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Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic
host cells. The intracellular niche protects the bacteria from cellular and humoral
components of the mammalian immune system, and at the same time, allows the
bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular
protection and access to nutrients comes with a price, i.e., the bacteria need to
overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic
pathway. While a few bacteria rupture the early phagosome and escape into the
host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant
and replication-permissive membranous compartment. Intracellular bacteria that form
unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania,
and Salmonella species. In order to understand the formation of these pathogen niches
on a global scale and in a comprehensive and quantitative manner, an inventory of
compartment-associated host factors is required. To this end, the intact pathogen
compartments need to be isolated, purified and biochemically characterized. Here, we
review recent progress on the isolation and purification of pathogen-modified vacuoles
and membranes, as well as their proteomic characterization by mass spectrometry and
different validation approaches. These studies provide the basis for further investigations
on the specific mechanisms of pathogen-driven compartment formation.

Keywords: Chlamydia, host-pathogen interactions, immuno-magnetic purification, Legionella, Mycobacterium,
Salmonella, Simkania, pathogen vacuole

Introduction

Proteomics of Pathogen-Host Interactions
Mass spectrometry (MS)–based proteomics is a powerful technology, allowing the identification
and quantification of hundreds of proteins from a single sample (Aebersold and Mann, 2003; Otto
et al., 2014). This technique has been employed successfully in a diverse range of areas, including
the impact of environmental stressors (Maass et al., 2014; Wenzel et al., 2014), conditions of health
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and disease (Hofmann et al., 2010; Hansmeier et al., 2012;
Kopecka et al., 2015; Lassek et al., 2015) or determinants of
bacterial and eukaryotic physiology (Cravatt et al., 2007; Trost
et al., 2009; Chao et al., 2010; Picotti et al., 2013; Kohlmann
et al., 2014). Over the last years, pathogen-host-interactions were
increasingly addressed by proteome studies (Becker et al., 2006;
Mattow et al., 2006; Rogers and Foster, 2008; Urwyler et al.,
2009; Li et al., 2010; Ansong et al., 2013; Claudi et al., 2014;
Hoffmann et al., 2014b), summarized in reviews by Bumann
(2010), Hartlova et al. (2011), Schmidt and Völker (2011) and
Steinert (2011).

A major challenge of studies in the field of pathogen-
host interaction is the limited material available from infection
settings. In addition, bacterial proteins are vastly outnumbered
by host proteins that may not be involved in the infection process.
Hence, “-omics” studies are dealing with at least two different
organisms combined in a single analytical setting. Consequently,
the difficulty lies in targeting either host proteins or pathogen
virulence factors individually or both at the same time in
comparative studies (Hartlova et al., 2011) with potentially very
asymmetric ratios of protein abundance (Schmidt and Völker,
2011). This problem can only be met with methods that are
sensitive and provide a wide dynamic range.

An even greater challenge is the targeted analysis of pathogen-
containing host compartments. These fragile organelle-like
microenvironments represent the direct contact region between
the pathogens and their hosts. However, attempts to purify these
compartments using classical organelle enrichment techniques
were not very successful. Recently, combinations of classical
and improved enrichment and pre-fractionation strategies
resolved this problem (see chapters below) and enabled for
the first time proteomics surveys of those delicate intracellular
compartments.

Gel-Based Proteomics
The call for global overviews of infection processes on protein
level has introduced classical 2D gel-based proteomics early to
the field, and it has still kept its place for targeting soluble
proteomes (Figure 1). Starting with only a limited number
of proteins detected (Desjardins et al., 1994), the analytical
depth of global proteome studies has increased markedly by
technical developments in 2D gel-based proteomics (Shevchuk
et al., 2009). Classical gel-based (i.e., “top-down”) proteomics
uses two physicochemical properties, the pI and the molecular
weight, to orthogonally resolve soluble proteins. This is achieved
by isoelectric focusing (IEF) followed by SDS-PAGE leading
to highly resolved 2D gels. Staining of the protein spots
and differential comparison of gel images then allows for a
relative quantification across different proteome samples based
on protein abundances.

Following spots detection, resolved proteins are identified
by state-of-the-art MS techniques, such as matrix-assisted laser
desorption ionization time of flight (MALDI-TOF). It is possible
to resolve more than a thousand protein spots with up to
700 different proteins by 2D gel-based proteomics. With recent
improvements in the second dimension, an increase of detected
protein by 25% was achieved (Moche et al., 2013). Despite

these improvements, gel-based proteomics suffers from detection
limitations due to protein hydrophobicity, abundance and
extreme physicochemical properties.

Gel-Free Proteomics
The limitations of gel-based proteomics have led to the
introduction of liquid chromatography (LC)-MS-based, gel-free
proteomics techniques. This has revolutionized the field, in
terms of sensitivity and versatility, e.g., allowing to also target
membrane proteomes in large scale studies (Aebersold and
Mann, 2003; Cravatt et al., 2007; Trost et al., 2009). Gel-free
proteomics changed the focus of the analytical setting from
the proteins toward proteolytic peptides generated from the
samples under investigation (Duncan et al., 2010). In “bottom-
up” proteomics, protein samples are first digested by specific
proteases, mostly trypsin, and the resulting very complex digests
are subjected to LC. The peptides are typically loaded on reversed
phase columns, desalted and then eluted according to their
hydrophobicity by a binary gradient of water/organic solvent.
On eluting from the LC-column, the peptides are ionized by
electrospray ionization, and mass/charge ratios are determined
by MS. The peptides are identified by stochastically sampling
the fragment pool, allowing for an unambiguous identification
using database searching tools and available sequence databases
(Figure 1). This approach is entirely MS-centered, and thus,
technology development increasingly determined the sensitivity
attained, the protein groups amenable for analyses (membrane
proteins, small proteins, basic proteins) and the sheer number or
proteins identified.

In contrast to gel-based proteomics, which is regarded as
being inherently quantitative, MS-based proteomics approaches
are lacking this feature. For differential comparisons most semi-
quantitative workflows either depend on the introduction of
isotope labels at different stages of sample preparation, both
in vivo or in vitro (metabolic labeling by stable isotope labeling
or chemical labeling), or they are label-free and based on
for instance “spectral counting” or “area under the curve”
determination on the MS1 level (Zybailov et al., 2006; Neilson
et al., 2011). Arguably, any in vivo stable isotope labeling
technique (e.g., SILAC, 15N labeling) is superior to other gel-
free quantification techniques, but this requires a suitable and
redundant biological system that makes labeling at the metabolic
level possible (Porteus et al., 2011). However, for the investigation
of infection processes, the introduction of stable isotopes by
metabolic labeling is challenging; for instance, the simultaneous
labeling of host and pathogen is often not possible, thus limiting
this approach so far to only defined analytical settings in early
stages of infection (Schmidt and Völker, 2011).

A striking feature of gel-free proteomics approaches is the
superb sensitivity of high resolution and accurate mass MS. Using
this technological advances, it has become possible to investigate
host compartments for the presence and composition of host
and pathogen proteins, and to elucidate the dynamics of their
interactions, as well as to explore post-translational modifications
relating to the infection process (Bruckert and Abu Kwaik, 2014).
This will be an intense research field in infection biology in the
upcoming years.
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FIGURE 1 | MS-based workflow of two basic proteomic approaches
(gel-based vs. gel-free) to resolve the proteome of
pathogen-containing host compartments. Infected cells were
harvested and lysed by chemical or mechanical treatment.
Pathogen-containing host compartments were enriched by combinations
of density gradient (DG) centrifugation, affinity immuno-precipitation (IP)

and fluorescence-activated cell sorting (FACS). Isolated host
compartments were then either first enzymatically digested (gel-free),
followed by LC-based peptide separation, or first separated by 2D-PAGE
followed by individual protein digests, before MS analyses. The data are
processed to determine and/or quantify the peptide amino acid sequence
through database searches.

Subcellular Pathogen Compartments
As a pathogen is residing in a specific compartment in the
host, the first step for most proteome studies in this field
comprises selective enrichment of pathogen-containing vacuoles
(PCVs) or internalized bacteria. This may be achieved by
subcellular/organellar fractionation based on physicochemical
properties (Howe and Heinzen, 2008; He et al., 2012; Cheng et al.,
2014), by immuno-affinity purification (Urwyler et al., 2010;
Hoffmann et al., 2013; Vorwerk et al., 2015), or through single
cell FACS enrichment by sorting internalized bacteria and lysed
host cells/organelles (Becker et al., 2006; Pförtner et al., 2013;
Surmann et al., 2014). These approaches greatly reduce sample
complexity in proteomics approaches and increase the specificity
and the quality of conclusions that can be drawn from the data.

For all steps performed during sample preparation, it is
crucial to verify the specificity of the chosen approach in
order to minimize artifacts caused by co-purified “contaminant”
organelles, which are meaningless for the biological setting
under investigation (Rogers and Foster, 2007; Shevchuk et al.,
2009; Hoffmann et al., 2014a; Vorwerk et al., 2015). Following
this enrichment/purification step, any temporal or spatial
rearrangement of proteins can be queried by proteomic analytical

techniques relying on the aforementioned quantitative or at least
semi-quantitative methods (Otto et al., 2014).

Here, we review recent progress on the isolation and
purification of pathogen-modified vacuoles and membranes
from host cells infected with obligate or facultative intracellular
bacteria. To this end, we focus on and compare membrane
compartments modified by Legionella, Chlamydia, Simkania, or
Salmonella spp., respectively, or phagosomes containing beads
coated with distinct cell wall lipids purified from Mycobacterium
tuberculosis. The proteomic characterization of these unique
pathogen niches by MS represents a comprehensive approach
toward a detailed understanding of these compartments and
provides the basis for further investigations on the specific
mechanisms of pathogen-driven compartment formation and
direct or indirect interactions of pathogen and host factors.

Intracellular Vacuolar Pathogens

Legionella pneumophila
Legionella spp. are ubiquitous environmental bacteria that upon
inhalation cause a severe pneumonia named “Legionnaires’
disease” (Newton et al., 2010; Hilbi et al., 2011a). The
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opportunistic pathogen colonizes a variety of niches in the
environment; yet, a peculiar trait of the bacteria is their amoebae-
resistance (Hoffmann et al., 2014b). By employing an apparently
conserved mechanism, the Gram-negative bacteria replicate
intracellularly in free-living protozoa as well as in mammalian
macrophages within a unique compartment, the “Legionella-
containing vacuole” (LCV) (Figure 2). LCVs restrict the fusion
with lysosomes and do not acidify, but extensively communicate
with the endosomal, secretory and retrograde vesicle trafficking
pathways and finally coalesce with the endoplasmic reticulum
(ER) (Isberg et al., 2009; Hilbi and Haas, 2012).

Intracellular replication and LCV formation of Legionella
pneumophila (Lpn) requires a bacterial type IV secretion system
(T4SS) called Icm/Dot (intracellular multiplication/defective
organelle trafficking), which transports “effector” proteins into
host cells, where they subvert host vesicle trafficking and
signal transduction pathways (Nagai and Kubori, 2011). For
Lpn, approximately 300 different Icm/Dot substrates have been
experimentally validated (Hubber and Roy, 2010; Zhu et al.,
2011; Lifshitz et al., 2013), some of which subvert small GTPases
of the Arf, Rab, or Ran family (Hubber and Roy, 2010; Itzen
and Goody, 2011; Rothmeier et al., 2013; Sherwood and Roy,
2013; Simon et al., 2014), the vacuolar H+-ATPase (Xu et al.,

2010), the autophagy machinery (Choy et al., 2012), the retromer
complex (Finsel et al., 2013b) or phosphoinositide (PI) lipids
(Weber et al., 2009; Hilbi et al., 2011b; Haneburger and Hilbi,
2013). E.g., several Lpn effectors anchor to the LCV membrane
by specifically binding to the PI lipid phosphatidylinositol 4-
phosphate (PtdIns(4)P) present on the pathogen vacuole together
with the phosphatidylinositol 5-phosphatase OCRL1 (Weber
et al., 2006, 2014; Ragaz et al., 2008; Brombacher et al., 2009).
Thus, Lpn modulates in a sophisticated and very specific manner
a plethora of host processes to custom-tailor its intracellular
replicative niche.

