0.01 h−1 (Lowrie
et al., 1979).

• The rate φ = 2 h−1 corresponds to a mean escape time of 30
min (Jones et al., 2012).

• The rate β = 0.15 h−1 corresponds to a mean division time
less than 10 h (Lowrie et al., 1979; Jones et al., 2012).

• The rate δ is set to 0.001 h−1 (Marino and Kirschner, 2004).
• The migration rate is set to γ = 0.1 h−1 (Day et al., 2011;

Ganusov and Auerbach, 2014).
• The rate ν is set to 0.01 h−1 (Day et al., 2011).

2.5. COMPUTATIONAL METHODS
In the stochastic model of the mechanism of F. tularensis infec-
tion, individual host phagocytes and F. tularensis bacteria are
represented. Each interaction between bacteria and host cells is
considered explicitly, using the Gillespie stochastic simulation
algorithm (Gillespie, 2007). The characteristic property of the
Gillespie algorithm is that two random variables are drawn at
each step. The first, uniformly-distributed in the interval (0, 1),
determines which event occurs and the second, exponentially-
distributed, determines the length of time elapsed.

In our model, with large numbers of computational objects
representing bacteria and macrophages, we determine which
event occurs at each step as follows. The unit interval is divided
into sub-intervals represented in Figure 2; each sub-interval cor-
responds to one type of event. Here, there are eight types of event,
as described above, in three spatial compartments, twenty four
in total. At each step in the simulation, the probability that a
given event is the next to occur is the width of the corresponding
sub-interval.

The widths represented in Figure 2 are relative “total rates.”
That is, they are summed over all the bacteria and macrophages
capable of participating in the corresponding “reaction” or event.
These rates depend on the current state of the system and are
calculated at each step as follows. Let

• b(t) be the number of free bacteria,
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FIGURE 2 | Implementing the Gillespie algorithm. At each step, one type of event is chosen, with probabilities weighted by the corresponding rates. There
are twenty-four possibilities, corresponding to one of the colors and one of the three spatial locations.

• mr(t), ms(t) and ma(t) be the numbers of resting, suppressed
and activated macrophages,

• p(t) be the total number of bacteria in phagosomes,
• c(t) be the total number of bacteria in cytosols,

in a chosen spatial location. Then the rates are computed as
follows:

1. Phagocytosis, total rate = ρ b(t) [mr(t) + ma(t) + ms(t)].
2. Death of free bacteria, total rate = μ b(t).
3. Bacterial escape from phagosome to cytosol, total rate =

φ p(t).
4. Division of bacteria in the cytosol, total rate = β c(t).
5. Macrophage rupture and death, total rate = δ c(t).
6. Migration of free bacteria, total rate = γ b(t). The destination

is selected from the three possibilities, with relative weights:
lung 0.2, liver 1.0, and spleen 0.1.

7. Suppression of resting macrophages by TGF-β, total rate =
ν ms(t).

8. Activation of resting macrophages by IFN-γ , total rate = ν if
G(t) > 100.

Once a type of event is chosen, it is also necessary to select which
macrophage or bacterium will participate. For example, if the
chosen event is phagocytosis in the lung, then one of the resting,
suppressed or activated macrophages in the lung is selected (at
random). To complete one step of the algorithm, G(t) is updated
in each of the three compartments, according to d

dt G = ma(t).
Multiple realizations are run, with the initial number of

F. tularensis bacteria chosen from a Poisson distribution with
mean dose N. In this way, we can estimate the variation from
experiment to experiment. The exact Gillespie stochastic simu-
lation algorithm is practical for the first 2 days post-infection.
Thereafter, the rapid increase in bacterial load produces numbers
of cells that require tau-leaping methods (Tian and Burrage, 2004;
Márquez-Lago and Burrage, 2007).

