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The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different
environments while attempting colonization. In the course of infection nutrient availabilities
change drastically. New techniques, “-omics” data and subsequent integration by systems
biology improve our understanding of these changes. We review changes in metabolism
focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation
process is associated with the activation of genes of the Salmonella pathogenicity islands
(SPIs). Anti-infective strategies have to take these insights into account and include
metabolic and other strategies. Salmonella infections will remain a challenge for infection
biology.
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INTRODUCTION
Salmonella enterica is a Gram-negative enterobacterium closely
related to Escherichia coli (Neidhardt, 1996). Salmonellae reside
in humans, a range of animals as well as in the environment
and hence are facultative pathogens, often taken up by contam-
inated food and causing self-limited gastrointestinal disease. In
weakened conditions the non-typhoidal serovars may lead to
severe bloodstream infections, with high fatality rates in devel-
oping countries (Feasey et al., 2012) while typhoidal forms
(S. enterica serovars Typhi, Paratyphi) strike with endotoxins,
typhoid fever, and severe systemic illness. The millions of infec-
tions and thousands of fatal cases every year are an important rea-
son for a better understanding and control of Salmonella infection
(Feasey et al., 2012). To capture the diversity of the Salmonella
lifestyle in infection is a challenging task. In this review, we will
focus on metabolic aspects as well as on insights from “-omics”
data, systems biology, and new technologies studying Salmonella
infection. Salmonella, like several other Gamma-proteobacteria,
are found in various environments including soils, water sys-
tems, and sewage, as well as in the gut flora of various animals.
To survive and multiply in this large variety of environments,
their metabolism has to adapt well (Rosenkrantz et al., 2013).
The large genome of Salmonella contains more than 4000 genes
encoding a large range of metabolic pathways, for instance an
S. Typhi chromosome comprises 4,809,037 bp corresponding to
4599 ORFs (including 204 pseudogenes; Parkhill et al., 2001).
The pseudogene complement of S. Typhi is involved in the tight
host restriction of this important human pathogen. There is no
zoonotic reservoire. The S. Typhi genome reveals an unexpectedly
large diversity compared to its relatives E. coli and non-typhoidal
Salmonella.

The lifestyle of Salmonella, featuring intestinal coloniza-
tion, environmental survival, and transmission is reflected in

unique gene clusters for adaptation to environmental niches
and pathogenicity such as inside the host cell the Salmonella-
containing vacuole (SCV). Adaptations include multiple abilities
for oxygen and nitrate respiration (Rowley et al., 2012). Many
further substrates can be used in multiple pathways, depending
on environmental conditions. As a food-borne pathogen, vari-
ous sugars such as D-glucosaminate can be used, supported by
suitable permeases (Miller et al., 2013). A vivid picture emerges
from data gained by recently established methodologies. Still,
not enough is known about regulatory networks around the
Salmonella Pathogenicity Island, the impact of effector proteins
and transport processes and their role in shaping the conditions
in the SCV.

In the following we will present established and new
approaches of studying Salmonella infections, after which we
address new perspectives on systems biology including postge-
nomic modeling techniques and functional genomics. We next
discuss stress conditions and specific nutrient supplies and their
impact on Salmonella metabolism, in particular amino acids and
carbohydrate metabolism. Furthermore, connections between
metabolism and virulence are discussed. These include SPI1 and
SPI2 inducing conditions and their interplay with metabolism.
New anti-infective Salmonella strategies take these aspects into
account. In particular, one has to refine metabolic targeting and
drug strategies accordingly. Salmonella infection is a particular
challenging aspect of its versatile, highly adaptive life style.

TECHNIQUES FOR STUDYING THE INTRACELLULAR LIFESTYLE OF
SALMONELLA
Systems biology provides a new technological perspective on
Salmonella metabolism and virulence: this includes scarless muta-
tion techniques, metabolic flux measurements by isotopologs
and sophisticated -omics techniques allowing to study all aspects
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of the intracellular lifestyle of Salmonella in unprecedented
detail.

Genetics
The very first step in the analysis of the importance of differ-
ent metabolic enzymes is the generation of mutant strains. For
Salmonella, the preferred method to rapidly delete chromoso-
mal genes is the phage λ Red deletion technique (Datsenko and
Wanner, 2000). Defined single or multiple gene deletion collec-
tions for S. Typhimurium have recently been published, covering
deletions of 3517 genes (Porwollik et al., 2014). Double or mul-
tiple mutations, often needed to delete all isoenzymes of a given
metabolic pathway, are commonly generated by repeated rounds
of Red deletion, combined with phage P22 transduction (Zinder
and Lederberg, 1952) and curing of antibiotic resistance. Since the
sequential mutagenesis may lead to accumulation of recombina-
tion scars and generation of genomic chimera, newer approaches
are based on scarless Red recombinase-mediated deletion (Blank
et al., 2011).