Mycobacterium tuberculosis
Mycobacterium tuberculosis (Mtb), the agent of human
tuberculosis (TB), is a facultative intracellular pathogen in
phagocytes. Upon inhalation, Mtb is engulfed by alveolar
macrophages (MO) as first line of defense against inhaled
pathogens and initiator of host responses to infection.
Subsequently, alveolar MO and lung epithelial cells release
chemokines including interleukin (IL)-8, thereby amplifying
local inflammation by attracting monocyte-derived MO and
polymorphonuclear neutrophils (PMN). These cells take their
share in engulfing Mtb, as do tissue resident dendritic cells

FIGURE 2 | Biogenesis of pathogen vacuoles. Legionella,
Mycobacterium, Chlamydia, Simkania, and Salmonella spp. form distinct
pathogen-containing vacuoles. Abbreviations: CCV, Chlamydia-containing
vacuole; CERT, ceramide transfer protein; ER, endoplasmic reticulum;
ERGIC, ER-Golgi intermediate compartment; EE, early (sorting) endosomes;
LE, late endosomes; LCV, Legionella-containing vacuole; MCV,
Mycobacterium-containing vacuole; PM, plasma membrane; SCV,
Salmonella-containing vacuole; SIF, Salmonella-induced filament; SMM,
Salmonella-modified membranes; SKIP, SifA and kinesin interacting protein;

SnCV, Simkania-containing vacuole. LCVs intersect with the secretory
pathway between ER exit sites and the cis-Golgi network and also interact
with the retrograde recycling pathway. MCVs represent maturation-stalled
endosomal compartments. Chlamydia “elementary bodies” (EBs) form
between the TGN and the PM a membrane-bound “inclusion” (CCV), which
communicates with the Golgi apparatus and wherein EBs differentiate into
“reticulate bodies” (RBs). SnCVs also interact with the Golgi as well as with
perinuclear ER and mitochondria. SCVs extensively interact with lysosomes
and eventually localize to the peri-Golgi region. For details see text.
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(DC), which deliver antigenic cargo to the draining lymph
nodes in order to prime specific T cells. Mtb induces the release
of pro-inflammatory cytokines by MO and DC, which bias
T cell immunity toward Th1 cell responses, as characterized
by generation of the pro-inflammatory and MO-activating
cytokines, interferon gamma (IFN-γ) and tumor necrosis factor
alpha (TNF-α) (O’Garra et al., 2013). As prime host cells, the
resting MO allows intracellular survival and proliferation of Mtb,
whereas immune activated MO, PMN or DC are not permissive
for pathogen growth (Corleis et al., 2012; Weiss and Schaible,
2015). However, despite these early host defense measures,
Mtb is able to establish infection, which can be contained
in more than 90% of all cases at a latent stage but bears the
risk of reactivation and development of active TB later in life
(Koul et al., 2011).

As Mtb fails to actively enter host cells, the bacteria require
phagocytosis to reach their intracellular niche, which is facilitated
by an array of germ-line encoded innate host cell receptors
including C-type lectins such as the macrophage mannose
receptor (MMR), MCL and DC-SIGN. Upon opsonization by
complement or specific antibodies, CR3 and FcR are also
involved in Mtb uptake. Simultaneous triggering of Toll-like
receptors (TLR-1/2 heterodimers, TLR-9) and other pattern
recognition receptors such as Mincle and Dectin-2 perpetuate
and enhance inflammatory responses, which in part can
limit mycobacterial growth (Tanne and Neyrolles, 2011). MO
activation by IFN-γ and TNF-α promotes expression of genes
encoding anti-microbial peptides, nitric oxide synthase (NOS2)
and LRG47, which directly attack the mycobacteria or mediate
microbicidal effector mechanisms, including generation of toxic
nitric oxide and oxygen intermediates, host cell apoptosis and
autophagy, respectively, and subsequent control of Mtb (Weiss
and Schaible, 2015).

Upon phagocytosis, virulent Mtb converts the newly
formed phagosome into a replication-permissive niche, the
Mycobacterium-containing vacuole (MCV; Figure 2), thereby
exploiting the host cell’s endosomal system and metabolism to
its own benefit and, at the same time, escaping humoral host
defense mechanisms such as specific antibodies and complement
(Russell, 2011; Weiss and Schaible, 2015). Mtb arrests phagosome
maturation at an early endosomal stage, as characterized by an
almost neutral pH of 6.3, due to limited numbers of the proton-
pumping vacuolar ATPase and low concentrations of LAMP-1
and active lysosomal hydrolases (de Chastellier, 2009; Russell,
2011). Furthermore, the Mtb phagosome carries the actin-
binding coat protein, coronin 1, and acquires iron-saturated
holotransferrin (TF), which is delivered through the TF receptor.
One benefit of residing in a non-maturing early endosomal
phagosome is probably that Mtb can access the host cell’s iron
import pathway to satisfy the pathogen’s need for iron (Weiss and
Schaible, 2015). Nevertheless, virulent Mtb can resist lysosomal
conditions, though optimal replication may be hindered in the
hostile low pH environment in the phago-lysosome (Ehrt et al.,
2015). It has also been reported that virulent Mtb can disrupt the
phagosomal membrane and escape into the cytoplasm (van der
Wel et al., 2007; Simeone et al., 2012), which adds an additional
strategy to the virulence properties of this successful and well
host-adapted pathogen.

Mtb produces several secreted proteins interfering with
phagosome maturation. These include Ndk, PtpA and
PE_PGRS30. Ndk dephosphorylates and inhibits recruitment
of Rab7-GTP and Rab5-GTP to phagosomes (Forrellad et al.,
2013). PtpA dephosphorylates VPS33B, a host protein involved
in regulation of membrane fusion, and binds to the vacuolar
H+-ATPase thereby interfering with luminal acidification. The
role of PE_PGRS30 is not known although its deletion drives
mutant Mtb into phago-lysosomes (Forrellad et al., 2013).
Recently, the secreted acid phosphatase SapM was found to
dephosphorylate phosphatidyl-inositol 3-phosphate (PtdIns3P)
located at the cytoplasmic sheet of the phagosomal membrane
and essential for progression of phagosome biogenesis (Vergne
et al., 2005).

Components of the complex mycobacterial cell wall have also
been identified as virulence factors, which can deviate phagosome
maturation. Examples are mannose-capped lipoarabinomannan
(ManLAM), phosphatidyl-inositol mannosides (PIMs) and, most
importantly, the cord factor, trehalose-6,6-dimycolate (TDM)
(Indrigo et al., 2002; Fratti et al., 2003; Vergne et al., 2003; Kang
et al., 2005; Axelrod et al., 2008).

Chlamydia and Simkania spp.
Chlamydia spp. are a major cause of sexually transmitted,
pulmonary and ocular diseases in humans worldwide. Recently,
other chlamydia-like organisms like Simkania negevensis (Sn)
and Waddlia chondrophila (Wc) were described to have
pathogenic properties as well (Corsaro and Greub, 2006;
Baud et al., 2015). Members of the order Chlamydiales
are characterized by four particular features: (1) obligate
intracellular lifestyle, (2) Gram-negative-related cell wall, (3)
coccoid morphology and (4) bi-phasic developmental cycle.

Infection of the eyes by Chlamydia trachomatis (Ctr) serotypes
A-C might lead to chronic conjunctivitis (trachoma) resulting
in preventable blindness if untreated, whereas infection of
the urogenital tract by serotypes D-L can cause prostatitis,
pelvic inflammatory disease and an increased risk of ectopic
pregnancy or infertility in women. Chlamydophila pneumoniae
(Cpn) and Chlamydophila psittaci (Cps) infect the upper
respiratory tract and represent community-acquired or animal-
transmitted pathogens. Acute infections cause pneumonia or
chronic bronchitis and could lead to chronic asthma (Hahn
and McDonald, 1998; Harkinezhad et al., 2009). In contrast to
Ctr, Cpn and Cps can infect animals like koalas, birds, bovines,
musquashs and snails.

Sn has a broad host spectrum besides humans and can grow
in amoebae and in several human or simian epithelial cell
lines or macrophages (Kahane et al., 2007) as well as in insect
cells (Sixt et al., 2012). Infection with Sn has been connected
to upper respiratory tract infections in humans, and manifests
as community acquired pneumonia (CAP), bronchiolitis or
chronic obstructive lung diseases (Lieberman et al., 2002), and to
granuloma formation in reptiles (Soldati et al., 2004). Infections
of the lower respiratory tract caused by Ctr, Sn, and Wc have been
connected to miscarriages and premature births (Greenberg et al.,
2003; Baud et al., 2015).

The life cycles of Sn and Ctr are similar and consist of two
developmental stages. Infection is initiated by endocytosis of
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so-called elementary bodies (EB). Inside the membrane-bound
endosomal compartment, EB differentiate into metabolic active
reticulate bodies (RB) that replicate by binary fission in this
Chlamydia-specific compartment called inclusion or Chlamydia-
containing vacuole (CCV; Figure 2). Finally, RB re-differentiate
into EB that are released by cell lysis or extrusion and start a
new infection cycle in surrounding cells (for a review see Bastidas
et al., 2013).

The Ctr surface proteins OmcB and MOMP mediate
adherence to surface receptors of eukaryotic cells that trigger
endocytic uptake by host cells (for a review see Mehlitz and
Rudel, 2013). This process requires a functional type III secretion
system (T3SS) (reviewed by Mueller et al., 2014) to secrete
effector proteins, like TARP and CT694, into the host cytosol to
modulate the cytoskeleton (for a review see Mehlitz and Rudel,
2013) or lipid transport (reviewed by Elwell and Engel, 2012).
The pathogen-containing endosome matures then to CCV by
preventing phago-lysosomal fusion and manipulation of host
trafficking pathways for nutrient acquisition (Stephens et al.,
1998).

Critical mediators of membrane trafficking like Rab1,
Rab4, Rab6 and Rab11 (Rzomp et al., 2003; Capmany and
Damiani, 2010) are recruited to inclusion membranes, e.g.,
by direct binding to chlamydial inclusion membrane (Inc)
proteins (Rab4-CT229) (Moorhead et al., 2007) or by so far
unknown mechanisms (Rab6-BICD1) (Moorhead et al., 2010).
These Rab proteins support Ctr infectivity and replication
(Rejman Lipinski et al., 2009; Capmany and Damiani, 2010).
The phosphatidylinositol 5-phosphatase OCRL1 is recruited
to the CCV in a Rab-dependent manner to modify the
parasitophorous vacuole by production of PtdIns(4)P (Moorhead
et al., 2010). Additional host factors like Arf1 and PI4KIIα are
recruited to provide PtdIns(4)P synthesis at the Golgi apparatus.
Lipid acquisition (cholesterol, sphingomyelin) is connected to
transport of Golgi-derived exocytic vesicles (Carabeo et al., 2003),
multivesicular bodies (MVBs) (Beatty, 2006, 2008) and to non-
vesicular transport via membrane contact sites to the ER (e.g.
CERT-dependent) (Derre et al., 2011; Elwell et al., 2011).

Although the chlamydial inclusion seems to build a single
compartment in the cytosol, it interacts with multiple subcellular
compartments (Golgi, ER, lipid droplets, mitochondria, and
recycling endosomes) to acquire nutrients for successful
intracellular replication. Sn encodes a functional T3SS as well
as T4SS and actively interferes with pro-apoptotic signaling
as well as ER stress (Collingro et al., 2011; Mehlitz et al.,
2014). In contrast to the CCV, the Simkania-containing vacuole
(SnCV; Figure 2) represents an inhomogeneous compartment
that develops multiple ER-contact sides. Thereby, the vacuole
seems to grow along the rough and smooth ER (Mehlitz et al.,
2014).

Salmonella enterica
Salmonella enterica (Sen) is a food-borne Gram-negative
pathogen causing a high number of infectious diseases ranging
from localized, self-liming gastroenteritis to systemic, life-
threatening typhoid fever. Salmonella spp. are invasive,
facultative intracellular pathogens residing in a unique

membrane-bound compartment, termed Salmonella-containing
vacuole or SCV (Haraga et al., 2008) (Figure 2). Within the SCV,
the pathogen deploys the SPI2-encoded type III secretion system
(SPI2-T3SS) to translocate effector proteins that manipulate
various host cell functions, including vesicular transport and
the organization of the endosomal system (Ibarra and Steele-
Mortimer, 2009; Rajashekar and Hensel, 2011; Figueira and
Holden, 2012). The SCV is considered a unique pathogen-
containing compartment that is derived from the pathway of
endosomal maturation. SCV markers include the lysosomal
glycoprotein LAMP1 as well as the small GTPase Rab7, and the
lumen of SCVs is thought to have a pH around 5.