3. RESULTS
3.1. BACTERIAL GROWTH RATE AND DOUBLING TIME
The computational model was used to simulate F. tularensis
growth in vivo in the lungs of BALB/c mice for the first 48 h after

exposure. For each of 100 runs, a starting dose was drawn from a
Poisson distribution with mean 100 bacteria. Based on the mech-
anisms described in the previous section, each run produced a
bacterial load profile for the lung compartment. A mean bacte-
rial growth rate for the simulations was calculated as the mean of
the gradient coefficients in the linear regression of each bacterial
load profile (transformed to the logarithm base 10) against time.
For comparison, growth rates of bacteria in BALB/c lungs were
calculated from experiments published in D’Elia et al. (2013) and
from unpublished data donated as a kin gift from R. Lukaszeswki.
Inclusion criteria were that only time points between 0 and 48 h
were used, there was a known challenge with strain SCHU S4
and mice were challenged via the intranasal route or the aerosol
route.

The comparison between experimental data and the model is
shown in Figure 3. Error bars on the experimental growth rates
show the 95% confidence limits of the parameter estimates. The
“Overall” growth constant was calculated by taking the mean and
95% confidence intervals of the parameter estimates. Confidence
intervals for the growth rate predicted by the model are not dis-
played, since the variability in bacterial loads between simulation
runs is insignificant by the 48 h time-point, as compared with
the large variability of experimental data. This is an artifact of
using the same model parameters for each model run. Future
work will explore how probability distributions may be used as
model inputs, in order to simulate intra-subject variability more
realistically.

This comparison with experimental data serves as a ver-
ification of the model mechanisms and a validation of its
output. Furthermore, the value of the computational model
growth constant for the first 48 h displayed in Figure 3 is
0.0607 h−1, leading to a doubling time of 5 h, which corre-
sponds with the findings of Attie and Daefler (2013) and ref-
erences therein. Therefore, the computational model predicts
bacterial growth in the lungs accurately for the early stages
of infection. Since the model is governed by a small num-
ber of experimentally verifiable parameters, this opens up the
possibility of using the model as a theoretical tool to investi-
gate, in silico, the required efficacy of therapeutic interventions
that modify these parameters in order to reduce bacterial
growth.
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FIGURE 3 | Comparison of pulmonary bacterial growth rate predicted

by the computational model (mean of 100 runs), with the in vivo

bacterial growth rates observed in BALB/c mice after pulmonary

infection with F. tularensis, during the first 48 h post-exposure.

3.2. BACTERIAL DYNAMICS OF THE FIRST 24 h
F. tularensis is highly infectious and aerosolisable, capable of
causing a debilitating or fatal disease with doses as low as 25
colony-forming units (Oyston et al., 2004). In this section, we
investigate the bacterial dynamics following a relatively low ini-
tial dose of F. tularensis such that macrophages vastly outnumber
bacteria in the region of the lung where the bacteria come to rest
(M � N). In this case, all bacteria are phagocytosed in a few min-
utes, and it is improbable for any macrophage to ingest more than
one bacterium.

To understand the earliest post-infection phase, after the ini-
tial uptake of bacteria and before any macrophages rupture and
die, it is illuminating to define two mean quantities. Let P0(t)
be the mean number of bacteria that are in macrophage phago-
somes at time t. Let C0(t) be the mean number of bacteria, and
their descendants, in macrophage cytosols at time t, assuming
that no rupture and death events have yet occurred. These mean
quantities satisfy the following ODEs:

d

dt
P0 = −φP0 , (1a)

d

dt
C0 = φP0 + βC0 . (1b)

With the initial conditions P0(0) = N and C0(0) = 0, the solu-
tion is

P0(t) = Ne−φt , (2a)

C0(t) = N ′ (eβt − e−φt) , (2b)

where N ′ = φ
β+φ

N. In this early stage of infection, bacterial
replication occurs independently in N different macrophages.

The mean number of bacteria per infected macrophage at time
t is then approximated by C0(t)/N.