Phenotyping
Before testing the influence of a deactivated metabolic enzyme
on Salmonella virulence, a primary phenotypic characterization
is often performed via determination of growth kinetics. By using
minimal medium with different C-sources, Paterson et al. could
reveal the ability of a Tpi (triosephosphate-isomerase) deficient
strain to utilize gluconate, but not other sources such as glu-
cose (Paterson et al., 2009). Additionally, one can perform growth
kinetics with media which mimic different in vivo conditions. For
instance Wallrodt et al. studied the role of the sulfurtransferases
GlpE and PspE for resistance against NO radicals via growth
kinetics in minimal medium with S-nitrosoglutathion supple-
mentation (Wallrodt et al., 2013). To investigate the adaptation of
Salmonella to life within the SCV, conditions inducing SPI2 genes
are frequently used, such as minimal medium with low phosphate
concentrations (Deiwick et al., 1999).

After these first phenotypic characterizations, the impact of
defined gene deletions on Salmonella virulence is tested most
commonly in cell culture experiments, such as gentamicin protec-
tion assays, which provide first clues about the role of metabolic
enzymes, transporters, etc., on virulence. In this kind of assays
the inability of gentamicin to penetrate into eukaryotic cells
is used to kill extracellular bacteria, whereas internalized bac-
teria do not come into contact with the antibiotic substance
(Lobo, 1973). With this method not only Salmonella’s ability to
enter host cells by invasion or phagocytosis but also the intra-
cellular replication ability can be examined (Hölzer and Hensel,
2012).

Animal models
Comprehensive Salmonella infection models are animals and spe-
cific mouse strains are often used. In mice, Salmonella enterica
serovars pathogenic for humans have been reported (Mathur
et al., 2012) not to cause any disease due to an additional Toll-
like receptor in mice (TLR11) but further studies have to fur-
ther confirm this. However, S. enterica serovar Typhimurium,
which can cause human diarrhea, causes a systemic infection in

mice with pathology and disease progression similar to human
typhoid fever in mice defective in Slc11a1 (or NRAMP) encoding
a Fe2+/Mn2+/Zn2+transporter. Thus, to study the mechanisms
of systemic disease caused by Salmonella, infection models using
Salmonella-susceptible inbred mouse strains such as BALB/c or
C57BL/6 with defective Slc11a1 allele are frequently used (Steeb
et al., 2013). To understand gastroenteritis caused by Salmonella,
a major breakthrough was the advent of the Streptomycin-
pretreated mouse model. Application of Streptomycin reduces the
intestinal microbiota and renders mice susceptible to Salmonella-
induced intestinal inflammation. For this, C57BL/6 or similar
mouse laboratory strains can be used and the Salmonella have to
be Streptomycin resistant, e.g., S. enterica serovar Typhimurium
SL1344 (reviewed in Kaiser et al., 2012).

Genomics
Methods useful in analyzing the global impact of gene dele-
tions on Salmonella and “-omics” techniques (genomics, pro-
teomics, transcriptomics, metabolomics) facilitate studies on
virulence mechanisms and metabolic activities on a molecular
level and allow a detailed picture of host-pathogen interactions.
Comparative genomics was used for example to identify the
presence of different metabolic pathways for non-typhoidal and
typhoidal pathovars of Salmonella (Nuccio et al., 2014). Several
recent studies use next generation sequencing (NGS) to under-
stand non-typhoidal Salmonella genomes (reviewed by Wain
et al., 2013). A broad collection of African isolates showed that
they share a common ancestry with S. Typhimurium ST313. The
study furthermore implies antibiotic resistances were acquired
independently in two lineages of S. Typhimurium. These data are
complemented by phage typing and pulse field gel electrophore-
sis (PFGE) for additional high resolution typing of Salmonella
isolates by phage types and different PFGE patterns. This allows
investigation in unprecedented detail of virulent strains as well
as their correlation with metabolic resistance features such as
pathways for degradation of antibiotics.

Transcriptomics
The second “-omics” level, namely transcriptomics including
microarrays and high throughput sequencing approaches, gives
insights into how Salmonella regulates its metabolic pathways
in response to changing nutritional environments. A study per-
formed by Blair et al. focused on changes in transcriptomic
profiles when using LB or various minimal media for growth.
Transcription profiles were established and the article instruc-
tively starts from microarray experiments (pan-Salmonella gen-
eration IV microarray) and verifies putative differences by quan-
titative real-time PCR (Blair et al., 2013). RNA sequencing was
applied by Shah (2014) in a recent comparative study of global
transcriptomes of high and low pathogenicity (LP) S. enterica
serovar Enteritidis strains. This technique reveals important
links between metabolism and virulence: in LP strains, reduced
expression of virulence genes in SPI1 and SPI5 and defensive
virulence factors were observed. Interestingly, this was com-
bined with down regulation of metabolic defense pathways, in
particular osmotic (glycine betaine/choline transport), oxidative
(katE, sodC), and iron-limiting metabolic protection. In the four
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ferritins, bacterioferritin (Bfr) was found to be down-regulated in
LP strains.

Proteomics and metabolomics
Mass spectroscopy (MS)-based proteomics is a method of choice
when analyzing gene products: with this approach protein expres-
sion is directly measured. Typically only several matching pep-
tides from a protein are identified applying the knowledge of the
genome sequence and identified reading frames. This only partial
peptide coverage for a given Salmonella protein is a challenge for
MS analyses. Nevertheless, with more effort even quantification
of proteins is possible applying different labeling techniques and
standards. A good example for the application of the technique
to Salmonella is the enzyme quantifications of ex vivo purified
Salmonella performed by Steeb et al. (2013), also illustrating that
many proteins can be fast analyzed in this way.