The ability of Sen to survive within eukaryotic host cells is
closely linked to systemic pathogenesis. Mutant strains defective
in intracellular survival and replication such as SPI2-T3SS-
deficient strains are highly attenuated in systemic disease models
of infection (Hensel et al., 1998). One dramatic consequence
of host manipulation is the induction of complex networks of
tubular membrane compartments, such as Salmonella-induced
filaments (SIF) that are characterized by the presence of late
endosomal/lysosomal membrane proteins (Garcia-del Portillo
et al., 1993). Recently, further Salmonella-induced tubular
compartments have been described in addition to SIF, termed
Salmonella-induced SCAMP3 tubules (SIST) and LAMP1-
negative tubules (LNT) (Schroeder et al., 2011). In order to
understand the intracellular lifestyle of Salmonella in mammalian
host cells, the characterization of the specific properties of the
SCV is a key issue.

Isolation and Purification of Pathogen
Vacuoles and Membranes

Legionella-Containing Vacuoles
The LCV is a complex pathogen compartment formed by
continuous interactions with a variety of host cell organelles
and trafficking pathways. To enrich intact LCVs, we sought to
exploit the fact that some Icm/Dot T4SS substrates exclusively
localize to the pathogen compartment membrane. E.g., the
106 kDa Icm/Dot substrate SidC selectively anchors to the LCV
membrane (Luo and Isberg, 2004) and specifically binds to the
host cell PI lipid PtdIns(4)P via a C-terminal 20 kDa domain
termed “P4C” (PtdIns(4)P-binding of SidC) (Weber et al., 2006;
Ragaz et al., 2008; Brombacher et al., 2009; Dolinsky et al., 2014).
Using an affinity-purified polyclonal anti-SidC antibody, we
established a straight-forward two-step protocol to isolate intact
LCVs from Lpn-infected Dictyostelium discoideum amoebae
(Urwyler et al., 2010; Finsel et al., 2013a) or murine macrophage-
like RAW 264.7 cells (Hoffmann et al., 2012, 2013) (Figure 3A).
The LCV purification protocol is based on immuno-magnetic
separation followed by classical density gradient centrifugation,
and it allows monitoring the enrichment of pathogen vacuoles by
light microscopy using fluorescently labeled Lpn and phagocytes.

To isolate LCVs from phagocytes, D. discoideum amoebae
producing the LCV/ER marker calnexin-GFP or RAW 264.7
macrophages were infected at a multiplicity of infection (MOI)
of 50 with Lpn producing the red fluorescent protein DsRed
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FIGURE 3 | Purification schemes of pathogen vacuoles and
pathogen-modified membranes. (A) Purification of
Legionella-containing vacuoles (LCVs) from infected (1 h) D.
discoideum or RAW 264.7 macrophages by immuno-magnetic
separation using an anti-SidC antibody, followed by Histodenz
density gradient centrifugation. (B) Enrichment of Mycobacterium
TDM-bead phagosomes by magnetic purification, Ficoll density
gradient centrifugation and FACS sorting. RAW 264.7
macrophages exposed to TDM-beads were lysed after 30 min,
and phagosomes were isolated (DynaMag magnet), followed by
density gradient centrifugation, DNase and gentle protease
treatment, and finally by sorting via FACS. Isolation of (C)

Chlamydia-containing vacuoles (CCVs) or (D) Simkania-containing
vacuoles (SnCVs) were separated by differential centrifugation.
Ctr-infected HeLa cells (24 h) were washed, trypsinised,
resuspended in swelling buffer and lysed with a Dounce
homogenizer, followed by double filtration. Sn-infected HeLa cells
(72 h) were scraped, resuspended in swelling buffer, lysed with
a Douncer and an ultrasonic bath, followed by sequential
centrifugation. (E) Enrichment of fractionated Salmonella-modified
membranes (SMMs) using differential centrifugation followed by
immuno-precipitation (IP) with antibodies against the
epitope-tagged effector protein SseF. PNF, pre-nuclear fraction;
PMF, pre-mitochondrial fraction.

and incubated for 1 h at 25◦C (D. discoideum) or 37◦C
(macrophages). The infected phagocytes were washed with SorC
buffer (D. discoideum) or PBS (macrophages) and scraped

in osmo-stabilizing homogenization buffer (Derre and Isberg,
2004). Subsequently, the cells were homogenized using a stainless
steel ball homogenizer (8 μm clearance; Isobiotec) and incubated
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with an anti-SidC antibody, followed by a secondary anti-
rabbit antibody coupled to magnetic beads. The LCVs in the
homogenate were separated in a magnetic field using a MACS
multistand (Miltenyi Biotec) and further purified by Histodenz
density gradient centrifugation.

The purified LCVs thus obtained were analyzed by MS,
Western blot and immuno-fluorescence microscopy (Hoffmann
et al., 2014a). Moreover, host and pathogen LCV factors identified
by MS were validated by fluorescence microscopy of intact
infected cells, and their functional role for LCV formation was
assessed by using defined Lpn or D. discoideum deletion mutants
or by RNA interference in epithelial cells (Rothmeier et al., 2013;
Hoffmann et al., 2014a; Simon et al., 2014).

Mycobacterium TDM-Beads Phagosomes
To characterize the virulence function of purified mycobacterial
cell wall lipids in Mtb phagosome biogenesis, a simplified
glycolipid-coated bead model was employed (Axelrod et al.,
2008; Geffken et al., 2015). This approach differs from the
protocols described above for analysis of other pathogen-
containing vacuoles. The simplified “infection model” using
beads coated with TDM was employed to obtain purified
phagosomes that are determined by just one mycobacterial
virulence factor. This concept allowed to analyze better defined
phagosomes in proteomics studies, and to establish a more
restricted TDM interactome, some candidates of which were
subsequently validated in the Mtb-MO infection model (Kolonko
et al., 2014).

In short, bovine-serum-albumin (BSA) was covalently linked
to magnetic polystyrene beads (Dynabeads, Dynal) via ester-
bonds facilitated by the tosyl-activated surface of the beads. The
lipid-binding capacity of BSA was employed to coat the beads
with purified cell wall glycolipids of Mtb. These beads were used
to mimic infection of MO to monitor phagosome biogenesis in
the presence or absence of Mtb glycolipids. After different periods
of time, bead phagosomes were analyzed either by microscopy or,
upon purification, by Western blot, lysosomal enzyme tests and
FACS. Thereby, we identified trehalose 6,6′-dimycolate (TDM),
an abundant mycobacterial cell wall glycolipid, as essential Mtb
virulence factor. TDM efficiently decelerates bead phagosome
maturation when coated to the bead surface (Axelrod et al., 2008).
Of note, intracellular mycobacteria show increased production
of TDM when compared to those grown in broth, indicating a
function of TDM in the intracellular phase of Mtb (Fischer et al.,
2001). Furthermore, using the reductionist lipid-on-bead model,
we revealed that the virulence function of TDM, i.e., decelerating
phagosome maturation, is abolished in IFN-γ-activated MO by
nitric oxide (Axelrod et al., 2008).

Considering TDM an essential virulence determinant of Mtb,
identification of putative host target proteins is a prerequisite
to understand the function of the lipid in inhibiting phagosome
maturation. To achieve this task, we used a comparative
proteomics approach analyzing purified phagosomes containing
either control or TDM-coated beads. The procedure to purify
bead phagosomes from macrophages has been described in
detail (Geffken et al., 2015) (Figure 3B). Briefly, RAW 264.7
macrophages were “bead-infected” using dynabeads covalently

coated with BSA and TDM, incubated for 30 min at 37◦C and
scraped into ice-cold PBS. The pellets were then resuspended
in ice-cold homogenization buffer (HB) and disrupted using a
metal Douncer. Lysates were further pushed through a needle,
incubated with DNase I and washed in ice-cold PBS using the
DynaMag-2 magnet. To further remove cell-debris, samples were
digested with trypsin, washed three times with HB and loaded
onto a 15% Ficoll-gradient. Subsequently, the samples were
diluted in ice-cold PBS, sorted by FACS, and phagosomes were
collected by using a magnet. Remaining proteins in supernatants
were precipitated using “StrataClean Beads.”

The iron content of the beads was used for quantification
of purified bead-phagosomes by determining iron-concentration
(Zhu et al., 2012). For quality control of bead-phagosome
preparations we used the lysosomal β-galactosidase assay as
described previously (Lührmann and Haas, 2000). Pairs of
FACS-purified control- or TDM-dynabead-phagosomes and
their corresponding StrataClean precipitated supernatants were
further processed for LC-MS/MS analysis. To determine the
phagosomal proteome, we used GeLCMS as described (Bonn
et al., 2014). In this approach, isolated proteins were gel-
separated before being subjected to tryptic digestion and RP-LC-
MS/MS analyses using an Orbitrap Elite coupled online to an
EASY-nLC 1000 (Thermo, Bremen).

Chlamydia and Simkania Inclusions
The knowledge of how Ctr can effectively control the signaling
pathways and escape from the host cell death pathway depends
on the identification and analysis of the host cell factors that
interact with the Ctr inclusion. To identify these host proteins,
a method for the native Ctr inclusion isolation was established
(Figure 3C). Inclusions were isolated and purified as previously
described (Matsumoto, 1981); yet, the protocol included several
modifications as outlined below. Since the purification relies on
a double filtration procedure, non-infected cells were used as a
control to eliminate proteins that pass the filters in absence of
inclusions.

HeLa cells were infected with Ctr at a MOI of 1 for 24 h.
After washing the cells twice with PBS, cells were treated with
trypsin and collected. Subsequently, cells were washed three
times with PBS, re-suspended in hypotonic swelling buffer and
kept on ice for 90 min. Swollen cells were homogenized using
a glass Dounce homogenizer, filtered (11 μm nylon filter) and
centrifuged. The supernatant was passed through a second glass
membrane filter, centrifuged and washed twice. Further washing
and centrifugation steps were applied if debris was visible close
to the inclusion pellet. The pellet containing the inclusions was
finally re-suspended in sucrose-Tris buffer containing 5% BSA
and spun down. The purification procedure was monitored by
phase contrast, confocal or electron microscopy and immuno-
blot analysis. Pure inclusions were enriched and seen abundantly
at the final stage of purification.

Through this approach, intact Ctr inclusions were obtained.
However, six dishes of cells were required to yield sufficient
amounts of purified inclusions. Further, around 40% of the
inclusions tended to break during purification. Therefore, the
infected cells were used for inclusion preparation no longer
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than 24 h post infection (p.i.), since intact inclusions could
hardly be obtained after longer infection periods. The integrity
of inclusions was tested by analyzing inclusions containing GFP-
producing Chlamydia (Wang et al., 2011). Another caveat is that
weakly interacting host proteins may detach from the chlamydial
inclusion membrane during the purification process, which leads
to the loss of candidate CCV host components.

In our previous work, we identified a direct association
of Simkania-containing vacuoles (SnCVs) with the ER of the
host (Mehlitz et al., 2014). It is currently unknown how ER-
SnCV interaction sites are established and how they may
affect the composition of the ER. Therefore, we established
an ER-SnCV membrane purification protocol (Herweg et al.,
in revision) (Figure 3D). ER membranes of non-infected cells
were used as control. Since no suitable targets for IP are known,
we performed sub-cellular fractionation instead of immuno-
magnetic separation. To this end, HeLa 229 or THP1 cells
were seeded in 6-well plates 24 h prior to infection with Sn.
The infected cells were harvested (3 days p.i.) by scraping.
Subsequently, the cells were swelled and lysed with a Dounce
homogenizer and ultrasonic bath resulting in the release of the
bacteria from SnCVs. ER-SnCV membranes were purified by
sequential centrifugation including ultracentrifugation. Since Sn
is not accessible to genetic modifications, bacteria or SnCVs
labeled with fluorescent proteins could not be used to validate
the purification process. The loss of intact bacteria as well
as the purification of ER-SnCV membranes thus had to be
monitored using transmission electron microscopy (TEM). ER-
SnCV membranes were isolated as a crude microsomal fraction
(CMF) to capture the total ER and SnCV membranes. Since
organelles like nuclei and mitochondria were depleted from
CMF, contaminations from these organelles may originate from
their interaction with the SnCV, such as ER contact sites,
mitochondria-associated membranes or the continuous part of
the nuclear outer membrane. As a final quality control, immuno-
blots were used, which revealed a strong enrichment of ER
membrane marker proteins (calnexin, KDEL) and SnCV proteins
(anti-Sn) in the CMF. ER-SnCV membrane purification was
performed with approximately 1×108 cells per sample for further
LC-MS/MS measurements.

