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Staphylococcus aureus is the leading etiologic agent of orthopedic implant infections.

Here a ribocluster of 27 S. aureus strains underwent further molecular characterization

and subtyping by multilocus sequence typing (MLST) and spa-typing. This cluster had

been detected by automated ribotyping (with the EcoRI restriction enzyme) of 200

S. aureus isolates from periprosthetic infections of patients who underwent revision at

the Rizzoli Orthopaedic Institute. The ribocluster, consisting of agr type III strains, with a

74% co-occurrence of bone sialoprotein-binding (bbp) and collagen-binding (cna) genes,

lacked mecA and IS256, and exhibited a high prevalence of the toxic shock syndrome

toxin gene (tst, 85%). Strains’ relatedness was analyzed by BURP and eBURST. Two

predominant spa types, t012 (32%) and t021 (36%), and one predominant sequence

type, ST30 (18/27, 67%) were identified: a S. aureus lineage spread worldwide belonging

to MLST CC30. Two new sequence types (ST2954, ST2960) and one new spa type

(t13129) were detected for the first time. Interestingly, the 27-strain cluster detected by

ribotyping corresponded exactly to MLST CC30, the sole CC identified by eBURST.

Keywords: methicillin-sensitive Staphylococcus aureus, orthopedic implant infections, multilocus sequence

typing, spa-typing, virulence factors

INTRODUCTION

Staphylococcus aureus is the leading etiologic agent of orthopedic implant-associated infections
(Arciola et al., 2005a; Montanaro et al., 2011; Rao et al., 2011; Tande and Patel, 2014). At
present, the properties that allow particular S. aureus clones to prevail and become epidemic
are not known. Infections related to orthopedic implants occur in ∼1.5% of cases (Montanaro
et al., 2011; Tsaras et al., 2012; Tande et al., 2014). The high number of primary and revision
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arthroplasties renders these infections significant in terms of
morbidity, mortality, and economic consequences (Montanaro
et al., 2011). The potential to colonize host periprosthetic tissues
and to cause severe disease differs among clonal lineages, a
feature that is attributed to the absence or presence of different
virulence factors and to the levels at which they are produced (Li
et al., 2009). In orthopedic implant infections, the first microbial
adhesion to a biomaterial coated by host extracellular proteins is
mediated byMicrobial Surface Components Recognizing Adhesive
MatrixMolecules (MSCRAMMs; Speziale et al., 2009; Foster et al.,
2014). Among these, bone sialoprotein-binding protein (Bbp)
and collagen adhesin (Cna) play a crucial role in the onset of
device-related infections (Arciola et al., 2005b; Xu et al., 2005;
Campoccia et al., 2009; Vazquez et al., 2011; Post et al., 2014).
S. aureus can also yield a variety of other virulence factors,
such as Panton-Valentine leukocidin (PVL), often associated
with necrotizing pneumonia and skin infections (Rasigade et al.,
2011), toxic shock syndrome toxin (TSST), a super-antigenic
toxin more common in MSSA lineages (He et al., 2013), and
the insertion sequence IS256, widespread in genomes of multi-
resistant staphylococci (Byrne et al., 1989; Depardieu et al., 2007;
Schreiber et al., 2013).

S. aureus has evolved into many clones, some of which are
rare and referred to as “sporadic,” and others, with a worldwide
prevalence, can be defined “epidemic.” The evolutionary success
of different clones of the same microorganism indicates the
acquisition of new traits that either boost their virulence or favors
their adaptability in the “race for the surface” between bacteria
and eukaryotic cells in particular niches of infections, such as the
biomaterial/tissue interface (Gristina et al., 1988-1989; Feng et al.,
2008; Montanaro et al., 2011).

The clonality of S. aureus was initially revealed by multilocus
enzyme electrophoresis (MLEE)-typing and pulsed field gel
electrophoresis (PFGE)-typing. Multilocus sequence typing
(MLST), based on the profile of alleles at seven loci of
housekeeping genes, and spa-typing, based on the variable X-
region of the staphylococcal protein A gene, have confirmed the
highly clonal structure of S. aureus (Shopsin et al., 1999).

