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Listeria monocytogenes is a bacterial pathogen capable of causing severe infections
in humans, often with fatal outcomes. Many different animal models exist to study
L. monocytogenes pathogenicity, and we have investigated the chicken embryo as an
infection model: What are the benefits and possible drawbacks? We have compared
a defined wild-type strain with its isogenic strains lacking well-characterized virulence
factors. Our results show that wild-type L. monocytogenes, already at a relatively low
infection dose (∼5 × 102 cfu), caused death of the chicken embryo within 36 h, in contrast
to strains lacking the main transcriptional activator of virulence, PrfA, or the cytolysin LLO.
Surprisingly, strains lacking the major adhesins InlA and InlB caused similar mortality
as the wild-type strain. In conclusion, our results suggest that the chicken embryo
is a practical model to study L. monocytogenes infections, especially when analyzing
alternative virulence pathways independent of the InlA and InlB adhesins. However, the
route of infection might be different from a human infection. The chicken embryo model
and other Listeria infection models are discussed.
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INTRODUCTION
Listeria monocytogenes is a Gram-positive human bacterial
pathogen, capable of causing severe infections, Listeriosis, pre-
dominantly in immuno-compromised patients. Once ingested,
the bacteria can cross the intestinal barrier and disseminate via
the blood and lymph system to the liver and spleen, the pri-
mary sites for replication of L. monocytogenes (Vazquez-Boland
et al., 2001; Lecuit, 2007). The route of infection follows a spatio-
temporal pattern: In healthy hosts, the bacteria replicates for less
than a week before being cleared by the immune system (Vazquez-
Boland et al., 2001; Lecuit, 2007). In immuno-compromised
patients, the bacterium continue to replicate and eventually dis-
seminate into the blood-stream where it can cause septicemia.
The bacteria may subsequently also pass the blood-brain bar-
rier, leading to meningo-encephalitis or meningitis (reviewed in
Vazquez-Boland et al., 2001; Lecuit, 2007). If the host is preg-
nant, the bacterium is capable of crossing the materno-fetal
barrier resulting in abortion or severe neonatal infections. The
latter phases of a Listeria infection have a mortality incidence
between 20 and 30 % (Vazquez-Boland et al., 2001; Lecuit,
2007). To cross the intestinal barrier, L. monocytogenes uses an
adhesin, InlA, which recognizes E-cadherin (Mengaud et al.,
1996). Translocation through the placental barrier requires the
concerted action of InlA and another adhesin, InlB (Disson et al.,
2008), where the latter primarily recognizes the c-Met receptor

(Shen et al., 2000). The molecular mechanism underlying blood-
brain passage has not yet been resolved. Other proteins involved
in cellular entry have also been recognized (i.e., Vip and Auto,
Cabanes et al., 2004, 2005). Once internalized, Listeria is able
to escape the phagosome through the action of Listeriolysin O
(LLO), before it spreads from cell to cell by polymerizing actin in
an ActA-dependent mechanism (Cossart, 2011). Almost all viru-
lence factors are controlled by one transcriptional activator, PrfA,
which bind PrfA consensus binding sites located in the promoter
region of PrfA regulated genes, thus activating their expression
(Freitag et al., 2009; de las Heras et al., 2011). Expression of
PrfA is controlled at several different layers: At the transcriptional
level through different promoters, at the post-transcriptional level
by both a thermosensor lying in the 5′-untranslated RNA and
by the action of small regulatory RNAs (Freitag et al., 2009;
Gripenland et al., 2010). Finally, the activity of PrfA is believed
to be controlled at the post-translational level, through a hitherto
unknown PrfA binding factor (de las Heras et al., 2011).

ANIMAL MODEL SYSTEMS FOR STUDYING LISTERIA
PATHOGENICITY
Using cultured cell-lines, a tremendous knowledge of the different
bacterial factors and cellular events that Listeria master has been
gained. These cells are generally transformed cell-lines with dif-
ferent origins (cell-type and species), allowing a large choice for
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analyzing Listeria infection. To further understand the molecular
mechanisms underlying Listeria infection, several animal mod-
els have been utilized. Accumulating in vivo animal data suggest
that the mechanism of Listeria infection might be much more
complex than previously anticipated, extrapolating from in vitro
cell-culture data (Disson and Lecuit, 2013).