Salmonella-Modified Membranes
We define the sum of host cell membranes that are modified
by activities of intracellular Sen, such as SCV, SIF, and SIST
membranes as Salmonella-modified membranes (SMM). The
common feature of SMM is the presence of translocated SPI2-
T3SS effector proteins such as SseF, a membrane-integral protein
localizing to the pathogen vacuole membrane (Muller et al.,
2012). The presence or absence of canonical organelle marker
proteins has been analyzed for the SCV in various previous
studies. Commonly, light microscopy was used to analyze the
presence or absence of such host cell compartment marker
proteins on the SCV. However, due to the diffraction limit of light
microscopy, these approaches only provide limited insight into
the spatial organization of the SCV or the biogenesis of SIT, and
thus, alternative methods are required.

A systemic proteomic inventory of the membrane proteomes
of SCV and SIT has been hampered by the lack of efficient

procedures to enrich SCV and SIT membranes by subcellular
fractionation. Such proteomes may provide important clues
to the biogenesis of the pathogen-containing compartment, as
exemplified for L. pneumophila (Urwyler et al., 2009; Hoffmann
et al., 2014a). However, the complex tubular arrangement of
SMM renders futile the enrichment by classical subcellular
fractionation. Recently, Vorwerk et al. revised the fractionation
procedure for Salmonella-infected HeLa cells and established
a novel protocol for the isolation and subsequent proteome
analyses of SMM (Vorwerk et al., 2015) (Figure 3E). We used a
three-step approach, in which cell purification/lysis is followed
by intracellular compartment enrichment and affinity immuno-
precipitation (IP).

Since the SPI2-T3SS effector SseF is one of the most abundant
Sen components of SMM, we used an epitope-tagged SseF version
as bait for SMM isolation. For this purpose, we constructed a
low-copy expression vector with a C-terminal epitope-tagged
sseF and its cognate chaperone sscB and introduced it in an
sseF-deficient Sen mutant strain to avoid effector overproduction
and alteration of the infection process. Expression and co-
localization of the epitope-tagged SseF was visually validated
to exclude impairments of SIF formation. Infection conditions
were optimized for maximum bait expression, and sub-cellular
compartments were separated and harvested by differential
centrifugation before IP (Vorwerk et al., 2015). With this
approach, a total of 500 μg protein was gained from enriched
compartment fractions of 7 × 107 infected host cells (MOI
50, harvested at 8 h p.i.), which was then used for IP using
25 μl cross-linked anti-epitope tag labeled magnetic beads. The
eluted samples were analyzed for presence of effector proteins by
Western blot, before profiling with LC-MS/MS. In contrast to the
LCV enrichment protocol described above (Urwyler et al., 2009;
Hoffmann et al., 2014a), we enriched intracellular compartments
prior to IP of SMM.

Proteomes of Pathogen-Containing
Compartments

Legionella-Containing Vacuoles
The purified LCVs obtained from Lpn-infected D. discoideum or
RAW 264.7 macrophages by the two-step protocol (immuno-
magnetic separation and density gradient centrifugation)
were subjected to LC-MS/MS (Hoffmann et al., 2014a). The
proteomics analysis revealed more than 670 (amoebae) or 1150
(macrophages) host proteins. A large number of these proteins
were implicated in immune responses, signal transduction,
membrane dynamics, lipid metabolism, transport processes, or
cytoskeleton architecture. A comparison of the D. discoideum
and macrophage LCV proteomes indicated an overlap of 16 or
28%, respectively, of the total proteins identified on the LCV
preparations of the two phagocytes. However, if only proteins
strictly conserved among macrophages and D. discoideum are
compared, e.g. Arf, Sar, and Rab family GTPases involved in
membrane dynamics, the percentage of common LCV proteins
rises to 50%.

Host factors identified in the LCV proteome included a total
of 14 small Rab GTPases on pathogen vacuoles purified from
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D. discoideum or macrophages, of which 11 were validated
by fluorescence microscopy (Rab1, Rab2, Rab4, Rab5, Rab7,
Rab8, Rab10, Rab11, Rab14, Rab21, and Rab32). Rab9 was
discovered only by microscopy, and the LCV localization of
Rab6, Rab18 or Rab31 could not be verified (Hoffmann et al.,
2014a). Furthermore, many of these Rab proteins were confirmed
by fluorescence microscopy to localize on Lpn vacuoles harboring
wild-type but not �icmT mutant L. pneumophila. In addition
to the 12 Rab GTPases, also Arf1, Rap1, Ran, and Rho-related
GTPases were identified in the LCV proteome. This abundance of
small GTPases corroborates the notion that LCVs communicate
with various cellular signaling and vesicle trafficking pathways
(Hoffmann et al., 2014a). The depletion of individual GTPases by
RNA interference in epithelial cells indicated that Rab GTPases
involved in endosomal trafficking (Rab5a, Rab14, and Rab21)
restrict intracellular growth of Lpn, whereas Rab GTPases (Rab8a,
Rab10, and Rab32) implicated in secretory trafficking promote
bacterial replication.

Finally, the LCV proteome determined 1 h post infection
revealed Lpn proteins likely required early during intracellular
replication. These include a number of high abundance proteins,
such as flagellin, components of the central metabolism and
bioenergetics machinery, as well as ribosomal and heat shock
proteins. However, also many low abundance proteins were
identified, including regulatory elements and virulence factors
such as components of the Lsp T2SS or the Icm/Dot T4SS and
as many as 60 Icm/Dot-translocated effectors.

The intriguing discovery of the small GTPase Ran and
its effector RanBP1 in the LCV proteome (Urwyler et al.,
2009), together with the finding that the Icm/Dot substrate
LegG1 harbors a putative eukaryotic RCC1 Ran GEF domain
(de Felipe et al., 2008; Ninio et al., 2009), led to the
characterization of the Lpn effector protein as the first bacterial
Ran activator (Rothmeier et al., 2013). LegG1 localizes to the LCV
membrane, promotes microtubule stabilization and intracellular
LCV motility as well as replication of Lpn. Moreover, through the
stabilization of microtubules, LegG1 antagonizes the Icm/Dot-
dependent inhibition of chemotactic and random cell migration
(Simon et al., 2014). In summary, the validation and functional
analysis of the proteome of purified LCVs demonstrates that
the host and pathogen components identified represent a useful
inventory of factors that play a role in the complex process of
pathogen vacuole formation.

Mycobacterium TDM-Beads Phagosomes
The identification of putative host cell-derived interaction
partners of the Mtb virulence-associated cell wall lipid TDM
was facilitated by proteomic analysis of purified TDM-bead
phagosomes. A hallmark of TDM virulence is its ability to
interfere with phago-lysosomal fusion upon uptake by MO.
This function is also evident, when TDM alone is tested in a
reductionist model of coated beads in vitro.

RAW 264.7 MO were infected with TDM-coated beads,
lysed after 30 min, and bead-phagosomes were purified
(Geffken et al., 2015). The dynabead-phagosome preparation
was subjected to LC-MS/MS and analyzed via Sequest and
Scaffold 4. In total, 835 proteins were identified in the TDM-
bead phagosome preparations, of which 542 localized to

intracellular organelles. For instance, 137 or 97 proteins were
predicted mitochondrial or cytoskeletal proteins. 379 were
membrane-associated and predicted to localize with the plasma
membrane (181), ER (97), endosomes (69), and/or Golgi (69),
respectively.

Proteins specified with the categories ribosome, extracellular
region, Golgi, cytoskeleton, ER, mitochondria, nucleus, and
cytoplasm are potential contaminant proteins, because per
definition of the gene ontology (GO) terms, these groups do
not comprise proteins that localize in intracellular vesicles
or their membranes. In contrast, the categories intracellular
organelle, organelle part or membrane and organelle membrane
can contain, per GO term definition, proteins within organized
structure of distinctive morphology and function, occurring
within the cell or associated with membranes thereof. These
categories may be those containing phagosomal or lysosomal
proteins. Therefore, our method to purify control and TDM-bead
phagosomes provides pure bead phagosome preparations with
limited amounts of contaminant proteins, which when present
in high abundances can overwrite signals of proteins of interest
in MS analysis.

Importantly, proteins not classified as endo- or phagosomal
can still be involved in either direct or indirect interaction with
bead-phagosomes. For example, cytoskeleton proteins have been
identified prominently in TDM-bead phagosome preparations.
Cytoskeleton elements however, are functional in phagocytosis
and subsequent events during phagosome biogenesis (Flannagan
et al., 2012; Weiss and Schaible, 2015). We recently described the
role of WASH-mediated actin recruitment to the mycobacterial
phagosome as a prerequisite for inhibition of phagosome
maturation and intracellular bacterial growth (Kolonko et al.,
2014). Taken together, our improved purification protocol
(Geffken et al., 2015), combined with high-resolution MS-based
proteomics, revealed candidates putatively involved in TDM-
bead phagosome formation, and therefore, most likely play a role
for Mtb interactions within host MO (Kolonko et al., 2014).

Chlamydia and Simkania Inclusions
Isolated Ctr inclusions and ER-SnCV membranes as well as
control samples were analyzed by LC-MS/MS via Sorcerer. MS
data of four biological replicates of purified non-infected and
Ctr-infected samples were combined. In total, 2671 proteins
were identified, of which 2231 were host proteins and 440
were Ctr proteins. About 662 human proteins were reproducibly
found in all samples, of which 102 proteins (36 enriched
and 66 depleted proteins) were differentially expressed (<0.5
or >2-fold). Protein targets that play a crucial role in the
regulation of host cell metabolism and apoptosis were chosen
for validation studies, because energy acquisition from the
host and inhibiting cell death represent important conditions
for successful Ctr infections (Subbarayal et al., 2015). The
association of these factors with chlamydial inclusion and
their regulation during infection was studied by immuno-
fluorescence microscopy, immuno-blot analysis and RNA
interference.

Analyzing the ER-SnCV LC-MS/MS-data was challenging,
since a large number of host cell proteins were identified
(Herweg et al., in revision). We combined three biological
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replicates of Sn and non-infected cells in a semi-quantitative
manner. Using this approach, we identified 1178 human and
302 Simkania proteins in the infected samples. Interestingly, we
identified many human proteins linked to membrane-enclosed
compartments, including the endomembrane system, envelope
and vesicles, as well as approximately 15% ER-localizing proteins.
Furthermore, proteins of the nucleus, mitochondria, cytosol and
cytoskeleton were also identified; although contaminations from
co-purifying intact organelles were excluded based on immuno-
blot and TEM validations.

Since the ER represents the origin of protein synthesis,
we expected to identify proteins from different cellular
compartments. Nevertheless, most host proteins that were not
associated with the ER-SnCV should be present in similar
amounts in purified Sn and ER preparations of non-infected
samples, if they are not specifically modified by the bacterial
infection. The comparison of Sn-infected and non-infected
samples helped to identify enriched and depleted host cell
factors. Consistent differences among the three replicates were
considered to reflect potential regulatory aspects. Further
analyses demonstrated an effect of seven main transport
pathways on SnCV formation (clathrin, COPI, COPII, ER-to-
Golgi transport, endosomes, exocytosis, recycling endosomes).
Interestingly, we identified inverse protein regulation regarding
the retrograde and anterograde transport systems. The influence
of the retrograde transport on SnCV formation was further
validated by immuno-fluorescence, immuno-blot, TEM and life
cell imaging experiments. In the future, a comprehensive RNAi
screen targeting several trafficking routes should confirm our
observations. The influence of additional trafficking processes
could complete our understanding of how the SnCV is formed.
Finally, the proteome data also yielded SnCV-specific and
possibly secreted bacterial factors. These will be used as targets
for immuno-staining of the SnCV in future experiments.