This study was aimed at thoroughly investigating the genetic
background of a cluster of 27 S. aureus strains (Campoccia
et al., 2009). This cluster was identified when ribotyping 200 S.
aureus isolates obtained from patients undergoing revision at the
Rizzoli Orthopaedic Institute (IOR) for periprosthetic infections
(Campoccia et al., 2009). The ribocluster strains were analyzed
by MLST and by spa typing in order to establish whether they
belonged to a single clonal complex, and ultimately to ascertain
if the most prevalent cluster identified by riboprinting from
a collection of orthopedic implant infections corresponded to
some known epidemic clonal complex, as the historical CC30
and its lineages (see Table 1S for a biographical sketch of CC30).
To this end, the resulting sequences were analyzed by BURP
and eBURST algorithms. In the present study, isolates were
further characterized by assaying their antibiotic-resistances and
checking for the presence of mecA for methicillin-resistance.
The search for IS256, Panton-Valentine pvl gene, and TSST gene
tst provided additional information for the epidemiological and
pathogenetic profiles.

MATERIALS AND METHODS

S. aureus Ribocluster
A ribocluster of 27 S. aureus strains was utilized in this
study. Three ribogroups form this ribocluster: cra-119-S-8, cra-
138-S-2, and cra-53-S-7. These ribogroups had been identified
by an automated RiboPrinter R© and then recognized as a
unique ribocluster when ribotyped among 200 S. aureus isolates
from infected prostheses observed at the IOR of Bologna
(Campoccia et al., 2009). The automated RiboPrinter R© is prone
to categorizing the strains that diverge only at the level of bands
with molecular weight greater than 50 Kbp as belonging to
different ribogroups, and expert supervision is necessary (Brisse
et al., 2002). We designated all 27 strains as a single large cluster
(Campoccia et al., 2009).

Clinical isolates came from revision of surgical wounds and
treatment of infected prostheses of the following categories:
external fixation devices (EF), internal fixation devices (IF), knee
arthroprostheses (K), and hip arthroprostheses (H).

Staphylococcal species identification was previously
performed Api-Staph and/or ID 32 Staph test (BioMérieux,
Marcy l’Etoile, France). Following criteria of the Centers
for Disease Control and Prevention (CDC) to distinguish
community-acquired (CA) and hospital-acquired (HA)
infections1, the S. aureus isolates of this study were
categorized as hospital acquired (HA). The strains were
stored at −80◦C. The study was approved and funded by the
Scientific Director of the IOR. All microbiological samples were
completely de-identified and stripped of all patient identifying
information.

Bacterial DNA Isolation
The chromosomal DNA used as an amplification template
was extracted from the bacterial cultures using QIAmp DNA
mini kit (Qiagen, GmbH, Hilden, Germany), according to the
manufacturer’s instruction.

Detection of mecA, femA, pvl, IS256, and
tst Genes
PCR conditions and primers used in this study are reported in
Table 1.

Antibiotic Susceptibility
The agar diffusion (Kirby-Bauer) method was utilized to perform
the antibiotic susceptibility tests according to Clinical and
Laboratory Standards Institute (CLSI) guidelines (NCCLS,
2002). Antimicrobial susceptibility was tested for a panel of
16 antibiotics: oxacillin (OXA), imipenem (IMP), penicillin
(PEN), ampicillin (AMP), cefazolin (CFZ), cefamandole
(FAM), gentamicin (GEN), amikacin (AMK), netilmicin (NET),
tobramycin (TOB), erythromycin (ERY), clindamycin (CLI),
chloramphenicol (CHL), trimethoprim–sulfamethoxazole
(SXT), ciprofloxacin (CIP), and vancomycin (VAN).

1Center for Disease Control and Prevention (CDC). Available online at http://

www.cdc.gov/
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TABLE 1 | PCR conditions and primers used in this study.

Target gene Primer sequences Amplicon size (bp) References

mecA 5′-TGGCTATCGTGTCACAATCG-3′

5′-CTGGAACTTGTTGAGCAGAG-3′
310 Vannuffel et al., 1995

femA 5′-CTTACTTACTGGCTGTACCTG-3′

5′-ATGTCGCTTGTTATGTGC-3′
686 Vannuffel et al., 1995

Pvl (lukS-PV/lukF-PV) 5′-ATCATTAGGTAAAATGTCTGGACATGATCCA-3′

5′-GCATCAASTGTATTGGATAGCAAAAGC-3′
433 Lina et al., 1999

IS256 5′-AGTCCTTTTACGGTACAATG-3′

5′-TGTGCGCATCAGAAATAACG-3′
762 Gu et al., 2005

Tst 5′-ATGGCAGCATCAGCTTGATA-3′

5′-TTTCCAATAACCACCCGTTT-3′
349 Jarraud et al., 1999

The presence of genes was tested by amplification of the respective gene-fragments using 10µl RedTaq® ReadyMix™ PCR Reaction Mix (Sigma, St Louis, MO), 1µl gDNA, and 10

pmol/µl primer. Amplification conditions were as follows: an initial step of 5min at 95◦C, 40 cycles each of 30 s at 95◦C, 45 s at 55◦C, and 45 s at 72◦C, and a final step of 45 s at 72◦C.