The mice (Mus musculus) model is frequently used to study
a Listeria infection in a laboratory setting (Lecuit, 2007). The
advantages are obvious; mice are relatively easy and inexpen-
sive to maintain, the genome has been sequenced and a plethora
of knock-out lineages are available for host studies. However, a
drawback of using mice as a model for Listeria infections is the
non-functional interaction between mouse E-cadherin and InlA,
due to a glutamate instead of proline at position 16 of E-cadherin
(Lecuit et al., 1999). This drawback has been resolved by replac-
ing the glutamate to proline in position 16 of E-cadherin in mice
(Lecuit et al., 2001; Disson et al., 2008) but also by “murinizing”
InlA for it to recognize mice E-cadherin (Wollert et al., 2007).

Another model that has been used to study Listeria infectiv-
ity, albeit at a lower frequency, is the guinea pig (Cavia porcellus).
Unlike mice, guinea pigs carry an E-cadherin recognizing InlA,
which allows for an efficient translocation through the intesti-
nal barrier (Lecuit et al., 2001; Khelef et al., 2006). However, the
guinea pig was unable to provide a successful InlB:c-Met inter-
action, making this model system less suitable for studying the
infection process downstream of intestinal crossing (Khelef et al.,
2006).

Gerbil (Meriones unguiculates) which is a natural host for
Listeria monocytogenes, allow InlA and InlB to successfully
bind E-cadherin and c-Met, respectively (Disson et al., 2008).
Therefore, the gerbil has been suggested as the animal of choice
when studying Listeria infections. There are however drawbacks
when using the gerbil model: The genome sequence of gerbils
has not yet been published and they are not yet as commercially
available as mice. Also, despite having functional InlA and InlB
pathways, it was recently shown that very high doses of Listeria
(∼1 × 109) were required to cause stillbirth in gerbils (Roulo
et al., 2014).

The Rhesus monkey (Macaca mulatta), a non-human primate,
has also been used to study Listeria pathogenicity. Its genome has
been sequenced, the infection route is believed to closely mimic
the human route and similar doses of Listeria cause stillbirth
in both species (Smith et al., 2008). However, the Rhesus mon-
key model is expensive, requires large facilities and may be more
ethically demanding.

Other animal infection models of L. monocytogenes include
the zebra fish (Danio rerio), Drosophila melanogaster and
Caenorhabditis elegans (Mansfield et al., 2003; Thomsen et al.,
2006; Levraud et al., 2009). Their genomes have all been
sequenced, they are inexpensive and optically accessible. Yet, since
all three models are cold-blooded with a temperature maximum
of 30◦C, appropriate virulence factor expression might not reflect
a human infection, which lies at 37◦C.

Birds are natural hosts for L. monocytogenes and the bac-
terium has been associated with outbreaks in chicken broilers
(Cooper et al., 1992; Vazquez-Boland et al., 2001). A possi-
ble avian model of Listeria infections is represented by chicken

embryos (Gallus gallus). The chicken model has been used
to assess the virulence of several pathogens, like: Clostridium
perfringens, Staphylococcus aureus, Escherichia coli, Salmonella
enteridis, and Francisella tularensis (Wang et al., 2008; Horzempa
et al., 2010; Oh et al., 2012; Polakowska et al., 2012; Alnassan
et al., 2013). Many studies have also investigated the pathogenic
potential of clinically and environmentally isolated L. monocy-
togenes using chicken embryos (Terplan and Steinmeyer, 1989;
Buncic and Avery, 1996; Norrung and Andersen, 2000; Olier
et al., 2002, 2003; Severino et al., 2007; Yin et al., 2011). These
reports clearly indicate that chicken embryos can be used as
a model for Listeria infection, although the molecular mech-
anism causing the infection has not been examined in detail.
The pore-forming cytolysin LLO have previously been shown to
be important for chicken embryo infection (Jiang et al., 2005),
but the impact of other PrfA-regulated factors have not been
assessed.