Metabolomics is an upcoming technique as it provides at
the same time a global as well as direct view on Salmonella
metabolism. In particular, isotopolog profiling (IP) allows
analysis of current metabolic fluxes under defined conditions.
For a detailed method explanation see the study by Härtel
et al. (2012), demonstrating the technique on the central carbon
metabolism and how individual fluxes are deduced by isotopolog
patterns. Furthermore, Götz et al. used this technique to ana-
lyze the carbon metabolism of enterobacteria infecting CaCo cells
and analyzed which carbon sources are used during intracel-
lular growth (Götz et al., 2010). Metabolic measurements have
also been improved by other new techniques such as engineer-
ing genetically encoded nanosensors from citrate binding proteins
such as the histidine sensor kinase CitA to achieve in vivo mea-
surements of changing citrate concentrations in E. coli by FRET.
This system is readily applicable to Salmonella (Ewald et al., 2011).

In general, imaging techniques promote and complement
the above approaches to studying the intracellular lifestyle of
Salmonella. Non-invasive imaging techniques like radioisotope-
labeled nucleosides, bioluminescence or the use of microscopy
(e.g., advanced light microscopy such as with polarized light) cou-
pled to different cell culture techniques (including establishing
tissue infection models) offer here a wealth of information. A nice
example including bioluminescent Salmonella, the Streptomycin
mouse model and bioimaging is Pontier-Bres et al. (2014). Here
metabolism and virulence are investigated on possibly the high-
est level: the protective effect of a pro-biotic food, Saccharomyces
boulardii and its effect on Salmonella clearance in mice.

“-OMICS” DATA INTEGRATION AND SYSTEMS BIOLOGY FOR
STUDYING SALMONELLA DURING INFECTION
Data repositories
The combination of the various “-omics” approaches provides
an integrated view on the adaptation of a pathogen to its host,
ranging of from understanding of the genetic basis of virulence
to the control of metabolic functions within a host organism
or host cell. To describe infection processes on a holistic level,
multi-omics strategies are required. Large “-omics” datasets on
pathogens have become more readily available and have until
now shaped the vivid picture of Salmonella infection. We present
resources of “-omics” data which can be used to integrate and
study different levels of systems biology of Salmonella infection

(Table 1). This list compiles several useful resources but it is of
course not exhaustive. Many “-omics” studies rely on large-scale
sequence analysis using next-generation sequencing techniques
on the genome or on RNA (RNAseq). This includes genome
information from the Venter institute, different transcriptome
data on gene expression and miRNAs from the Gene Expression
Omnibus databank (GEO), proteomics data on membrane pro-
teins from TU Munich, a Salmonella wiki on genome information
as well as links for veterinary and medical resources on Salmonella
infection.

Integrated analysis
Integration of high dimensional “-omics” datasets improves
genome annotations, discovers novel virulence-related factors,
and models Salmonella growth under infectious states (Ansong
et al., 2012).

A multi-omics view on Salmonella in intestinal infection helps
to better understand the interdependence of regulation and vir-
ulence vs. metabolic change, specific techniques and examples
are given in Table 2. Thus, proteome, metabolome, glycome, and
metagenome all change during the murine infection by S. enter-
ica serovar Typhimurium. After multiplication in the mouse
gut inflammation occurs and the whole microbiome changes:
Bacteroidetes and Firmicutes are suppressed, Salmonella and
Enterococcus grow (Deatherage Kaiser et al., 2013). In response
to S. enterica serovar Typhimurium infection, potential novel
innate immune factors can be discovered, there is transmigra-
tion and activation of neutrophils and up-regulation of cell sur-
face molecules. Coordinate murine immune responses include
complement activation and inflammatory antibacterial response.
Salmonella metabolism reacts by induction of stress response
proteins, synthesis of outer membrane proteins and lipoproteins.

The combination of integrated analysis of the different data
sets shows that Salmonella reshapes its metabolism for its adapta-
tion to different host environments. Virulence-associated remod-
eling adapts Salmonella to new niches and locations in the host,
there nutrient-poor conditions are encountered and a strong
protection against hostile environments of the host is mounted
(Figure 1).

Metabolic modeling
Metabolic modeling of Salmonella in infection reveals an inte-
grated picture of Salmonella adaptation processes. Furthermore,
in the past few years, several groups established extensive, well-
curated, models of Salmonella metabolism (Raghunathan et al.,
2009; Thiele et al., 2011). Metabolic models are refined by con-
sidering additional energy required for stress defense mechanisms
and adaptation during infection (Steeb et al., 2013) or considering
metabolic bottlenecks (Table 2).

Modeling regulation of Salmonella metabolism
Several studies analyzed Salmonella regulatory networks of genes
in various SPI by means of mathematical models (Temme et al.,
2008; Bailly-Bechet et al., 2011). Current results allow to model
close to observation the sequential activation of virulence gene
clusters in adaptation to distinct host environments (Table 2).