spa Sequencing
The polymorphic X, or short sequence repeat (SSR), region
of the S. aureus protein A gene (spa) was amplified by
PCR with primers 1113F (5′-TGTAAAACGACGGCCAGT-3′)
and 1514R (5′-CAGGAAACAGCTATGACC-3′) according to
protocols previously described (Schmid et al., 2013).

Ten microliters of the amplified products were analyzed on
1.5% agarose gels and 5µl were purified with EXO SAP-IT
(GE Health care, Buckinghamshire, GB). Two microliters of
the purified amplification products were used for subsequent
sequencing using the Big Dye Terminator v3.1 sequencing kit
(Applied Biosystems, Carlsbad, CA) and were finally analyzed on
ABI Genetic Analyzer 3500Dx (Applied Biosystems).

The chromatograms obtained were analyzed with the Ridom
StaphType software (version 1.4; Ridom GmbH, Würzburg,
Germany; http://spa.ridom.de/index.shtml) to determine the spa
type of each isolate2. The spa types were deduced by the
differences in number and sequence of spa repeats. Using the
BURP algorithm (Ridom GmbH) and the Ridom SpaServer
database (Enright et al., 2000), spa types were clustered
into different clonal complexes (spa-CCs) and MLST clonal
complexes (CCs) were inferred.

Multilocus Sequence Typing
MLST genotyping was performed on all 27 S. aureus isolates as
described previously by Larsen et al. (2012). The amplification
of a portion of seven housekeeping genes (arc, aroE, glp, gmk,
pta, tpi, yqiL) was performed and then sequenced. The free
cross-platform bioinformatics software package Unipro UGENE
1.133 was used to analyze the sequences. Sequence types (STs)
were obtained using the MLST database4. Using the eBURST
v3 algorithm5, sequence types (STs) were clustered to assign the
clonal complexes (CCs), and assess the population organization
and patterns of evolution. S. aureus strains with STs differing by
one or two housekeeping genes/loci were considered part of a
unique clonal complex.

2Ridom SpaServer database. Available online at http://www.spaserver.ridom.de
3MLST website. Available online at http://saureus.mlst.net/sql/multiplelocus.asp
4MLST database. Available online at http://www.mlst.net
5eBURST algorithm. Available online http://eburst.mlst.net/v3/mlst_datasets/

RESULTS

MLST Analysis
TheMLST analysis of the 27 strains of the ribocluster identified 5
distinct STs. ST30, the most prevalent, included 18 strains (67%),
ST34 consisted of 5 strains (19%), ST2954 of 2 strains (7%),
and ST2960 and ST243 were both represented by a single strain.
The allelic profile of each identified ST is reported in Table 2.
Sequence type attribution, riboprofiles, genotypic characteristics,
and clinical origin of each of the 27 strains investigated are
summarized in Table 3.

The strains of the studied ribocluster had been previously
characterized for their agr type (Montanaro et al., 2010) and
for the following panel of MSCRAMM genes (Campoccia et al.,
2009): eno, fib, cna, ebpS, fnbB, bbp, and sdrE. Strains were all
of the agr type III. All 27 strains turned out negative for mecA,
IS256, and sdrE, and positive for eno and ebpS genes.

As shown in Table 4, ST30 was found to consist mainly (86%)
of cna- and bbp-positive strains: only one strain out of 18 (6%)
was found to be either cna- or bbp-negative. Thus, a remarkably
high proportion of the ST30 strains exhibited a typical bbp-
cna adhesin co-occurence. The bbp gene encoding the Bbp was
observed in 93% of the 27 strains (Campoccia et al., 2009), often
in association with the cna gene detected in 78% of the strains.

All ST30 strains except for cra2727 were characterized by the
presence of tst gene, which was unusually found to be extremely
common in this collection of strains. The ST30 fib-positive strains
were 5 (29%) and cra1601 was the only strain carrying the fnbB
gene (seeTable 4). All ST30 strains were found to be pvl-negative.