USING ISOGENIC L. MONOCYTOGENES STRAINS TO INFECT
CHICKEN EMBRYOS
In order to examine the plausibility of using the chicken embryo
model to assess Listeria pathogenicity as well as analyzing the
importance of the PrfA virulence regulon, the EGDe (wild-type)
strain and its isogenic �prfA strain were used (see Supplementary
Materials for methods). Infecting eggs with 5 × 102 wild-type
bacteria lead to death of all eggs within 48 h (Figure 1A). Similar
amounts of Listeria wild-type bacteria have been used in pre-
vious studies when infecting chicken embryos (Norrung and
Andersen, 2000; Olier et al., 2002, 2003; Severino et al., 2007;
Yin et al., 2011). Using the same amount of the �prfA strain,
only 20 % of the chicken embryos were killed 72 h post-infection
(Figure 1A). The inability of the �prfA strain to cause death of
chicken embryos prompted us to investigate whether this was
accompanied by a decreased infection (i.e. a reduced bacterial
growth within the embryo). We therefore isolated livers from
infected living embryos at 34 h post-infection. The wild-type
infected embryos showed almost a 100-fold higher bacterial count
compared with the �prfA strain in the liver (Figure 1B). We did
not detect any obvious difference in the weight and appearance
of the livers isolated from wild-type and �prfA strains (data not
shown).

To further examine the PrfA pathway and in more detail
pin-point the role of certain PrfA-regulated virulence factors,
isogenic mutant strains of hly; inlA, or inlB were used in a
chicken embryo survival experiment together with the wild-
type strain. The pore-forming cytolysin Listeriolysin O (LLO,
encoded by hly) was required for a successful Listeria infection
(Figure 2). This is in agreement with previous studies (McKay
and Lu, 1991; Jiang et al., 2005), and highlights the importance
of LLO during infection. Listeria infection of several epithelial
cells require a successful adhesin: receptor interaction (Gaillard
et al., 1991). The best characterized adhesins in Listeria are
InlA, which recognizes E-cadherin, and InlB, which recognizes
the c-Met receptor (Mengaud et al., 1996; Shen et al., 2000).
Surprisingly, absence of either InlA or InlB did not attenuate
Listeria-mediated killing of chicken embryos as compared with
the wild-type (Figure 2).
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FIGURE 1 | (A) Survival curve of chicken embryos infected with
L. monocytogenes wild-type (EGDe) and the isogenic �prfA strain.
∼5 × 102 bacteria were inoculated into 9-day old chicken embryos, which
were followed for 72 h by light candling. Death are shown as mean of 5
experiments (n = 17 for the WT strain and n = 16 for the �prfA strain).
(B) Bacterial counts of wild-type and �prfA strains in the liver of chicken

embryos. ∼5 × 102 bacteria were inoculated into 9-day old chicken embryos
that were sacrificed after 34 h. The liver was isolated from living embyos and
the number of viable bacteria was determined (n = 6 for the WT strain and
n = 8 for the �prfA strain, divided over 3 experiments). Error bars show
standard error. The difference is statistically significant (p < 0.05 through
students T -test) and marked with an asterisk.

FIGURE 2 | Survival curve of chicken embryos infected with

L. monocytogenes wild-type �prfA, �hly, �inlA or �inlB mutant

strains. ∼5 × 102 bacteria were injected into 9-day old chicken embryos
and death was monitored from 24 to 48 h post-infection. Death is shown as
mean of 2 experiments (n = 15, 9, 12, 11, 12, and 14 for WT, �prfA, �hly,
�inlA, �inlB, and NaCl respectively).

DISCUSSION
In this work, we have analyzed if chicken embryos could be
used as a model system for studying Listeria monocytogenes
pathogenicity. Chicken embryos have previously been used as
an infection model system to study the pathogenicity of various
bacteria, including L. monocytogenes (Terplan and Steinmeyer,
1989; Buncic and Avery, 1996; Norrung and Andersen, 2000;
Olier et al., 2002, 2003; Jiang et al., 2005; Severino et al., 2007;
Wang et al., 2008; Horzempa et al., 2010; Yin et al., 2011; Oh
et al., 2012; Polakowska et al., 2012; Alnassan et al., 2013). In
this study, we have further assessed the chicken embryo as an
infection model for Listeria using the well-used L. monocytogenes
wild type strain EGDe. By examining isogenic mutant strains,
we have also in more depth analyzed several virulence factors