In the next stage of the development of the infection, we con-
sider the fate of the N macrophages that phagocytosed one of the
initial bacteria each. A bacterium can escape from the phagosome
to the cytosol and replicate until the host macrophage succumbs
to rupture and death, releasing its population of bacteria. A host
macrophage’s rate of rupture is proportional to the number of
bacteria in its cytosol. Let S(t) be the probability a macrophage,
infected at time 0, has not ruptured and died before time t, and
consider a short time interval (t, t + �t). The probability that
macrophage i ruptures and dies is δ ci(t)�t, where ci(t) is the
number of bacteria in the cytosol of macrophage i, at time t.
Thus, the mean number of rupture and death events from the
first cohort of infected host macrophages in the time interval is
S(t) δN−1C0(t)�t.

A newly released bacteria may be, once again, phagocytosed
by alveolar macrophages; alternatively, it may die or migrate to
other parts of the body. The rates for these three events, assuming
M � N, are ρM, μ and γ , respectively. In the first day post-
infection, therefore, phagocytosis dominates: nearly all of the
bacteria released by rupture and death are immediately taken up
by one of the abundant resting macrophages in the alveolar space.

Let us now modify (1a) to include the immediate phagocytosis
of bacteria released from the first cohort of infected macrophages.
The mean number of bacteria released between t and t + �t is
the mean number of ruptures in the time interval, multiplied
by the mean number of bacteria released in each rupture and
death event. Each of these is proportional to the mean number
of cytosolic bacteria per infected macrophage at time t, C0(t)/N.

Let S(t) be the fraction of macrophages that survive up to time
t after infection. Then

d

dt
S = −δ

C0

N
S . (3)

If C0
N = eβt , which is a valid approximation if φt � 1 and

φ � β, then S(t) = exp
(
− δ

β
(eβt − 1)

)
. The probability that a

macrophage ruptures before time t after it is infected is plotted in
Figure 4.

Let P1(t) be the mean total number of bacteria in phagosomes
at time t, including the initial dose of bacteria and those released
from the first cohort of infected macrophages. Then

d

dt
P1 = −φP1 + δ S C0

C0

N
. (4)

The solution of (4) is compared with numerical results in
Figure 5. The agreement between the stochastic model and ana-
lytic approximations provide a further verification that the model
is representing the infection mechanisms appropriately.

3.3. DISTRIBUTION OF BACTERIA RELEASED FROM MACROPHAGES
The model allows us to examine the dynamics from the perspec-
tive of a macrophage that is infected by a single bacterium. Once
the bacterium has escaped from the phagosome, it replicates until
the macrophage ruptures and dies, releasing a number of bacteria
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FIGURE 4 | Rupture of macrophages and release of bacteria. On the
left, the probability of macrophage rupture before t is 1 − S(t), where
S(t) satisfies (3). On the right, the probability that the number of

bacteria released from one macrophage is less than r is 1 − αr , using
the geometric distribution (6). The parameter values are δ = 0.001 h−1

and β = 0.15 h−1.

FIGURE 5 | Comparison of the stochastic model with the analytic

approximations derived in section 3.2. Upper plot: number of bacteria in
macrophage phagosomes as a function of time, for the first 24 h
post-infection. Lower plot: number of bacteria in macrophage cytosols as a
function of time, for the first 24 h post-infection. The two figures show, in
blue, one standard error range of numerical values from 10 realizations and,
in green, the formulae calculated from (2b) and (4). The initial number of
F. tularensis bacteria is Poisson distributed with mean N = 100. The alveolar
space initially contains M = 104 macrophages, ρ = 0.01, φ = 2.0, β = 0.15
μ = 0.01, γ = 0.1, ν = 0.01 and δ = 0.001. The time unit is an hour.

that is a random variable, r. When there is only one bacterium
in the cytosol, the rate of division is β and the rate of rupture
and death is δ. Thus, the probability that rupture and death occur
before the first cell division (in which case r = 1) is δ