All five ST34 strains were cna-negative (100%) in contrast
to the remaining strains of the ribocluster, 95% of which were
cna-positive.

As far as the other minor STs are concerned, the only ST243
strain, cra2380, and the two ST2954 strains were found to be
tst-negative. Apart from these strains belonging to ST243 and
ST295, the tst gene was generally present among the other strains
of the ribocluster and only one strain (cra2727) out of 24 was
found tst-negative. Further, cra2380 was also the only strain of
the collection found positive for pvl. All three ST2954 and ST243
strains however exhibited the bbp-cna combination of genes
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TABLE 2 | Description of all the STs found in the present study.

ST MLST allelic profile* spa types spa repeat succession spa CC

ST30 (18) 2-2-2-2-6-3-2 t018 (2) 15-12-----16-02-16-02-25-17-24-24-24 CC021/012

t093 (1) 15-12-12-16-02-16-02-25-17-24-24----

t012 (7) 15-12-----16-02-16-02-25-17-24-24----

t021 (6) 15-12-----16-02-16-02-25-17-24--------

t1382 (1) 01-12-----16-02-16-02-25-----24--------

t11956 (1) 15-12-----23-----16-02-25-17-24--------

ST243 (1) 2-2-5-2-6-3-2 t021 (1) 15-12-----16-02-16-02-25-17-24--------

ST2960a (1) 2-2-2-2-6-268-2 t021 (1) 15-12-----16-02-16-02-25-17-24--------

ST2954a (2) 2-2-2-2-6-3-330 t298 (2) 15-12-----16-02-------------17-24--------

ST34 (5) 8-2-2-2-6-3-2 t166 (2) 04-44-33-31-12-16-34-16-12-25-22-34 CC166

t369 (1) 04-44-----31-12-16-34-16-12-25-22-34

t4437 (1) 04-44-33-31-12-16---------12-25-22-34

t13129b (1) 04-51----------------34-16 -12-25-22-34 Singleton

*MLST allelic profile (arc-aroe-glpf-gmk-pta-tpi-yiql); numbers between brackets represent the number of strains; anewly described ST; bnewly described spa type; MLST alleles shared

with the probable founder of MLST CC30, ST30, are colored in sky blue; the spa sequence repetitions shared with the probable founder of spa CC021/012, t021, appear in blue; the

spa sequence repetitions shared with the probable founder of spa CC166, t166, are in red; the spa sequence repetitions of the new spa type t13129 shared with the probable founder

of spa CC166 are in green. repeat 23 differs in one base from repeat 16; repeat 01 differs in three bases from repeat 15; repeat 51 differs in three bases from repeat 44.

typical of ST30. The single strain of the newly identified ST2960
matched the characteristics of ST30, testing positive to both bbp
and cna and presenting the tst gene.

Based on the analyses by the eBURST algorithm, the five
STs were clustered within the same MLST clonal complex CC30
(Figure 1). ST30 (18/22, 82%) was recognized as the genotypic
founder and ST34 (5/22, 23%) as a subgroup founder. The
remaining single locus variant (SLV) STs were ST243 (1/22) and
the new alleles first discovered in this work, namely ST2954
(2/22) (strain cra1772 and strain cra1773) and ST2960 (1/22)
(strain cra1380). Thus, the 27-strain ribocluster was entirely
associated with the CC30, confirming the strict kinship of the 27
strains.

spa Typing
The spa typing analysis revealed 11 distinct spa types within the
group of 27 strains. The different spa repeat sequences specific
for each identified spa type is reported in Table 2. The spa type
including the largest number of strains was t021, enlisting 8
out of 27 strains (30%). It was immediately followed by t012,
consisting of 7 strains (26%). All the other 9 spa types included
just 1 or at most 2 strains (representing a frequency of 4–7%)
as reported in Table 2. Among these less frequent spa types,
there was a newly identified spa type, t13129 (strain cra1510),
never described before. The spa type attribution of each single
clinical strain is reported in Table 3, while the genotypic traits
characteristic of the spa types are described in Table 4.

BURP analysis of the spa types yielded two main clonal
complexes, spa-CC021/012 (22 strains) and spa-CC166 (4
strains), and a singleton (Table 4). The spa types in the large spa-
CC021/012 were: t021 (8 strains out of 22, 36%), t012 (7, 32%),

t018 (2, 9%), t298 (2, 9%), t093 (1, 5%), t1382 (1, 5%), and t11956
(1, 5%). Thus, two spa types, t021 and t012 together represented
up to 68% of the spa-CC and 59% of the entire collection. These
two spa types differed in just one sequence repeat at the end
of the repeat sequence succession. The repeat sequence 24 was
just in one copy in t021 and double in t012. The two strains
of spa-CC021/012 with spa type t298 were belonging to the
ST2954.