controlled by the transcriptional activator PrfA (i.e., LLO, InlA,
and InlB). First, we established that the PrfA-pathway was essen-
tial to kill chicken embryos (Figure 1A). Also, almost a 100-fold
lower number of �prfA bacteria compared with wild-type bac-
teria was observed between the strains when analyzing the liver
(Figure 1B). When analyzing PrfA-regulated virulence factors,
we observed that the pore-forming cytolysin LLO was absolutely
required for a successful killing (Figure 2). The finding that both
PrfA and LLO are essential for pathogenesis has been shown
before (McKay and Lu, 1991; Vazquez-Boland et al., 2001). No
one has however, to our knowledge, investigated the roles of the
two most important internalins, InlA and InlB, in the chicken
embryo model. In contrast to LLO, neither InlA nor InlB were
required for a successful Listeria infection of chicken embryos
(Figure 2). Similar to humans, the chicken has a proline at posi-
tion 16 of E-cadherin, allowing a productive interaction between
the adhesin InlA and its receptor E-cadherin (Lecuit et al., 1999).
This is in contrast to mice which harbor a glutamic acid at posi-
tion 16 of E-cadherin, preventing a successful interaction and
hence invasion. A recent study could give a possible explanation
of our results (Roy and Bandyopadhyay, 2014). In that work, the
authors showed that the expression of the mRNA encoding E-
cadherin was high early during the chicken development in all
examined tissues, but diminished in chicken embryos older than
6 days. Since the chicken embryos in this study were 9 days or
older, it could be hypothesized that the E-cadherin protein is less
abundant and therefore play a less significant role during Listeria
infection. The finding that InlB was not important for a chicken
embryo infection is less surprising: The c-Met receptor in chicken
embryos lacks lysines at position 599 and 600 in the c-Met recep-
tor, which appear essential for a successful InlB:c-Met interaction
in humans (Niemann et al., 2007).

Other groups have previously used chicken embryos to exam-
ine the virulence potential of clinically and environmentally iso-
lated species of different serotypes by determining mean-time to
death (Terplan and Steinmeyer, 1989; Buncic and Avery, 1996;
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Norrung and Andersen, 2000; Olier et al., 2002, 2003; Severino
et al., 2007; Yin et al., 2011). We have instead focused this work
on a defined bacterial lineage (EGDe). Nevertheless, many results
obtained by other groups, using different Listeria lineages, over-
lap with our study. In particular, the survival curve of the embryo,
after inoculation of the wild-type L. monocytogenes strain, was in
agreement with previously published work (Buncic and Avery,
1996; Olier et al., 2002, 2003; Severino et al., 2007), indicating that
the chicken embryo is a reliable model for studying Listeria infec-
tion. The chicken embryo model is well-established for studying
development biology (Bénazéraf and Pourquié, 2013), as well as
virus infections (Xia et al., 2013) where several tools have been
developed. In light of this and through this work, we believe that
the chicken embryo model might be a less-expensive but still reli-
able model for analyzing putative virulence factors compared to
the mice model. However, since L. monocytogenes infection of
chicken embryos is InlA and InlB independent, we believe that
the chicken embryo model does not completely reflect the infec-
tion route in humans. It should be noted that L. monocytogenes
can cause Listeriosis in avian species, like chickens (Cooper et al.,
1992; Vazquez-Boland et al., 2001). The chicken embryo model
would therefore be beneficial for the food-industry in order to
examine route(s) of infection, but also means to prevent Listeria
pathogenesis.

Although gerbils provide functional InlA and InlB pathways,
the number of bacteria required to cause still-birth of pregnant
gerbils is surprisingly high (Smith et al., 2008). The reason for
this is unknown, but it could indicate that certain host factors
that are required for an efficient Listeria infection are lacking in
gerbils, thus making it a less attractive model. The situation for
the chicken model is the opposite: Listeria strains lacking InlA or
InlB still are able to kill chicken embryos.

In comparison with mice, the most studied animal model
for Listeria infectivity, chickens also have a sequenced genome,
are relatively inexpensive and easy to use. Listerial infection of
chicken embryos also relies on LLO and PrfA for efficiency.
Still, the mice model is preferable since an efficient infection
require InlB (and InlA in the transgenic mice, Disson et al.,
2008) indicating that this model more closely reflect human lis-
teriosis. Also, the vast amount of mice knock-out mutants will
promote the identification of host factors important for Listeria
infection.

Despite having a c-Met receptor unable to interact with InlB,
the guinea pigs still proves valid as a model organism to study
Listeria infection pathways (Williams et al., 2009; Ebersbach et al.,
2010; Wu and Matthews, 2013). In analogy to the guinea pig
model, we speculate that Listeria uses alternative pathways for
entering cells in the chicken embryo. We therefore suggest that
the chicken embryo model could be used to identify novel Listeria
virulence factors (e.g., other adhesins), that could be masked by
an InlA/InlB-dependent mechanism in other animal models.
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