In the analysis of Salmonella-human interactions, large-scale
cellular networks can already be described by looking at their
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Table 1 | Useful WEB resources for Salmonella -omics.

http://gsc.jcvi.org/projects/msc/salmonella/index.shtml Genomic sequencing center for infectious disease (J. Craig Venter institute)
Salmonella genome project
(many serovar genome sequences, good resource)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032673/ Salmonella community effort metabolic model (Thiele et al., 2011)
(down load model)

GSE32995 GEO genome array data sets, examples:
GSE27703 Analysis of the host microRNA response to Salmonella uncovers
the control of major cytokines by the let-7 family (Schulte et al., 2011)
Transcriptional profiling of four growth phases S. Typhimurium comparing
immobilized growth with planktonic growth

http://patricbrc.org/portal/portal/patric/GenomeList?cType=taxon&
cId=590&dataSource=&displayMode=genome

Pathosystems Resource Integration Center (PATRIC) Salmonella genomes
and large collection of sequences

Salmonella—Cbcb—umiacs
https://wiki.umiacs.umd.edu/cbcb/index.php/Salmonella

wiki on Salmonella genome reads

http://www.poultryhub.org/production/food-safety/salmonella/ Poultry Hub
(professional resource on Salmonella infections in veterinary medicine)

http://microbes.ucsc.edu/cgi-bin/hgGateway?hgsid=555757&
clade=eukaryota-protista&org=Salmonella+typhimurium+LT2&db=0

Complete browsable genome viewer and genome sequence of Salmonella
enterica serovar Typhimurium LT2 at UC Southern California

http://webclu.bio.wzw.tum.de/binfo/proj/proamp/Target_organisms/
target_organisms.html

Integral membrane protein analysis of Salmonella (and other bacteria) at TU
Munich

http://www.about-salmonella.com/ Salmonella food poisoning and outbreaks

structure, without attempting a dynamical simulation. Such
graph-based methods mainly focusing on the topology to predict
the chain of events in signaling or estimate metabolic capabili-
ties. Here, cellular modules for different functions are identified
as sub-graphs (sub-networks) with proteins mediating only this
function in the complete network. Furthermore, hubs, central
nodes in the network receiving many connections and indicating
strongly connected genes or proteins, are of interest. For instance,
interactome networks describing protein-protein interactions are
built up and serve as scaffolds for further analysis (Schleker et al.,
2012).

Rosenkrantz et al. (2013) compared two types of networks
for S. Typhimurium strain LT2 regarding stress response and
metabolic adaptation: a transcriptional data network using tran-
scriptional data for 425 selected genes under different growth
and stress conditions identifying the significantly and strongly
regulated genes (transcriptional network) for each condition.
This was compared to a genome-scale network connecting genes
with metabolic pathways and cellular functions. Looking at the
top five connecting hub proteins from the transcriptional network
(wraB, ygaU, uspA, cbpA, and osmC) as well as the hubs in the
genome scale metabolic pathway and cellular function network
(ychN, siiF, yajD, ybeB, and dcoC), all these hubs were found to
be dispensable for virulence in mutation studies. However, dou-
ble mutants of these two sets of regulatory proteins showed clear
effects on virulence in mouse infection experiments (Rosenkrantz
et al., 2013). This is a particular strong example confirming the
robust and well-buffered Salmonella regulation of metabolism

and cellular function with virulence factors having partly redun-
dant, overlapping functions.

METABOLIC ADAPTATION OF SALMONELLA DURING STRESS
CONDITIONS
Stress factors linking virulence and metabolism
When Salmonella enters into an intestinal epithelial cell, envi-
ronmental factors such as high osmolarity and neutral pH lead
to an activation of HilD, which in turn induces HilA and invF
gene expression (Altier, 2005). HilA as transcriptional regula-
tor in turn activates all SPI1 genes necessary for assembly of the
T3SS (Ellermeier and Slauch, 2007) and translocation of various
SPI1 effector and host interaction proteins (Sop proteins, SipA)
as well as DksA to coordinate NAD(P)H/NAD(P)(+) redox bal-
ance under nutrient limitation (Henard et al., 2010). For instance,
SopB protein changes host cell exocytosis (Perret and Zhou,
2013). SPI1 gene expression is dependent on the growth phase
(e.g., there is highest SPI1 induction after 3.5 h of growth in rich
medium, Cossart and Sansonetti, 2004). Effector protein activity
leads to reorganization of the host cell actin cytoskeleton, fol-
lowed by membrane ruffling and internalization of Salmonella
(Haraga et al., 2008). Next key factors influencing SPI2 expres-
sion (Haraga et al., 2008) such as detection of low osmolarity,
low calcium concentrations and acidic pH by the two-component
systems Envz/OmpR and SsrAB lead to activation of SPI2 gene
expression (Garmendia et al., 2003) with factors such as SifA, SseJ,
PipB2, and SseG (Núñez-Hernández et al., 2014) and result in a
SCV containing multiplying Salmonella and inducing filaments.
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Table 2 | Techniques to model Salmonella metabolism and its regulation.