Using epithelial cells or phagocytes, we did not observe cell-
dependent pronounced enrichments or depletions of human
proteins in the SnCV compared to ER. It is possible that Sn is
so well adapted to its niche that major modifications of the ER
as an organelle central to cell life are avoided. In Sn-infected
cells apoptosis or ER-stress is prevented for many days and
bacterial growth is quite slow (7–12 days per developmental
cycle) (Kahane et al., 2002). While the replication rate is strongly
reduced, the cells do not enter a persistent phase and do not
appear to be stressed. This supports the previously suggested
theory that phagocytes containing Sn may act like a Trojan horse
that silently spreads and distributes the bacteria inside a human
host (Greub and Raoult, 2004).

Salmonella-Modified Membranes
SMM were enriched by IP from sub-cellular fractionated lysates
of infected host cells and subsequently profiled by LC-MS/MS
(Vorwerk et al., 2015). Altogether, 552 host proteins were
reproducibly identified. As with all IP approaches, we could
not exclude that beside SMM components also other proteins
may be co-isolated. Therefore, we introduced a negative control
for a comparative proteomic approach to eliminate unspecific
enrichments. To this end, we used the IP-extracted proteome of

a Sen strain deficient for SPI2-T3SS-translocation. Two hundred
and nine proteins from the initially 552 identified SMM host
proteins were also identified in this control, reducing the
SMM-specific proteome to 243 unique host proteins. Thus, we
minimized the number of false-positive identifications. However,
it may also lead to an increase of false negatives. Nonetheless,
we generated a list of priority SMM targets, of which 11
proteins were found to be part of or interact with SMM using
orthogonal methods such as immuno-staining and live cell
imaging (Vorwerk et al., 2015).

Analyses of the SMM components revealed that proteins
from different cellular origins were included in the pathogen-
modified membranes. In line with previous observations, a
large number of cytoskeletal, endo- and lysosomal, as well
as Golgi and vesicle transport-related proteins were identified.
Moreover, many proteins previously not considered as present
on SCV and SIF membranes were observed. In addition to
late endosomal compartments already known to interact with
the SCV, the analyses revealed presence of vesicles involved
in ER to Golgi transport, Golgi membranes and various types
of endocytic compartments. For instance, several components
of COPI and COPII-coated vesicles, including CopA, CopG1
(Cop I) and Sec23A and Sar1A (COPII) were found to be part
of the SMM proteome. In addition to components associated
with the anterograde and retrograde transport system, several
proteins involved in ER dynamics such as the small GTPase
Rab10 and Rab2a, ER chaperones (protein disulfide-isomerase
PDIA1, PDIA3, PDIA6, endoplasmin, hypoxia up-regulated
protein 1), SNARE proteins (VAMP-associated protein A and
B), vesicle recognition particles (subunit Srp72 and receptor
SrpR), B-cell receptor associated protein 31, as well as diverse
ER membrane proteins (e.g., transitional ER ATPase, calnexin,
cytochrome B5, estradiol 17-beta dehydrogenase, dolichyl-
diphospho-oligosaccharide-glycosyltransferase, transmembrane
protein 43) were identified, hinting at a direct interaction of
SMM with the ER system. Thus, the proteome inventory of
SMM (Vorwerk et al., 2015) and observations from other studies
indicate that intracellular Sen induce the fusion of various types
of host cell compartments to the SCV and SIT (Drecktrah et al.,
2008; Krieger et al., 2014). Furthermore, components of the
actin cytoskeleton were identified as well as various proteins
acting as linkers between F-actin and membrane compartments.
In summary, these results indicate that SMM proteomics is
a powerful approach to investigate molecular mechanisms of
Salmonella-host interactions and to develop new intervention
strategies.

By taking control over the host cell’s vesicle fusion machinery,
intracellular Sen create an extensive interconnected system
of vesicles. On the one hand, this network is continuously
interacting with incoming endosomal cargo, providing
nutritional supply for the intracellular pathogen within
SCVs connected to this network. On the other hand, for those
SCV connected to the network, the large lumen results in rapid
dilution of antimicrobial activities delivered during endosomal
maturation to the SCV. This way, the tubular membrane network
fulfills dual requirements for nutrition and protection against
host defense mechanisms.
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Comparative Proteomics of Pathogen
Compartments

Intracellular development and replication of Legionella,
Mycobacterium, Chlamydia, Simkania, and Salmonella
spp. follow different routes, and the bacteria form unique
pathogen-containing vacuoles (PCVs) (Figure 2). The varying
localizations, characteristics and knowledge of the distinct PCVs
required different approaches for purification of pathogen-
modified vacuoles and membranes (Figure 3). For LCVs and
SMMs vacuole-specific pathogen markers were exploited, i.e.,
the bacterial effector proteins SidC or SseF, which allowed
compartment enrichment by immuno-magnetic separation
based on distinct PCV components. The isolation of TDM
bead phagosomes also included a magnetic separation step;
however, in this case magnetic dynabeads covalently coated with
BSA and TDM rather than the whole pathogen or a labeled
PCV were enriched. For LCV and TDM bead phagosome
purification density gradient centrifugation was used as a second
purification step. Finally, for the purification of SMM differential
centrifugation was used as an additional purification step,
and the enrichment of CCVs or SnCVs solely relied on this
separation principle.

Despite the distinct intracellular life-styles and the different
technical approaches used, we were able to identify common host
factors pointing to common strategies and interactions between
cellular organelles and PCVs. Importantly, while the purification
approaches were different for the pathogens, the preparations
were mainly analyzed on the same proteomics platform. The
technical consistency at the level of proteomics analysis is a
major asset for the studies summarized here. The standardized
analytical pipeline allowed drawing conclusions about PCV
formation of the pathogens studied and likely also others.

The comparison of the proteomic data obtained from
enriched LCVs, SMM, CCVs, SnCVs and Mycobacterium
TDM-bead phagosomes yielded a list of 34 common host
factors (Table 1). The presence of host protein components of
endosomal vesicle transport, protein folding and turnover (ER,
T-complex, and ubiquitin-proteasome) as well as mitochondrial
energy metabolism could be confirmed (Figure 4). Interestingly,
more common host proteins were associated with LCVs and
SnCVs (134 proteins, Table S1), SMM and SnCVs (183 proteins,
Table S2) (Vorwerk et al., 2015), or LCVs, SMM and SnCVs (85
proteins, Table S3), compared with LCVs, SMM and CCVs (57
proteins, Table S4). Thus, it seems that in the case of Legionella,
Simkania, and Salmonella the formation of the PCV is more
connected to intracellular vesicle transport processes, including
endosomal, clathrin-dependent, ER-derived, and Golgi-mediated
pathways (Figure 4). Of note, we identified many similarities
between LCVs and SnCVs, presumably because of their intimate
interactions with the ER (Table S1). Since the SnCV is much
closer connected to the ER than the LCV, unique host factors are
likely to play additional roles.

The impact of ER-dependent protein folding on all PCVs may
be reflected in the close association between ER and the PCV
membranes (Gagnon et al., 2002; Tailleux et al., 2003; Isberg
et al., 2009; Derre et al., 2011; Mehlitz et al., 2014). Furthermore,

FIGURE 4 | Conserved components of LCVs, CCVs, SnCVs, and SMMs
visualized using the STRING (Search Tool for Retrieval of Interacting
Genes/Proteins) algorithm. Marked (circles) are clusters comprised of
interacting components from energy metabolism (mitochondria), protein
folding (proteasome), protein folding (ER) and vesicle transport (endosomes).
Lines represent protein-protein interactions with different layers of evidence:
purple: experimental; blue: co-occurrence; red: fusion; black: co-expression;
light blue: database; yellow: text-mining; green: neighborhood.

the association of some PCVs (LCVs, CCVs, SnCVs) with
mitochondria indicated by microscopy and the identification
of several mitochondrial proteins is peculiar and may indicate
the common requirement of these intracellular pathogens to
acquire metabolites from these organelles. Association with
mitochondria was already described for Lp, Ctr, and Sn,
which appear to recruit these compartments to the PCV
(Horwitz, 1983; Matsumoto et al., 1991; Abu Kwaik, 1996;
Tilney et al., 2001; Mehlitz et al., 2014). In summary, while
due to their formation processes different PCVs comprise a
unique set of components, some host factors as well as the
communication with cell organelles is similar. The composition
of a variety of purified PCVs described in this work represents
a comprehensive inventory of eukaryotic and bacterial factors
putatively implicated in PCV formation. The challenge lying
ahead is the functional characterization of the host and pathogen
components and their interactions in space and time.

Our studies led to the identification of host cell factors
manipulated only by certain pathogens, as well as host factors
that are commonly involved in the formation of PCV by clinically
important intracellular bacteria. The latter group may comprise
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interesting new target structures for new strategies to interfere
with intracellular proliferation. The knowledge of common
mechanisms used for establishing an intracellular niche could
provide new clues how to tackle the intracellular replication of
important bacterial pathogens.

Acknowledgments

A.C.G. & U.E.S. would like to acknowledge Dr. Jochen Behrends
and Martina Hein for excellent technical assistance during
sorting of bead-phagosomes with the BD FACS Aria II. This
collaborative effort was funded by the “Bundesministerium für
Bildung und Forschung” (BMBF) “Medical Infection Genomics”
initiative (0315834C-D) project “Pathogen-Host Interactomes.”
We gratefully acknowledge further funding for the group of

H.H. from the German Research Foundation (DFG; HI 1511/1-
1, SPP1580), and the Swiss National Science Foundation (SNF;
31003A_153200). The work of the T.R. team was funded by
the DFG (Simkania; SPP1580 RU631/9-1, RU631/9-2) and the
BMBF (Chlamydia; “Medical Infection Genomics” initiative,
0315834A). The group of U.E.S. was funded by the DFG (Scha
514/2–1 and SPP1580 Scha 514/3-1), and the teams of M.H. and
N.H. by the DFG through grant HE1964/18-1 as part of SPP1580.
A.O. and D.B. were funded by the BMBF (ZIK 03Z1CN21).

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fcimb.
2015.00048/abstract

References

Abu Kwaik, Y. (1996). The phagosome containing Legionella pneumophila
within the protozoan Hartmannella vermiformis is surrounded by the rough
endoplasmic reticulum. Appl. Environ. Microbiol. 62, 2022–2028.

Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature
422, 198–207. doi: 10.1038/nature01511

Ansong, C., Wu, S., Meng, D., Liu, X., Brewer, H. M., Deatherage Kaiser, B. L., et al.
(2013). Top-down proteomics reveals a unique protein S-thiolation switch in
Salmonella Typhimurium in response to infection-like conditions. Proc. Natl.
Acad. Sci. U.S.A. 110, 10153–10158. doi: 10.1073/pnas.1221210110

Axelrod, S., Oschkinat, H., Enders, J., Schlegel, B., Brinkmann, V., Kaufmann, S.
H., et al. (2008). Delay of phagosome maturation by a mycobacterial lipid is
reversed by nitric oxide. Cell. Microbiol. 10, 1530–1545. doi: 10.1111/j.1462-
5822.2008.01147.x

Bastidas, R. J., Elwell, C. A., Engel, J. N., and Valdivia, R. H. (2013). Chlamydial
intracellular survival strategies. Cold Spring Harb. Perspect. Med. 3:a010256.
doi: 10.1101/cshperspect.a010256

Baud, D., Goy, G., Vasilevsky, S., Osterheld, M. C., Roth-Kleiner, M., Croxatto,
A., et al. (2015). Roles of bovine Waddlia chondrophila and Chlamydia
trachomatis in human preterm birth. New Microbes New Infect. 3, 41–45. doi:
10.1016/j.nmni.2014.11.004

Beatty, W. L. (2006). Trafficking from CD63-positive late endocytic multivesicular
bodies is essential for intracellular development of Chlamydia trachomatis.
J. Cell Sci. 119, 350–359. doi: 10.1242/jcs.02733

Beatty, W. L. (2008). Late endocytic multivesicular bodies intersect the chlamydial
inclusion in the absence of CD63. Infect. Immun. 76, 2872–2881. doi:
10.1128/IAI.00129-08

Becker, D., Selbach, M., Rollenhagen, C., Ballmaier, M., Meyer, T. F., Mann,
M., et al. (2006). Robust Salmonella metabolism limits possibilities for new
antimicrobials. Nature 440, 303–307. doi: 10.1038/nature04616

Bonn, F., Bartel, J., Büttner, K., Hecker, M., Otto, A., and Becher, D. (2014). Picking
vanished proteins from the void: how to collect and ship/share extremely
dilute proteins in a reproducible and highly efficient manner. Anal. Chem. 86,
7421–7427. doi: 10.1021/ac501189j

Brombacher, E., Urwyler, S., Ragaz, C., Weber, S. S., Kami, K., Overduin,
M., et al. (2009). Rab1 guanine nucleotide exchange factor SidM is a
major phosphatidylinositol 4-phosphate-binding effector protein of Legionella
pneumophila. J. Biol. Chem. 284, 4846–4856. doi: 10.1074/jbc.M807505200

Bruckert, W. M., and Abu Kwaik, Y. (2014). Complete and ubiquitinated proteome
of the Legionella-containing vacuole within human macrophages. J. Proteome
Res. 14, 236–248. doi: 10.1021/pr500765x

Bumann, D. (2010). Pathogen proteomes during infection: A basis for infection
research and novel control strategies. J. Proteomics 73, 2267–2276. doi:
10.1016/j.jprot.2010.08.004

Capmany, A., and Damiani, M. T. (2010). Chlamydia trachomatis intercepts
Golgi-derived sphingolipids through a Rab14-mediated transport required

for bacterial development and replication. PLoS ONE 5:e14084. doi:
10.1371/journal.pone.0014084

Carabeo, R. A., Mead, D. J., and Hackstadt, T. (2003). Golgi-dependent transport of
cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. U.S.A.
100, 6771–6776. doi: 10.1073/pnas.1131289100

Chao, T. C., Kalinowski, J., Nyalwidhe, J., and Hansmeier, N. (2010).
Comprehensive proteome profiling of the Fe(III)-reducing myxobacterium
Anaeromyxobacter dehalogenans 2CP-C during growth with fumarate
and ferric citrate. Proteomics 10, 1673–1684. doi: 10.1002/pmic.
200900687

Cheng, Y., Liu, Y., Wu, B., Zhang, J. Z., Gu, J., Liao, Y. L., et al. (2014). Proteomic
analysis of the Ehrlichia chaffeensis phagosome in cultured DH82 cells. PLoS
ONE 9:e88461. doi: 10.1371/journal.pone.0088461

Choy, A., Dancourt, J., Mugo, B., O’Connor, T. J., Isberg, R. R., Melia,
T. J., et al. (2012). The Legionella effector RavZ inhibits host autophagy
through irreversible Atg8 deconjugation. Science 338, 1072–1076. doi:
10.1126/science.1227026

Claudi, B., Sprote, P., Chirkova, A., Personnic, N., Zankl, J., Schurmann, N., et al.
(2014). Phenotypic variation of Salmonella in host tissues delays eradication
by antimicrobial chemotherapy. Cell 158, 722–733. doi: 10.1016/j.cell.2014.
06.045

Collingro, A., Tischler, P., Weinmaier, T., Penz, T., Heinz, E., Brunham, R. C., et al.
(2011). Unity in variety–the pan-genome of the Chlamydiae. Mol. Biol. Evol. 28,
3253–3270. doi: 10.1093/molbev/msr161

Corleis, B., Korbel, D., Wilson, R., Bylund, J., Chee, R., and Schaible, U. E. (2012).
Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils.
Cell. Microbiol. 14, 1109–1121. doi: 10.1111/j.1462-5822.2012.01783.x

Corsaro, D., and Greub, G. (2006). Pathogenic potential of novel Chlamydiae and
diagnostic approaches to infections due to these obligate intracellular bacteria.
Clin. Microbiol. Rev. 19, 283–297. doi: 10.1128/CMR.19.2.283-297.2006

Cravatt, B. F., Simon, G. M., Yates, J. R. III. (2007). The biological
impact of mass-spectrometry-based proteomics. Nature 450, 991–1000. doi:
10.1038/nature06525

de Chastellier, C. (2009). The many niches and strategies used by pathogenic
mycobacteria for survival within host macrophages. Immunobiology 214,
526–542. doi: 10.1016/j.imbio.2008.12.005

de Felipe, K. S., Glover, R. T., Charpentier, X., Anderson, O. R., Reyes,
M., Pericone, C. D., et al. (2008). Legionella eukaryotic-like type IV
substrates interfere with organelle trafficking. PLoS Pathog. 4:e1000117. doi:
10.1371/journal.ppat.1000117

Derre, I., and Isberg, R. R. (2004). Legionella pneumophila replication vacuole
formation involves rapid recruitment of proteins of the early secretory system.
Infect. Immun. 72, 3048–3053. doi: 10.1128/IAI.72.5.3048-3053.2004

Derre, I., Swiss, R., and Agaisse, H. (2011). The lipid transfer protein CERT
interacts with the Chlamydia inclusion protein IncD and participates to ER-
Chlamydia inclusion membrane contact sites. PLoS Pathog. 7:e1002092. doi:
10.1371/journal.ppat.1002092

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15 June 2015 | Volume 5 | Article 48

http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://journal.frontiersin.org/article/10.3389/fcimb.2015.00048/abstract
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Herweg et al. Pathogen compartment proteomics

Desjardins, M., Celis, J. E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G.,
et al. (1994). Molecular characterization of phagosomes. J. Biol. Chem. 269,
32194–32200.

Dolinsky, S., Haneburger, I., Cichy, A., Hannemann, M., Itzen, A., and
Hilbi, H. (2014). The Legionella longbeachae Icm/Dot substrate SidC
selectively binds PtdIns(4)P with nanomolar affinity and promotes pathogen
vacuole-ER interactions. Infect. Immun. 82, 4021–4033. doi: 10.1128/IAI.
01685-14

Drecktrah, D., Levine-Wilkinson, S., Dam, T., Winfree, S., Knodler, L. A., Schroer,
T. A., et al. (2008). Dynamic behavior of Salmonella-induced membrane tubules
in epithelial cells. Traffic 9:2117–2129. doi: 10.1111/j.1600-0854.2008.00830.x

Duncan, M. W., Aebersold, R., and Caprioli, R. M. (2010). The pros and
cons of peptide-centric proteomics. Nat. Biotechnol. 28, 659–664. doi:
10.1038/nbt0710-659

Ehrt, S., Rhee, K., and Schnappinger, D. (2015). Mycobacterial genes essential
for the pathogen’s survival in the host. Immunol. Rev. 264, 319–326. doi:
10.1111/imr.12256

Elwell, C. A., and Engel, J. N. (2012). Lipid acquisition by intracellular Chlamydiae.
Cell. Microbiol. 14, 1010–1018. doi: 10.1111/j.1462-5822.2012.01794.x

Elwell, C. A., Jiang, S., Kim, J. H., Lee, A., Wittmann, T., Hanada, K., et al. (2011).
Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin
for distinct roles during intracellular development. PLoS Pathog. 7:e1002198.
doi: 10.1371/journal.ppat.1002198

Figueira, R., and Holden, D. W. (2012). Functions of the Salmonella pathogenicity
island 2 (SPI-2) type III secretion system effectors. Microbiology 158,
1147–1161. doi: 10.1099/mic.0.058115-0

Finsel, I., Hoffmann, C., and Hilbi, H. (2013a). Immunomagnetic purification of
fluorescent Legionella-containing vacuoles. Methods Mol. Biol. 983, 431–443.
doi: 10.1007/978-1-62703-302-2_24

Finsel, I., Ragaz, C., Hoffmann, C., Harrison, C. F., Weber, S., van Rahden, V.
A., et al. (2013b). The Legionella effector RidL inhibits retrograde trafficking
to promote intracellular replication. Cell Host Microbe 14, 38–50. doi:
10.1016/j.chom.2013.06.001

Fischer, K., Chatterjee, D., Torrelles, J., Brennan, P. J., Kaufmann, S. H.,
and Schaible, U. E. (2001). Mycobacterial lysocardiolipin is exported
from phagosomes upon cleavage of cardiolipin by a macrophage-
derived lysosomal phospholipase A2. J. Immunol. 167, 2187–2192. doi:
10.4049/jimmunol.167.4.2187

Flannagan, R. S., Jaumouille, V., and Grinstein, S. (2012). The cell biology of
phagocytosis. Ann. Rev. Pathol. 7, 61–98. doi: 10.1146/annurev-pathol-011811-
132445

Forrellad, M. A., Klepp, L. I., Gioffre, A., Sabio y Garcia, J., Morbidoni, H. R., de
la Paz Santangelo, M., et al. (2013). Virulence factors of the Mycobacterium
tuberculosis complex. Virulence 4, 3–66. doi: 10.4161/viru.22329

Fratti, R. A., Chua, J., Vergne, I., and Deretic, V. (2003). Mycobacterium
tuberculosis glycosylated phosphatidylinositol causes phagosome
maturation arrest. Proc. Natl. Acad. Sci. U.S.A. 100, 5437–5442. doi:
10.1073/pnas.0737613100

Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P. H., Steele-
Mortimer, O., et al. (2002). Endoplasmic reticulum-mediated phagocytosis is a
mechanism of entry into macrophages. Cell 110, 119–131. doi: 10.1016/S0092-
8674(02)00797-3

Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y., and Finlay, B. B. (1993).
Salmonella induces the formation of filamentous structures containing
lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci.
U.S.A. 90, 10544–10548. doi: 10.1073/pnas.90.22.10544

Geffken, A. C., Patin, E. C., and Schaible, U. E. (2015). Isolation of bead-
phagosomes to study virulence function of M. tuberculosis cell wall lipids.
Methods Mol. Biol. 1285, 357–368. doi: 10.1007/978-1-4939-2450-9_22

Greenberg, D., Banerji, A., Friedman, M. G., Chiu, C. H., and Kahane, S. (2003).
High rate of Simkania negevensis among Canadian inuit infants hospitalized
with lower respiratory tract infections. Scand. J. Infect. Dis. 35, 506–508. doi:
10.1080/00365540310014648

Greub, G., and Raoult, D. (2004). Microorganisms resistant to free-living amoebae.
Clin. Microbiol. Rev. 17, 413–433. doi: 10.1128/CMR.17.2.413-433.2004

Hahn, D. L., and McDonald, R. (1998). Can acute Chlamydia pneumoniae
respiratory tract infection initiate chronic asthma? Ann. Allergy Asthma
Immunol. 81, 339–344. doi: 10.1016/S1081-1206(10)63126-2

Haneburger, I., and Hilbi, H. (2013). Phosphoinositide lipids and the Legionella
pathogen vacuole. Curr. Top. Microbiol. Immunol. 376, 155–173. doi:
10.1007/82_2013_341

Hansmeier, N., Chao, T. C., Goldman, L. R., Witter, F. R., and Halden,
R. U. (2012). Prioritization of biomarker targets in human umbilical
cord blood: identification of proteins in infant blood serving as validated
biomarkers in adults. Environ. Health Perspect. 120, 764–769. doi: 10.1289/ehp.
1104190

Haraga, A., Ohlson, M. B., and Miller, S. I. (2008). Salmonellae interplay with host
cells. Nat. Rev. Microbiol. 6, 53–66. doi: 10.1038/nrmicro1788

Harkinezhad, T., Geens, T., and Vanrompay, D. (2009). Chlamydophila psittaci
infections in birds: a review with emphasis on zoonotic consequences. Vet.
Microbiol. 135, 68–77. doi: 10.1016/j.vetmic.2008.09.046

Hartlova, A., Krocova, Z., Cerveny, L., and Stulik, J. (2011). A proteomic view of
the host-pathogen interaction: the host perspective. Proteomics 11, 3212–3220.
doi: 10.1002/pmic.201000767

He, Y., Li, W., Liao, G., and Xie, J. (2012). Mycobacterium tuberculosis-specific
phagosome proteome and underlying signaling pathways. J. Proteome Res. 11,
2635–2643. doi: 10.1021/pr300125t

Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks,
G., et al. (1998). Genes encoding putative effector proteins of the type III
secretion system of Salmonella pathogenicity island 2 are required for bacterial
virulence and proliferation in macrophages. Mol. Microbiol. 30, 163–174. doi:
10.1046/j.1365-2958.1998.01047.x

Hilbi, H., and Haas, A. (2012). Secretive bacterial pathogens and the secretory
pathway. Traffic 13, 1187–1197. doi: 10.1111/j.1600-0854.2012.01344.x

Hilbi, H., Hoffmann, C., and Harrison, C. F. (2011a). Legionella spp. outdoors:
colonization, communication and persistence. Environ. Microbiol. Rep. 3,
286–296. doi: 10.1111/j.1758-2229.2011.00247.x

Hilbi, H., Weber, S., and Finsel, I. (2011b). Anchors for effectors: subversion
of phosphoinositide lipids by Legionella. Front. Microbiol. 2:91. doi:
10.3389/fmicb.2011.00091

Hoffmann, C., Finsel, I., and Hilbi, H. (2012). Purification of pathogen vacuoles
from Legionella-infected phagocytes. J. Vis. Exp. 64:e4118. doi: 10.3791/4118

Hoffmann, C., Finsel, I., and Hilbi, H. (2013). Pathogen vacuole purification from
Legionella-infected amoeba and macrophages. Methods Mol. Biol. 954, 309–321.
doi: 10.1007/978-1-62703-161-5_18

Hoffmann, C., Finsel, I., Otto, A., Pfaffinger, G., Rothmeier, E., Hecker, M., et al.
(2014a). Functional analysis of novel Rab GTPases identified in the proteome
of purified Legionella-containing vacuoles from macrophages. Cell. Microbiol.
16, 1034–1052. doi: 10.1111/cmi.12256

Hoffmann, C., Harrison, C. F., and Hilbi, H. (2014b). The natural alternative:
protozoa as cellular models for Legionella infection. Cell. Microbiol. 16, 15–26.
doi: 10.1111/cmi.12235

Hofmann, A., Gerrits, B., Schmidt, A., Bock, T., Bausch-Fluck, D., Aebersold,
R., et al. (2010). Proteomic cell surface phenotyping of differentiating acute
myeloid leukemia cells. Blood 116, e26–e34. doi: 10.1182/blood-2010-02-
271270

Horwitz, M. A. (1983). Formation of a novel phagosome by the Legionnaires’
disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med.
158, 1319–1331. doi: 10.1084/jem.158.4.1319

Howe, D., and Heinzen, R. A. (2008). Fractionation of the Coxiella burnetii
parasitophorous vacuole. Methods Mol. Biol. 445, 389–406. doi: 10.1007/978-
1-59745-157-4_25

Hubber, A., and Roy, C. R. (2010). Modulation of host cell function by Legionella
pneumophila type IV effectors. Ann. Rev. Cell Dev. Biol. 26, 261–283. doi:
10.1146/annurev-cellbio-100109-104034

Ibarra, J. A., and Steele-Mortimer, O. (2009). Salmonella–the ultimate insider.
Salmonella virulence factors that modulate intracellular survival. Cell.
Microbiol. 11, 1579–1586. doi: 10.1111/j.1462-5822.2009.01368.x

Indrigo, J., Hunter, R. L. Jr., and Actor, J. K. (2002). Influence of trehalose
6,6’-dimycolate (TDM) during mycobacterial infection of bone marrow
macrophages. Microbiology 148, 1991–1998.

Isberg, R. R., O’Connor, T. J., and Heidtman, M. (2009). The Legionella
pneumophila replication vacuole: making a cosy niche inside host cells. Nat.
Rev. Microbiol. 7, 13–24. doi: 10.1038/nrmicro1967

Itzen, A., and Goody, R. S. (2011). Covalent coercion by Legionella pneumophila.
Cell Host Microbe 10, 89–91. doi: 10.1016/j.chom.2011.08.002

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16 June 2015 | Volume 5 | Article 48

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Herweg et al. Pathogen compartment proteomics

Kahane, S., Fruchter, D., Dvoskin, B., and Friedman, M. G. (2007). Versatility
of Simkania negevensis infection in vitro and induction of host cell
inflammatory cytokine response. J. Infect. 55, e13–e21. doi: 10.1016/j.jinf.2007.
03.002

Kahane, S., Kimmel, N., and Friedman, M. G. (2002). The growth cycle of Simkania
negevensis. Microbiology 148, 735–742.

Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E.,
et al. (2005). The human macrophage mannose receptor directs Mycobacterium
tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med.
202, 987–999. doi: 10.1084/jem.20051239

Kohlmann, Y., Pohlmann, A., Schwartz, E., Zühlke, D., Otto, A., Albrecht,
D., et al. (2014). Coping with anoxia: a comprehensive proteomic and
transcriptomic survey of denitrification. J. Proteome Res. 13, 4325–4338. doi:
10.1021/pr500491r

Kolonko, M., Geffken, A. C., Blumer, T., Hagens, K., Schaible, U. E., and
Hagedorn, M. (2014). WASH-driven actin polymerization is required for
efficient mycobacterial phagosome maturation arrest. Cell. Microbiol. 16,
232–246. doi: 10.1111/cmi.12217

Kopecka, J., Campia, I., Jacobs, A., Frei, A. P., Ghigo, D., Wollscheid, B., et al.
(2015). Carbonic anhydrase XII is a new therapeutic target to overcome
chemoresistance in cancer cells. Oncotarget 6, 6776–6793.

Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The
challenge of new drug discovery for tuberculosis. Nature 469, 483–490. doi:
10.1038/nature09657

Krieger, V., Liebl, D., Zhang, Y., Rajashekar, R., Chlanda, P., Giesker, K., et al.
(2014). Reorganization of the endosomal system in Salmonella-infected cells:
the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog.
10:e1004374. doi: 10.1371/journal.ppat.1004374

Lassek, C., Burghartz, M., Chaves-Moreno, D., Otto, A., Hentschker, C.,
Fuchs, S., et al. (2015). A metaproteomics approach to elucidate host
and pathogen protein expression during catheter-associated urinary tract
infections. Mol. Cell. Proteomics 14, 989–1008. doi: 10.1074/mcp.m114.
043463

Li, Q., Jagannath, C., Rao, P. K., Singh, C. R., and Lostumbo, G. (2010). Analysis of
phagosomal proteomes: from latex-bead to bacterial phagosomes. Proteomics
10, 4098–4116. doi: 10.1002/pmic.201000210

Lieberman, D., Dvoskin, B., Lieberman, D. V., Kahane, S., and Friedman, M.
G. (2002). Serological evidence of acute infection with the Chlamydia-like
microorganism Simkania negevensis (Z) in acute exacerbation of chronic
obstructive pulmonary disease. Eur. J. Clin. Microbiol. Infect. Dis. 21, 307–309.
doi: 10.1007/s10096-002-0703-7

Lifshitz, Z., Burstein, D., Peeri, M., Zusman, T., Schwartz, K., Shuman, H. A., et al.
(2013). Computational modeling and experimental validation of the Legionella
and Coxiella virulence-related type-IVB secretion signal. Proc. Natl. Acad. Sci.
U.S.A. 110, E707–E715. doi: 10.1073/pnas.1215278110

Lührmann, A., and Haas, A. (2000). A method to purify bacteria-containing
phagosomes from infected macrophages. Methods Cell Sci. 22, 329–341. doi:
10.1023/A:1017963401560

Luo, Z. Q., and Isberg, R. R. (2004). Multiple substrates of the Legionella
pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc.
Natl. Acad. Sci. U.S.A. 101, 841–846. doi: 10.1073/pnas.0304916101

Maass, S., Wachlin, G., Bernhardt, J., Eymann, C., Fromion, V., Riedel, K., et al.
(2014). Highly precise quantification of protein molecules per cell during
stress and starvation responses in Bacillus subtilis. Mol. Cell. Proteomics 13,
2260–2276. doi: 10.1074/mcp.M113.035741

Matsumoto, A. (1981). Isolation and electron microscopic observations of
intracytoplasmic inclusions containing Chlamydia psittaci. J. Bacteriol. 145,
605–612.

Matsumoto, A., Bessho, H., Uehira, K., and Suda, T. (1991). Morphological studies
of the association of mitochondria with chlamydial inclusions and the fusion of
chlamydial inclusions. J. Electron Microsc. 40, 356–363.

Mattow, J., Siejak, F., Hagens, K., Becher, D., Albrecht, D., Krah, A., et al. (2006).
Proteins unique to intraphagosomally grown Mycobacterium tuberculosis.
Proteomics 6, 2485–2494. doi: 10.1002/pmic.200500547

Mehlitz, A., Karunakaran, K., Herweg, J. A., Krohne, G., van de Linde, S., Rieck,
E., et al. (2014). The chlamydial organism Simkania negevensis forms ER
vacuole contact sites and inhibits ER-stress. Cell. Microbiol. 16, 1224–1243. doi:
10.1111/cmi.12278

Mehlitz, A., and Rudel, T. (2013). Modulation of host signaling and cellular
responses by Chlamydia. Cell Commun. Signal. 11:90. doi: 10.1186/1478-811X-
11-90

Moche, M., Albrecht, D., Maass, S., Hecker, M., Westermeier, R., and Büttner,
K. (2013). The new horizon in 2D electrophoresis: new technology to
increase resolution and sensitivity. Electrophoresis 34, 1510–1518. doi:
10.1002/elps.201200618

Moorhead, A. M., Jung, J. Y., Smirnov, A., Kaufer, S., and Scidmore, M.
A. (2010). Multiple host proteins that function in phosphatidylinositol-4-
phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun.
78, 1990–2007. doi: 10.1128/IAI.01340-09

Moorhead, A. R., Rzomp, K. A., and Scidmore, M. A. (2007). The Rab6 effector
bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-
specific manner. Infect. Immun. 75, 781–791. doi: 10.1128/IAI.01447-06

Mueller, K. E., Plano, G. V., and Fields, K. A. (2014). New frontiers in type
III secretion biology: the Chlamydia perspective. Infect. Immun. 82, 2–9. doi:
10.1128/IAI.00917-13

Muller, P., Chikkaballi, D., and Hensel, M. (2012). Functional dissection of SseF,
a membrane-integral effector protein of intracellular Salmonella enterica. PLoS
ONE 7:e35004. doi: 10.1371/journal.pone.0035004

Nagai, H., and Kubori, T. (2011). Type IVB secretion systems of Legionella
and other Gram-negative bacteria. Front. Microbiol. 2:136. doi:
10.3389/fmicb.2011.00136

Neilson, K. A., Ali, N. A., Muralidharan, S., Mirzaei, M., Mariani, M.,
Assadourian, G., et al. (2011). Less label, more free: approaches in label-free
quantitative mass spectrometry. Proteomics 11, 535–553. doi: 10.1002/pmic.
201000553

Newton, H. J., Ang, D. K., van Driel, I. R., and Hartland, E. L. (2010). Molecular
pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol.
Rev. 23, 274–298. doi: 10.1128/CMR.00052-09

Ninio, S., Celli, J., and Roy, C. R. (2009). A Legionella pneumophila effector protein
encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.
PLoS Pathog. 5:e1000278. doi: 10.1371/journal.ppat.1000278

O’Garra, A., Redford, P. S., McNab, F. W., Bloom, C. I., Wilkinson, R. J., and Berry,
M. P. (2013). The immune response in tuberculosis. Ann. Rev. Immunol. 31,
475–527. doi: 10.1146/annurev-immunol-032712-095939

Otto, A., Becher, D., and Schmidt, F. (2014). Quantitative proteomics in the field
of microbiology. Proteomics 14, 547–565. doi: 10.1002/pmic.201300403

Pförtner, H., Wagner, J., Surmann, K., Hildebrandt, P., Ernst, S., Bernhardt, J.,
et al. (2013). A proteomics workflow for quantitative and time-resolved analysis
of adaptation reactions of internalized bacteria. Methods 61, 244–250. doi:
10.1016/j.ymeth.2013.04.009