Apart from the founder t166, spa-CC166 had 2 further spa
types: t369 and t4437. Discovered in the present study and
identified by BURP analysis as a singleton, spa type t13129 (strain
cra1510) exhibited a repeat succession just partially different
from that of t166, lacking four repeat sequences (33-31-12-16)
and carrying the 51 repeat sequence instead of the repeat 44 (see
Table 2).

The population structure analysis is illustrated in Figure 2,
which reports the population analysis as per BURP population
snapshot. On the right side of Figure 2 an additional drawing
shows the type of mutations involved in the transition between
spa types.

As far as the adhesin profile is concerned, differences were
observed between the two main spa-CCs. The spa-CC021/012,
including the vast majority of the strains of the ribocluster (81%),
exhibited a remarkable prevalence of clinical strains endowed
with both cna and bbp genes. Indeed, although the co-occurrence
of bbp and cna genes was a genetic pattern consistently observed
in the ribocluster (74%), its prevalence reached 91% within the
spa-CC021/012. The prevalent spa type of CC021/012 was t021,
uniquely consisting of bbp- and cna-positive strains. The triple
adhesin gene pattern bbp-cna-fib was only observed in 7 strains
belonging to spa-CC021/012 (32%).
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TABLE 3 | Detailed genotyping characterization data of the 27 strains.

Strain Ribogroup a
g
r
ty
p
e

M
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S
T
C
C

M
L
S
T
S
T

s
p
a
C
C

s
p
a
ty
p
e

ts
t

m
e
c
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2
5
6

p
v
l

fn
b
B

c
n
a

fi
b

b
b
p

e
n
o

e
b
p
S

s
d
rE

O
ri
g
in

cra1340 cra-138-S2 III 30 30 021/012 t018 + − − − − + + + + + − IF

cra2016 cra-119-S8 III 30 30 021/012 t018 + − − − − + − + + + – K

cra1156 cra-119-S8 III 30 30 021/012 t093 + − − − − + − + + + − EF

cra1199 cra-119-S8 III 30 30 021/012 t012 + − − − − + − + + + − EF

cra2150 cra-53-S7 III 30 30 021/012 t012 + − − − − + − + + + − EF

cra1607 cra-138-S2 III 30 30 021/012 t012 + − − − − + − + + + − H

cra1611 cra-138-S2 III 30 30 021/012 t012 + − − − − + − + + + − IF

cra1212 cra-53-S7 III 30 30 021/012 t012 + − − − − + − + + + − EF

cra1451 cra-138-S2 III 30 30 021/012 t012 + − − − − + + + + + − H

cra1291 cra-119-S8 III 30 30 021/012 t012 + − − − − + + − + + − K

cra1823 cra-119-S8 III 30 30 021/012 t1382 + − − − − + − + + + − IF

cra1196 cra-119-S8 III 30 30 021/012 t11956 + − − − − − − + + + − IF

cra1601 cra-119-S8 III 30 30 021/012 t021 + − − − + + − + + + − K

cra1596 cra-119-S8 III 30 30 021/012 t021 + − − − − + + + + + − IF

cra1676 cra-119-S8 III 30 30 021/012 t021 + − − − − + + + + + − H

cra1733 cra-119-S8 III 30 30 021/012 t021 + − − − − + − + + + − K

cra1963 cra-119-S8 III 30 30 021/012 t021 + − − − − + − + + + − H

cra2727 cra-119-S8 III 30 30 021/012 t021 − − − − − + − + + + − H

cra2380 cra-53-S7 III 30 243 021/012 t021 − − − + − + − + + + − K

cra1380 cra-119-S8 III 30 2960a 021/012 t021 + − − − − + + + + + − IF

cra1772 cra-119-S8 III 30 2954a 021/012 t298 − − − − − + + + + + − IF

cra1773 cra-119-S8 III 30 2954a 021/012 t298 − − − − − + + + + + − IF

cra1528 cra-138-S2 III 30 34 166 t166 + − − − − − + + + + − IF

cra1539 cra-119-S8 III 30 34 166 t166 + − − − − − + + + + − IF

cra1534 cra-138-S2 III 30 34 166 t4437 + − − − − − + − + + − EF

cra1619 cra-53-S7 III 30 34 166 t369 + − − − − − − + + + − K

cra1510 cra-119-S8 III 30 34 Singl. t13129b + − − − − − + + + + − EF

Genes codifying for: eno, laminin-binding adhesin; ebpS, elastin-binding protein; fib, fibrinogen-binding adhesin; can, collagen-adhesin; fnbB, fibronectin-binding protein B; bbp, bone