Model Insight Author, weblink

TECHNIQUES TO STUDY METABOLIC ADAPTATION IN SALMONELLA

S. Typhimurium metabolite profiling for different (nutrient
poor, virulence induced) environments and genome-scale
metabolite model

→Central carbon metabolism strongly altered (depletion in
glycerol catabolism (glycerol, glycerol 3-phosphate,
dihydroxyacetone phosphate, and pyruvate), increased
glucose. Synthesis and uptake of polyamines (may protect
Salmonella against osmotic stress inside host cells).

Kim et al., 2013
doi: 10.1039/C3MB25598K

Metabolic model and microbiology, metabolite
measurements; for survival (unrelated to growth):
“maintenance requirements” and “costs” (to resist host)
are calculated as ATP expenditure.

→ Accumulation of metabolites in the infected gut (lactose,
galactinol, melibiose, and raffinose) Salmonella and murine
host lack necessary enzymes → used by Bacteroidetes and
other commensals (glycosidases).
→ Model predicted hundreds of virulence phenotypes with
90% accuracy.
→ Costs become very high under excess nutrient
availability

Deatherage Kaiser et al., 2013
PMID: 22168414

Model Result Author, weblink

METABOLIC MODELING TECHNIQUES

Hypothesis of nutrient-limitation during infection → Inactivation of Salmonella enzyme → metabolic
bottleneck → overexpression of another enzyme.

Steeb et al., 2013
PMID: 23633950

Deletion effects, e.g., calculations for �ppc → No compensatory flux via the glyoxylate shunt. Fong et al., 2013
PMID: 23432746

Model Result Author, weblink

MODELING REGULATION OF SALMONELLA METABOLISM

Boolean modeling of genes in SPI1, SPI2, and T6SS
Integrated: osmolarity, glucose, iron, calcium and
magnesium concentrations, growth phase-dependent
stationary phase factors.

→ Description of pathogenicity island cross-talk (e.g.,
SPI2-secreted proteins low → activation of T6SS). →
Antagonistic cross-talk (e.g., SsrAB to SciS; MviA to RcsB).

Das et al. (2013)
doi: 10.1186/1757-4749-5-28

Spatiotemporal distribution of ROS in neutrophils,
macrophages carrying Salmonella and in vivo expression
of ROS defense enzymes (KatG, SodAB, and host NADPH
oxidase).

→ (a) Neutrophils: lethal concentrations of hydrogen
peroxide
→ (b) Macrophages: only sub-lethal ROS concentration
during infection

Burton et al. (2014)
PMID: 24439899

The combined action of these regulatory mechanisms ensures
that sufficient nutrients are available for Salmonella during the
infection (Figure 2).

Metabolic defense pathways
Salmonella has to adapt its metabolism to different environmen-
tal stresses and niches when entering the human host, starting
with the challenging acidic environment of the stomach (Table 3).
Furthermore, immune defense reactions from the host involve
free radicals, complement reaction, enzymatic degradation and
autophagy reactions. Individual examples for these biochemical
assaults on Salmonella have been studied in detail. Nitric oxide
(NO) produced by the NO synthase of several immune cells
of the host has a severe impact on central carbon metabolism
of Salmonella. NO targets the pyruvate and α-ketoglutarate
dehydrogenase complexes (Richardson et al., 2011).

Carbohydrate metabolism
Citrate is a TCA cycle intermediate (Figure 1) and is an
important regulatory molecule in the control of glycolysis
and lipid metabolism (Neidhardt, 1996). Furthermore, acety-
lation and deacetylation regulate the amount of glycolysis vs.

gluconeogenesis as well as branching between citrate cycle and
glyoxylate (Wang et al., 2010; Table 3). Moreover, citrate is a cru-
cial iron-chelator which is involved in the homeostasis of iron
in the pathogen, as well as the host. Iron is an essential com-
ponent for several enzymes, but in high concentrations, it may
cause damage. Citrate is consumed during NO exposure and
other stress conditions because the export pump IctE (iron citrate
efflux transporter, former called MdtD) transports iron chelated
with citrate out of the cell. Export of citrate leads to growth arrest
(Frawley et al., 2013), a status that allows it to survive antibi-
otic challenges as observed in persister bacteria. This function
decreases harmful cellular iron content and reduces growth of
Salmonella making it more stress resistant (Figure 1).

The broad influence of amino acids on metabolic adapta-
tion during infection. The work on acetylation regulation in
Salmonella by Wang et al. (2010) also underlines also that the
central carbon as well as connected amino acid metabolism,
including the TCA cycle, can directly be linked to stress response
(Figure 1).

In particular, the bacterial arginine permease ArgT is an essen-
tial virulence determinant which decreases the host’s cellular
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FIGURE 1 | Metabolic adaptation of Salmonella. Changes from intestinal
to intracellular lifestyle in the mucosa and the resulting adaptations are
depicted. The central metabolism of Salmonella is shown in the mid panel,
while virulence pathways are shown on the left. Environments may change
from rather nutrient-rich conditions to nutrient-restricted conditions (red
letters) such as in infection, for instance when Salmonella is ingested with
contaminated food. Amino acids are abbreviated by their three letter code.
Other abbreviations: PPP, pentose phosphate cycle; E-4P, erythrose

4-phosphate; Glucose-6P, glucose 6-phosphate; TCA, tricarbonic acid cycle
(citric acid cycle). Some of the ensuing changes in Salmonella pathways are
indicated (right, blue arrows up or red arrows down compared to rich nutrient
environment, e.g., TCA goes down while some of the now less used citrate
is used to chelate iron). Some metabolic changes from the host that
influence Salmonella metabolism (Winter et al., 2010; blue arrows) are given
on the left. Bottom: these sugars which are not used by Salmonella nor by
the host accumulate in the infected gut.

arginine content and reduces by this way the NO produc-
tion of the host (Das et al., 2010; Table 3). In contrast, argi-
nine degradation by Salmonella appears to be without influence
on NO production. Although arginine degradation pathways
are up-regulated in Salmonella during infection of macrophage
and essential for virulence, this is due to other mechanisms
but not related to substrate degradation of iNOS (Choi et al.,
2012).