β + δ
. We write

P[r = 1] = (1 − α) , where α = β

β + δ
. (5)

If there are two cytosolic bacteria, the rates of division and rupture
are 2β and 2δ, respectively. Thus, P[r = 2] = α(1 − α). Similarly,
whatever the number of bacteria in the cytosol, the probabil-
ity that rupture and death of the macrophage occurs before the
next bacterial division is 1 − α. The distribution of r is therefore
geometric:

P[r = k] = (1 − α)αk − 1 , where α = β

β + δ
, (6)

and the mean number of bacteria released when a macrophage
ruptures and dies is

IE(r) = 1

1 − α
= β + δ

δ
. (7)

The distribution is plotted in Figure 4, together with the distri-
bution of time to macrophage rupture, which follows directly
when the doubling time of 5 h is taken into account. With δ =
0.001 h−1 and β = 0.15 h−1, IE(r) = 151 and the standard devia-

tion is
√

var(r) =
√

α
(1 − α)2 , comparable to IE(r). Furthermore,

with these parameter values the median number of bacteria
released on macrophage rupture is 104. For comparison, the value
of 358 obtained in Wood et al. (2014) by assuming that r is fixed
and determining a best fit to human macrophage culture data,
corresponds to the 91st percentile. However, the most impor-
tant virtue of the theoretical expressions (6) and (7) is that they
connect quantities that can be measured in independent experi-
ments and may be targets for intervention: timescales for bacterial
replication and macrophage rupture.

3.4. SUPPRESSION AND ACTIVATION OF MACROPHAGES
We consider the effect of F. tularensis infection on the population
of host phagocytes. For simplicity, we group under the heading
“macrophages” alveolar macrophages and the various phagocytes

Frontiers in Cellular and Infection Microbiology www.frontiersin.org December 2014 | Volume 4 | Article 169 | 6

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Gillard et al. Modeling early events in F. tularensis pathogenesis

of the lung, liver and spleen. Each macrophage in the model is
represented as a computational object characterized by its spatial
location, which does not change, state of activation and number
of bacteria in phagosomes and cytosol, which do. These objects
can represent any resident professional phagocytes that may be
found within the alveolar space but in the majority of cases they
will be alveolar macrophages. As we are considering only the
early events post-infection, we do not include migration of new
phagocytic cells to infected organs (Shi and Pamer, 2011). In the
model, the changes that occur to the population of macrophages
include changes of state, rupture and death of infected
macrophages.

Macrophages are responsive to environmental changes and
display a spectrum of activation states (Mosser and Edwards,
2008). We have introduced a level of phenotypic complexity to
the computational objects representing macrophages. Gordon
et al. describe five phenotypes for macrophages (Gordon and
Taylor, 2005); however, we consider just three phenotypes for the
purposes of the model, as follows.

The resting alveolar macrophage plays an integral role in the
maintenance of the lung environment (Hussell and Bell, 2014).
However, it is incapable of killing F. tularensis, and this is clear
since a single bacterium is sufficient to cause infection. It is known
that resting macrophages enter a suppressed state after ingesting
F. tularensis and this is an integral part of the pathogenesis of the
bacterium (Bosio et al., 2007).

Also, classically activated macrophages are important in clear-
ing infection. They are able to hold infection at bay (Edwards
et al., 2010), and they are the predominant emerging pheno-
type in the lung while the immune response begins its concerted
effort to bring the infection under control (D’Elia et al., 2014).
Furthermore, in vitro work demonstrates that bacterial num-
bers decline within activated macrophages (Edwards et al., 2010;
Newstead et al., 2014). Therefore, we consider bacteria within
activated macrophages to be removed from the model, playing no
further part in the infection.

Thus, we consider three activation states that correspond to
the phenotypes that play a dominant role in the early stages of
F. tularensis pathogenesis: resting, suppressed and classically acti-
vated. While the full spectrum of activation states has not been
modeled, this simplified representation of the most pertinent
states for F. tularensis infection allows us to begin to investigate
the effects of changing leukocyte phenotypes on the outcome of
infection.