Picotti, P., Clement-Ziza, M., Lam, H., Campbell, D. S., Schmidt, A., Deutsch,
E. W., et al. (2013). A complete mass-spectrometric map of the yeast
proteome applied to quantitative trait analysis. Nature 494, 266–270. doi:
10.1038/nature11835

Porteus, B., Kocharunchitt, C., Nilsson, R. E., Ross, T., and Bowman, J. P. (2011).
Utility of gel-free, label-free shotgun proteomics approaches to investigate
microorganisms. Appl. Microbiol. Biotechnol. 90, 407–416. doi: 10.1007/s00253-
011-3172-z

Ragaz, C., Pietsch, H., Urwyler, S., Tiaden, A., Weber, S. S., and Hilbi, H. (2008).
The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type
IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-
permissive vacuole. Cell. Microbiol. 10, 2416–2433. doi: 10.1111/j.1462-
5822.2008.01219.x

Rajashekar, R., and Hensel, M. (2011). Dynamic modification of microtubule-
dependent transport by effector proteins of intracellular Salmonella enterica.
Eur. J. Cell Biol. 90, 897–902. doi: 10.1016/j.ejcb.2011.05.008

Rejman Lipinski, A., Heymann, J., Meissner, C., Karlas, A., Brinkmann, V.,
Meyer, T. F., et al. (2009). Rab6 and Rab11 regulate Chlamydia trachomatis
development and golgin-84-dependent Golgi fragmentation. PLoS Pathog.
5:e1000615. doi: 10.1371/journal.ppat.1000615

Rogers, L. D., and Foster, L. J. (2007). The dynamic phagosomal proteome and the
contribution of the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 104,
18520–18525. doi: 10.1073/pnas.0705801104

Rogers, L. D., and Foster, L. J. (2008). Contributions of proteomics to
understanding phagosome maturation. Cell. Microbiol. 10, 1405–1412. doi:
10.1111/j.1462-5822.2008.01140.x

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 17 June 2015 | Volume 5 | Article 48

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Herweg et al. Pathogen compartment proteomics

Rothmeier, E., Pfaffinger, G., Hoffmann, C., Harrison, C. F., Grabmayr, H., Repnik,
U., et al. (2013). Activation of Ran GTPase by a Legionella effector promotes
microtubule polymerization, pathogen vacuole motility and infection. PLoS
Pathog. 9:e1003598. doi: 10.1371/journal.ppat.1003598

Russell, D. G. (2011). Mycobacterium tuberculosis and the intimate discourse
of a chronic infection. Immunol. Rev. 240, 252–268. doi: 10.1111/j.1600-
065X.2010.00984.x

Rzomp, K. A., Scholtes, L. D., Briggs, B. J., Whittaker, G. R., and Scidmore, M. A.
(2003). Rab GTPases are recruited to chlamydial inclusions in both a species-
dependent and species-independent manner. Infect. Immun. 71, 5855–5870.
doi: 10.1128/IAI.71.10.5855-5870.2003

Schmidt, F., and Völker, U. (2011). Proteome analysis of host-pathogen
interactions: investigation of pathogen responses to the host cell environment.
Proteomics 11, 3203–3211. doi: 10.1002/pmic.201100158

Schroeder, N., Mota, L. J., and Meresse, S. (2011). Salmonella-induced tubular
networks. Trends Microbiol. 19, 268–277. doi: 10.1016/j.tim.2011.01.006

Sherwood, R. K., and Roy, C. R. (2013). A Rab-centric perspective of
bacterial pathogen-occupied vacuoles. Cell Host Microbe 14, 256–268. doi:
10.1016/j.chom.2013.08.010

Shevchuk, O., Batzilla, C., Hagele, S., Kusch, H., Engelmann, S., Hecker,
M., et al. (2009). Proteomic analysis of Legionella-containing phagosomes
isolated from Dictyostelium. Int. J. Med. Microbiol. 299, 489–508. doi:
10.1016/j.ijmm.2009.03.006

Simeone, R., Bobard, A., Lippmann, J., Bitter, W., Majlessi, L., Brosch,
R., et al. (2012). Phagosomal rupture by Mycobacterium tuberculosis
results in toxicity and host cell death. PLoS Pathog. 8:e1002507. doi:
10.1371/journal.ppat.1002507

Simon, S., Wagner, M. A., Rothmeier, E., Müller-Taubenberger, A., and Hilbi, H.
(2014). Icm/Dot-dependent inhibition of phagocyte migration by Legionella
is antagonized by a translocated Ran GTPase activator. Cell. Microbiol. 16,
977–992. doi: 10.1111/cmi.12258

Sixt, B. S., Hiess, B., Konig, L., and Horn, M. (2012). Lack of effective anti-
apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS
ONE 7:e29565. doi: 10.1371/journal.pone.0029565

Soldati, G., Lu, Z. H., Vaughan, L., Polkinghorne, A., Zimmermann, D. R., Huder,
J. B., et al. (2004). Detection of mycobacteria and chlamydiae in granulomatous
inflammation of reptiles: a retrospective study. Vet. Pathol. 41, 388–397. doi:
10.1354/vp.41-4-388

Steinert, M. (2011). Pathogen-host interactions in Dictyostelium, Legionella,
Mycobacterium and other pathogens. Semin. Cell Dev. Biol. 22, 70–76. doi:
10.1016/j.semcdb.2010.11.003

Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind,
L., et al. (1998). Genome sequence of an obligate intracellular
pathogen of humans: Chlamydia trachomatis. Science 282, 754–759. doi:
10.1126/science.282.5389.754

Subbarayal, P., Karunakaran, K., Winkler, A.-C., Rother, M., Gonzalez, E., Meyer,
T. F., et al. (2015). EphrinA2 receptor (EphA2) is an invasion and intracellular
signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11:e1004846. doi:
10.1371/journal.ppat.1004846

Surmann, K., Michalik, S., Hildebrandt, P., Gierok, P., Depke, M., Brinkmann, L.,
et al. (2014). Comparative proteome analysis reveals conserved and specific
adaptation patterns of Staphylococcus aureus after internalization by different
types of human non-professional phagocytic host cells. Front. Microbiol. 5:392.
doi: 10.3389/fmicb.2014.00392

Tailleux, L., Neyrolles, O., Honore-Bouakline, S., Perret, E., Sanchez, F., Abastado,
J. P., et al. (2003). Constrained intracellular survival of Mycobacterium
tuberculosis in human dendritic cells. J. Immunol. 170, 1939–1948. doi:
10.4049/jimmunol.170.4.1939

Tanne, A., and Neyrolles, O. (2011). C-type lectins in immunity to Mycobacterium
tuberculosis. Front. Biosci. 3, 1147–1164. doi: 10.2741/217

Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G., and Roy, C. R. (2001).
How the parasitic bacterium Legionella pneumophila modifies its phagosome
and transforms it into rough ER: implications for conversion of plasma
membrane to the ER membrane. J. Cell Sci. 114, 4637–4650.

Trost, M., English, L., Lemieux, S., Courcelles, M., Desjardins, M., and
Thibault, P. (2009). The phagosomal proteome in interferon-gamma-activated
macrophages. Immunity 30, 143–154. doi: 10.1016/j.immuni.2008.11.006

Urwyler, S., Finsel, I., Ragaz, C., and Hilbi, H. (2010). Isolation of Legionella-
containing vacuoles by immuno-magnetic separation. Curr. Prot. Cell Biol.
Chapter 3, Unit 3.34.

Urwyler, S., Nyfeler, Y., Ragaz, C., Lee, H., Mueller, L. N., Aebersold, R.,
et al. (2009). Proteome analysis of Legionella vacuoles purified by magnetic
immunoseparation reveals secretory and endosomal GTPases. Traffic 10,
76–87. doi: 10.1111/j.1600-0854.2008.00851.x

van der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., et al.
(2007). M. tuberculosis and M. leprae translocate from the phagolysosome to the
cytosol in myeloid cells. Cell 129, 1287–1298. doi: 10.1016/j.cell.2007.05.059

Vergne, I., Chua, J., and Deretic, V. (2003). Tuberculosis toxin blocking phagosome
maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp.
Med. 198, 653–659. doi: 10.1084/jem.20030527

Vergne, I., Chua, J., Lee, H. H., Lucas, M., Belisle, J., and Deretic,
V. (2005). Mechanism of phagolysosome biogenesis block by viable
Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 102, 4033–4038. doi:
10.1073/pnas.0409716102

Vorwerk, S., Krieger, V., Deiwick, J., Hensel, M., and Hansmeier, N.
(2015). Proteomes of host cell membranes modified by intracellular
activities of Salmonella enterica. Mol. Cell. Proteomics 14, 81–92. doi:
10.1074/mcp.M114.041145

Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R. J., Lambden, P. R., and Clarke, I.
N. (2011). Development of a transformation system for Chlamydia trachomatis:
restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.
PLoS Pathog. 7:e1002258. doi: 10.1371/journal.ppat.1002258

Weber, S. S., Ragaz, C., and Hilbi, H. (2009). Pathogen trafficking pathways
and host phosphoinositide metabolism. Mol. Microbiol. 71, 1341–1352. doi:
10.1111/j.1365-2958.2009.06608.x

Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y., and Hilbi, H. (2006). Legionella
pneumophila exploits PI(4)P to anchor secreted effector proteins to the
replicative vacuole. PLoS Pathog. 2:e46. doi: 10.1371/journal.ppat.0020046

Weber, S., Wagner, M., and Hilbi, H. (2014). Live-cell imaging of phosphoinositide
dynamics and membrane architecture during Legionella infection. MBio 5,
e00839–e00813. doi: 10.1128/mBio.00839-13

Weiss, G., and Schaible, U. E. (2015). Macrophage defense mechanisms against
intracellular bacteria. Immunol. Rev. 264, 182–203. doi: 10.1111/imr.12266

Wenzel, M., Chiriac, A. I., Otto, A., Zweytick, D., May, C., Schumacher, C.,
et al. (2014). Small cationic antimicrobial peptides delocalize peripheral
membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 111, E1409–E1418. doi:
10.1073/pnas.1319900111

Xu, L., Shen, X., Bryan, A., Banga, S., Swanson, M. S., and Luo, Z. Q. (2010).
Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila
effector. PLoS Pathog. 6:e1000822. doi: 10.1371/journal.ppat.1000822

Zhu, W., Banga, S., Tan, Y., Zheng, C., Stephenson, R., Gately, J., et al.
(2011). Comprehensive identification of protein substrates of the Dot/Icm
type IV transporter of Legionella pneumophila. PLoS ONE 6:e17638. doi:
10.1371/journal.pone.0017638

Zhu, X. M., Wang, Y. X., Leung, K. C., Lee, S. F., Zhao, F., Wang, D. W., et al.
(2012). Enhanced cellular uptake of aminosilane-coated superparamagnetic
iron oxide nanoparticles in mammalian cell lines. Int. J. Nanomed. 7, 953–964.
doi: 10.2147/IJN.S28316

Zybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., and
Washburn, M. P. (2006). Statistical analysis of membrane proteome expression
changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347. doi:
10.1021/pr060161n

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Herweg, Hansmeier, Otto, Geffken, Subbarayal, Prusty, Becher,
Hensel, Schaible, Rudel and Hilbi. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 18 June 2015 | Volume 5 | Article 48

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Purification and proteomics of pathogen-modified vacuoles and membranes
	Introduction
	Proteomics of Pathogen-Host Interactions
	Gel-Based Proteomics
	Gel-Free Proteomics
	Subcellular Pathogen Compartments

	Intracellular Vacuolar Pathogens
	Legionella pneumophila
	Mycobacterium tuberculosis
	Chlamydia and Simkania spp.
	Salmonella enterica

	Isolation and Purification of Pathogen Vacuoles and Membranes
	Legionella-Containing Vacuoles
	Mycobacterium TDM-Beads Phagosomes
	Chlamydia and Simkania Inclusions
	Salmonella-Modified Membranes

	Proteomes of Pathogen-Containing Compartments
	Legionella-Containing Vacuoles
	Mycobacterium TDM-Beads Phagosomes
	Chlamydia and Simkania Inclusions
	Salmonella-Modified Membranes

	Comparative Proteomics of Pathogen Compartments
	Acknowledgments
	Supplementary Material
	References