Cysteine is a key amino acid during oxidative stress response
in Salmonella. In a study on cysteine biosynthesis during oxida-
tive stress, cysteine biosynthesis regulation was blocked in �cysB
and �cysE mutants and oxidative defense pathways encoded by
katG and soxS were up-regulated compared to the wild-type
strain (Turnbull and Surette, 2010). Consequently, the cysteine
biosynthesis and cysteine-derived molecules such as thioredoxin
play an important role for intracellular Salmonella survival and
replication (Bjur et al., 2006). In this regard, the oxidoreductase
thioredoxin 1 (TrxA) was found to be co-induced and essential for
SPI2-T3SS activity under conditions that mimic life in the SCV
(Negrea et al., 2009).

THE RICHNESS OF SALMONELLA METABOLISM AND ITS INFLUENCE
ON VIRULENCE
The SsrAB virulon controlling SPI2 gene expression is induced
under nutrient-poor conditions (e.g., presence in the phagosome,
Kuhle and Hensel, 2004).

The interplay of Salmonella pathogenicity islands and metabolism
Various metabolic pathways which have an impact on the SPI1
activity of Salmonella enterica (Table 3). One example is the inter-
action between the invasion acyl carrier protein (IacP; Viala et al.,
2013) and secretion of SPI1 effector proteins into the host cell to
achieve rearrangement of the host cytoskeleton and engulfment
of the bacterium (reviewed in Cossart and Sansonetti, 2004).

There are also indications for the influence of SPI1 func-
tions on the host’s metabolism in order to facilitate survival
in the intestine and subsequently intracellular to promote the
infection process. Thus, the SPI1-T3SS effector protein SopE is
known to increase Salmonella invasiveness and to induce strong
inflammatory host responses (Humphreys et al., 2012).

Although SPI1 and SPI2 are induced under very distinct nutri-
tional environments (SPI1 in a nutrient rich environment, SPI2
by nutrient starvation, Kuhle and Hensel, 2004), there are some
bacterial metabolites which effect SPI1 as well as SPI2 activity
and have a general impact on Salmonella virulence (Table 3). One
example are polyamines, short cationic amines, of which spermi-
dine and putrescine are mostly common in bacteria (Jelsbak et al.,
2012).

Intracellular adaptation and metabolism of Salmonella. While
conditions in the intestinal lumen are nutrient rich, the situa-
tion changes after Salmonella invades into the epithelial cells and
is phagocytosed at the basolateral cell side by macrophages or
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FIGURE 2 | Regulatory adaptations and nutritional requirements of

Salmonella. A schematic overview of functions of SPI2 during host cell
infection and nutritional requirements to manifest a systemic infection. The
Salmonella-containing vacuole (SCV) with replicating Salmonella (gray ovals)
is connected to Salmonella-induced filaments. Blue writing: substrates
Salmonella depends on to manifest systemic infections (Steeb et al., 2013).
Dark blue spots: SPI2 effectors. The insert (brown rectangle) shows key
factors influencing SPI2 expression (Haraga et al., 2008). Detection of low
osmolarity, low calcium concentrations and acidic pH by the
two-component systems Envz/OmpR and SsrAB inside the SCV leads to
activation of SPI2 gene expression (Garmendia et al., 2003). Dotted arrow:
minor effect on EnvZ/OmpR activity and SsrAB activity. Non-dotted arrow:
strong effect on EnvZ/OmpR activity and SsrAB activity.

dendritic cells. Staying inside the SCV, the pathogen has to deal
with nutrient limitations. To investigate which metabolites could
interact with expression of genes in SPI1 or mainly SPI2, one issue
is to define the nutritional situation of Salmonella gain inside the
SCV and to figure out which metabolites Salmonella has access
to. Mouse infection experiments showed on the one hand that
intracellular Salmonella get access to a wide range of nutrients,
including nearly all amino acids except proline. On the other
hand, it was shown that the ability to manifest a full systemic
infection is dependent on the utilization of “glycerol, fatty acids,
N-acetylglucosamine, gluconate, glucose, lactate, and arginine”
(Steeb et al., 2013). However, Salmonella is able to counteract var-
ious defense mechanisms in order to facilitate growth or reduce
immune responses (Table 3). Invasion of pathogens into epithe-
lial cells is followed by cytosolic amino acid starvation in host
cells, which seems to be explained by membrane damage during
the invasion process (Tattoli et al., 2012).