In Figure 6 we illustrate the three states of activation of
macrophages included in the computational model (Gordon,

2003). All macrophages are initially in the resting state, a = 0.
A macrophage that phagocytoses a bacterium moves to the sup-
pressed state, a = −1, when it is a source of anti-inflammatory
signals (primarily TGF-β), that are responsible for inducing other
macrophages to move to the same state. Activation, or change of
macrophages to the activated state, is handled differently. Each
time a macrophage ruptures and dies, inflammatory signals are
released. These will include both Damage Associated Molecular
Patterns and Pathogen Associated Molecular Patterns (DAMPs
and PAMPs). For the purposes of our model it is assumed
that these signals will affect one other macrophage in the same
compartment where, if it is a resting macrophage, it becomes
activated. Activated macrophages produce pro-inflammatory sig-
nals, such as interleukin IL-12, that cause lymphocytes to produce
IFN-γ (Mosser, 2003; Mosser and Edwards, 2008). Activated
macrophages compete for free bacteria on the same basis as rest-
ing and suppressed macrophages. Bacteria internalized into acti-
vated macrophages will either grow slower or be killed (Edwards
et al., 2010). For the purposes of the model, we assume that such
bacteria play no further role in the acute stage of the disease.
Thus, the cytosolic bacterial load of activated macrophages is set
to zero.

Thus, there are two competing processes acting to alter the
macrophage population in each spatial compartment, in part the
direct effect of F. tularensis, and in part cytokine-mediated, as
follows.

3.4.1. Suppression
A macrophage in the resting state (a = 0) that phagocytoses a
bacterium or receives a TGF-β signal becomes insensitive to acti-
vation and TGF-β-producing (a = −1). The TGF-β produced by
a macrophage in this state suppresses resting macrophages in the
same spatial compartment with rate ν.

3.4.2. Activation
Pro-inflammatory signals, such as IFN-γ and innate ligands
released by the rupture and death of infected cells, induce a rest-
ing macrophage to become classically activated (a = 1) (Polsinelli
et al., 1994; Gordon, 2003). Macrophages in the classically acti-
vated state are able to produce respiratory bursts and secrete
pro-inflammatory cytokines. Thus, their cytosolic bacterial load
is always zero. In the computational model, each macrophage
rupture and death event affects one other macrophage, causing
activation if it is in the resting state. Each spatial location also has
an IFN-γ concentration, G(t), a real number that increases at a
rate proportional to the number of activated macrophages. When

FIGURE 6 | The three states of activation of macrophages in the

computational model. Initially, all macrophages are in the resting
state. During the course of infection, some pass to a suppressed

state, due to phagocytosis or the effect of TGF-β. Others are
activated by the effect of pro-inflammatory signals, from DAMP or
IFN-γ .
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G(t) exceeds a threshold, here set to the value 100, it causes resting
macrophages to become activated with rate ν.

All macrophages in each spatial location are initially resting;
the N alveolar macrophages that phagocytose the initial dose of
F. tularensis bacteria are immediately changed to the suppressed
state. Activated macrophages begin to be found as the first cohort
of infected macrophages rupture and die (see Figure 7). During
the early stages of pathogenesis (up to 48 h post-infection) most
of the bacteria and macrophage dynamics takes place in the lung,
so that migration events to spleen or liver are negligible.

4. DISCUSSION
Mechanistic understanding, from in vivo and in vitro experi-
ments, is the basis of computational models. Within-host in silico
models are an indispensable part of refining, replacing and reduc-
ing animal experiments. In particular, they can be used to inves-
tigate mechanisms associated with disease outcome, facilitate
extrapolation from animal models to humans, guide experimen-
talists in designing animal studies, and encapsulate knowledge in
a concrete and quantitative manner.