However, in contrast to Shigella-infected cells, amino acid lev-
els of epithelial cells invaded by Salmonella normalized 3 h after
infection, which leads to relocalization of mTor invasion sus-
taining pathway to the SCV, phosphorylation of ATG protein
13, leading to a low ATG protein 1 activity and thus reduced
autophagy (Ganley et al., 2009). By this, Salmonella is able to
avoid autophagy in epithelial cells. Further investigations are
required to clarify if normalization of amino acid levels is directly
induced by Salmonella. At least the invasion-induced membrane
disturbance is only severe in the first hour of infection and some-
how repaired faster than in cases of invasion by other intracellular
pathogens (Tattoli et al., 2012).

ANTI-INFECTIVE STRATEGIES IN THE FACE OF ROBUST SALMONELLA
METABOLISM
As Salmonella adapts rapidly and successfully to changing condi-
tions including intracellular survival in macrophages, in epithelia
and in the gut, we will now examine which antibiotic strategies are
nevertheless available for Salmonella infections. A seminal work
by Becker and co-workers showed that the robust metabolism of
Salmonella limits possibilities for new antibiotics (Becker et al.,
2006) and Bumann stressed this point asking “has nature already
identified all useful antibacterial targets?” (Bumann, 2008). It is
of course important to mention the billions of years sampling
time to test and select bacteria and bacterial metabolism dur-
ing evolution. Furthermore, the parallel exploitation of diverse
host nutrients often enhances often Salmonella virulence (Steeb
et al., 2013) and persistent Salmonella are highly resilient (Barat
et al., 2012). On the other hand, as many medical areas such
as cancer research or aging research also make clear, any med-
ical intervention happened only very recently in evolutionary
times. Hence, additional medical interventions are not limited
by evolutionary constraints such as positive epistatic selection
or direct metabolic energy costs. There are many potential tar-
gets still in stock, both by targeting metabolic pathways in
pathogenic bacteria and Salmonella in particular, as well as by
exploring novel ways of anti-infectives. One inspiring example
is metabolic engineering of Salmonella vaccine bacteria in the
mevalonate pathway to boost human Vγ2Vδ2 T cell immunity
(Workalemahu et al., 2014). As reviewed earlier (Dandekar and
Dandekar, 2010), anti-infective action starts furthermore from
typical hygienic measures such as isolation of patients with multi-
resistant strains including silent clinical carriers, but also includes
targeted disturbance of metabolic pathways for example by sul-
fonamides. In particular, both targeted therapy (direct delivery
of an antibiotic to only the location it should act, e.g., in the
intestine) as well as targeted modification of standard drugs (so
that they are more detrimental to the pathogen even if the host
shares similar proteins) are options which have high potential
and are not much explored. Our own research highlights the
interconnectivity of metabolism. This renders Salmonella also
vulnerable also in conserved and well investigated pathways, such
as TCA cycle and its anaplerotic reactions. Thus, Salmonella
Typhimurium is controlled by host NO production as shown
in mice experiments in vivo. Methionine or lysine auxotrophy
results from reduced succinyl-CoA availability as the lipoamide
dehydrogenase activity is targeted by NO while compensatory
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Table 3 | Studies on different metabolic conditions for Salmonella.

Condition Result Author, weblink

METABOLIC DEFENSE, NO

NO (murine host) → lipoamide dehydrogenase
(Salmonella) reduced activity

→ Methionine and lysine precursor succinate low →
transporters (e.g., for succinate) important under nitrosative
stress

Richardson et al., 2011
PMID: 21767810

NO (murine host) → reduction of aerobic energy by
nitrosylating terminal quinol cytochrome oxidases.

→ Diminishes energy-dependent aminoglycoside uptake →
protects antibiotic challenges during host nitric oxide
generation

Husain et al., 2008
PMID: 18198179
McCollister et al., 2011
doi: 10.1128/AAC.01203-10

NO (murine host) → decrease in NADH dehydrogenase
activity → NADH high in cytoplasm hydrogen peroxide
protection

→ Direct detoxification of NO by the NADH dehydrogenase
(RNS defense by acid-induced regulator Fur regulates
NADH dehydrogenase)

Husain et al., 2008
PMID: 18198179
Husain et al., 2014
PMID: 24166960

Condition Result Author, weblink

CARBOHYDRATE METABOLISM

Carbohydrate metabolism adaptations of Salmonella
during infection

→ Aconitase isoenzymes: acoA for oxidative stress
→ Repair of oxidized aconitase by bacterial frataxin
ortholog proteins CyaY and YggX

Baothman et al., 2013
PMID: 23637460
Velayudhan et al., 2014
PMID: 24421039

S. Typhimurium TCA cycle mutations (gltA, mdh,
sdhCDAB, sucAB, and sucCD

→ Incomplete TCA helps survival and replication in resting
and activated murine macrophages compared to wt
→ Epithelial cell infection: �sucCD and �gltA replicate less
than wt
→ S. Typhimurium �sucAB and �sucCD attenuated in
murine infection

Bowden et al., 2010
doi: 10.1371/jour-
nal.pone.0013871

Influence Result Author, weblink

THE BROAD INFLUENCE OF AMINO ACIDS ON METABOLIC ADAPTATION DURING INFECTION

Amino acid decarboxylase systems consume protons,
raise cytosolic pH

→ Salmonella decarboxylases for lysine (CadA), arginine
(AdiA), and ornithine (SpeF ), not glutamate → acid
tolerance but not essential for virulence in mice

Alvarez-Ordóñez et al., 2010
PMID: 19864032
Viala et al., 2011
PMID: 21799843

Arginine has no decarboxylase, but key immune
modulator from Salmonella

→ Substrate competition Salmonella arginase II and iNOS
of the host
→ Salmonella up-regulates arginase II activity in RAW264.7
macrophages → down regulates host iNOS → by this in
intestinal lumen beneficial increase of electron acceptor
nitrate

Das et al., 2010
doi: 10.1371/journal.
pone.0015466
Lahiri et al., 2008
PMID: 18625332
Humphreys et al., 2012
PMID: 22341462

Feature Result Author, weblink

THE INTERPLAY OF SALMONELLA PATHOGENICITY ISLANDS AND METABOLISM

IacP downstream of sipA for effector protein within
SPI1

→ Facilitates Salmonella invasion to HeLa cells by secretion
of SPI1 effectors SopA, SopB, and SopD
→ IacP activated by 4′-phosphopantetheine transferase
AcpS

Kaniga et al., 1995
PMCID: PMC177584
Kim et al., 2011
PMID: 21263021
Viala et al., 2013
PMID: 23893113

The transferase is a link between bacterial fatty acid
metabolism and SPI1 virulence (Hung et al., 2013)

→ Propionyl-CoA represses AcpS, HilD, Salmonella invasion
→ Low SopB secretion
→ May be priming of fatty acid metabolism inside the SCV.

Hung et al., 2013
PMID: 23289537
Viala et al., 2013
PMID: 23893113

Virulence → high iNOS, and NO levels → radical chain
reaction, isomeri-zation → nitrate increase

→ Growth advantages for nitrate respiring strains such as
SL1344

Lopez et al., 2012
PMID: 22691391

In SCV nitrate respiration tries to avoid host cell
damage

→ NapA respiration instead of NarG pathway (Rowley
et al., 2012)

Rowley et al., 2012
PMID: 22039967

(Continued)
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Table 3 | Continued

Condition Result Author, weblink

INTRACELLULAR ADAPTATION AND METABOLISM OF SALMONELLA

polyamines required for replication in epithelial cells
(Jelsbak et al., 2012)

�spe polyamine synthesis mutant → no polyamines →
decreased invasion ability (hilA lower → invF and sipB
virulence factor down)

Jelsbak et al., 2012
PMID: 24602405

Glycerol and glucose → major carbon sources in
systemic infections (Eisenreich et al., 2013)

→ �tpi triose phosphate isomerase mutant attenuated in
mouse infection → �glpE mutant strain, too

Eisenreich et al., 2013
PMID: 23847769
Paterson et al., 2009
PMID: 19493007

Amino acid starvation in host → xenophagy, autophagy
dependent targeting and degradation of intracellular
bacteria

→ Requires host mTOR pathway triggered by
autophagy-related gene (ATG) protein 13

Tattoli et al., 2012
PMID: 22704617
Ganley et al., 2009
PMID: 19258318
Kamada et al., 2000
PMID: 10995454

Salmonella pathways to achieve more succinyl-CoA are again
blocked by NO (Richardson et al., 2011). Here it also becomes
obvious why the therapeutic strategies are not easy exhausted,
for instance by direct delivery of NO-increasing drugs to the
severely infected gut. Anesthetic drugs are membrane modi-
fiers yielding even multi-resistant pathogens again vulnerable to
additional antibiotics, just to cite another possibility (Dandekar
and Dandekar, 2010). Furthermore, novel vaccination strategies
may proof successful. Hence, the task is more to implement
some of the many open alleys for novel antibiotic therapies in
clinic. This includes targeting of the metabolism. Furthermore,
clinical studies are required for each novel antibiotic strategy,
these are currently too expensive for high patient numbers and
the prize margin for antibiotics is low so antibiotic develop-
ment pipelines dry out. However, the prices for such clinical
studies could be drastically lowered by modern patient hospital
information systems, and furthermore, public awareness and will-
ingness to have better protection against infections is currently
increasing.

CONCLUSIONS: SALMONELLA GENERAL METABOLIC LIFESTYLE
DURING INFECTION
We saw that multiple “-omics” and especially metabolomic data
are currently used to determine the needs for Salmonella to facil-
itate intracellular survival within the SCV in host cells and its
nutrient supply.

Salmonella’s generalist metabolic lifestyle meets all types of
environmental challenges, be it ROS or nutrient limitation by
its broad metabolic capabilities. The broad metabolism sug-
gests nevertheless potential for novel anti-infective strategies.
However, under severe conditions Salmonella regulation and
metabolism are spiked up by input from SPI1, SPI2, T3SS
and T6SS, modified invasion abilities, redox protection and
central metabolism to turn the neutral environmental lifestyle
of Salmonella into a pathogenic lifestyle for its host. On top
of this such genetic modules catalyze rapid genetic exchange
between Salmonella strains showing that only an integrated pic-
ture will help to sustain antibiotic efficiency against Salmonella
infections.
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