We present a basic stochastic model of the early stages of
F. tularensis pathogenesis that is governed by a small number
of experimentally verifiable parameters. The model includes the
essential processes of macrophage infection, macrophage sup-
pression and activation, bacterial death, phagosomal escape to the
cytosol, bacterial proliferation, and macrophage death. The aim
is to understand the mechanisms behind the infection process
in order to inform the exploration and development of poten-
tial countermeasures. This work provides a foundation on which
further complexities can be added. The model hypotheses and
computations are stochastic, but the deterministic equations in

FIGURE 7 | Number of alveolar macrophages in resting, suppressed,

and activated states. One numerical realization is shown; time is
measured in hours, after infection with N = 102 bacteria. The infected
macrophages, themselves in the “suppressed” state, produce TGF-β that
is responsible for increasing the size of the suppressed population. The
population of activated macrophages appears as a result of rupture and
death of infected macrophages, and increases due to the effect of IFN-γ .
The parameters used were ρ = 0.01, φ = 2.0, β = 0.1 μ = 0.01, γ = 0.2,
ν = 0.01, δ = 0.001. The time unit is an hour.

Section 3.2 serve to validate our assumptions about parameter
values. The model generates bacterial growth that accurately sim-
ulates in vivo experiments. Furthermore, we have determined
probabilistic expressions to describe the time taken for infected
macrophages to rupture and the expected number of intracellular
bacteria released when this happens.

Pairing a computational model with pharmacokinetic data
and models describing the concentration of novel antimicrobials
could potentially reduce the requirement for the use of animals
in research. In addition, computational models such as this can
be used to estimate the level of classical macrophage activation
needed to prevent infection taking hold. Model assumptions can
be investigated theoretically to refine hypotheses, for instance
regarding the efficacy of IFN-γ for activating macrophages. Our
modeling framework also makes it possible to consider alterna-
tive scenarios, for example host cells acting as vectors transporting
bacteria through the circulatory system.

We are developing a more comprehensive mathematical model
of bacteria-host interaction that includes cytokines, different host
phagocytes, and other arms of the immune system (Gordon and
Taylor, 2005; Cowley and Elkins, 2011; Moreau and Mann, 2013).
We shall also consider more organs of the body and the pattern of
migration between them (Ganusov and Auerbach, 2014), moti-
vated by the experimental data of D’Elia et al. (2013). In other
organs, significant bacterial load is found from day three, along
with pro-inflammatory cytokines. Immune subversion, cytoso-
lic replication, rupture and re-uptake dominate the dynamics
in the early stage, delaying proliferation. Once several rounds
of macrophage rupture have occurred, there are then sufficient
numbers of free bacteria to migrate to other organs, be taken up
by local phagocytes, and replicate within their host cytosols. This
can be modeled naturally in our framework, and leads to bacte-
rial load profiles in other organs that emulate those observed in
experiments with the BALB/c model.

The BALB/c murine model is well-characterized and there
is a consistent set of data, making it a suitable starting point
for computational model development. We intend to extend our
methodology to consider other species of current relevance in the
development of treatments, such as the rat and marmoset models
of infection. When these cases are better understood, the long-
term aspiration is to use the common computational framework
as a means for informed extrapolation between species, ultimately
to gain insight into factors that affect human tularemia and the
treatment thereof.

The pathogenesis of different strains of F. tularensis and other
infectious agents is necessarily different from that of SCHU S4
and specific models will be required for each pathogen of interest.
However, our work provides a computational framework that can
readily be adapted and extended to other agents, provided there
is sufficient mechanistic understanding and data for parametriza-
tion. Therefore, this approach provides a basis for encapsulating
and elucidating the mechanisms of infection and pathogenesis
of F. tularensis SCHU S4, resulting in a computational tool to
support practical experimentation. Models such as this may be
iteratively extended and refined to incorporate new data and
knowledge on host-pathogen interactions, as it is generated in the
future.
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