sialoprotein-binding protein; sdrE, serine-aspartate repeat proteins E. K, H = knee, hip arthroprostheses; EF, IF = external, internal fixation systems. aNew sequence type (ST), bnew

spa type found in this study; Singl. = singleton.
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TABLE 4 | Genotypic characteristics of the ST, spa-CC, and spa-types.

ST spa CC spa type bbp-cna tandem fib tst agr IS256 mecA

ST2960 (1) CC021/012 t021 (8; 36%) 100% 100% 100% III neg neg

ST243 (1) – –

ST30 (18) 33% 83%

t012 (7; 32%) 86% 29% 100%

Other spa types (5; 23%)a 80% 20% 100%

ST2954 (2) t298 (2; 9%) 100% 100% –

ST34 (5) CC166 t166 (2; 50%) – 100% 100%

Other spa types (2; 50%)b – 50% 100%

singleton t13129 (1; 100%) – 100% 100%

Numbers between brackets represent the number of strains and percent frequency.
aThe remaining spa types are t018 (2), t093, t1382, t11956.
bThe remaining spa types are t369, t4437.

FIGURE 1 | Analysis of ST allelic profiles of the MLST CC30 by eBURST

v3 software. The sequence type ST30, genotypic founder of the MLST

CC30, is represented by a blue circle. All other STs are SLV (single locus

variant). The new STs (ST2960, ST2954) are represented by green circles.

ST34, a sub-group founder, is represented by a red circle. The other ST243 is

represented by a sky-blue circle. In parentheses the number of strains.

All four strains of spa-CC166 (15% of the entire ribocluster)
were free of bbp gene and, thus, lacked the combination bbp-cna
(Tables 3, 4).

The pvl-positive ST243 cra2380 strain belonged to t021
and was tst-negative, positive for the tandem bbp-cna
and susceptible to all the antibiotics tested. The overall
prevalence of tst gene was 85% (23/27) and the only

four strains without tst genes all belonged to the spa-
CC021/012.

Antibiotic Resistance
Table 2S reports the observed prevalence of antibiotic resistance
in the cluster of 27 strains. Apart from the frequent resistance
to penicillin observed in 89% of the strains, the clinical strains
were found to be nearly all sensitive to the rest of the antibiotics.
Indeed, for the other 12 antibiotics, the number of resistant
strains varied between 0 and 1 (4%). This profile of low antibiotic
resistance was documented by the average multiple antibiotic
resistance (MAR) index (Krumperman, 1983; Kaspar et al., 1990),
which was as low as 0.24. Three strains were susceptible to all the
antibiotics tested.

DISCUSSION

The principal outcome of this work is that the ribocluster
initially interpreted as a clone (Campoccia et al., 2009) actually
corresponds to a clonal complex, namely the MLST CC30, in
which many organisms and diverse sequence types are grouped
(Table 2). This finding highlights the higher discriminatory
power of MLST and spa-typing with respect to ribotyping.
Within CC30, all the strains were methicillin-susceptible and
93% of them belonged to ST30. In contrast to some STs,
which are geographically concentrated, ST30 is spread worldwide
(Vandenesch et al., 2003; DeLeo et al., 2010). MSSA isolates
associated with CC30, particularly the ST30 genetic lineage,
are responsible for various infections in different countries of
the world (Robinson and Enright, 2003; Vandenesch et al.,
2003; Aires de Sousa et al., 2005; Gomes et al., 2006; Vivoni
et al., 2006; Hallin et al., 2007; Holtfreter et al., 2007; Fenner
et al., 2008; Strommenger et al., 2008; He et al., 2013; Tavares
et al., 2014). With regard to the CC30 clone in orthopedic
infections, Aamot et al. (2012) reported that CC30 was the most
frequent clonal complex in MSSA isolates from surgical site
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FIGURE 2 | Analysis of the spa types clustered by BURP algorithm of the Ridom StaphType Software. On the left, within the frame, the population

distribution is illustrated as per BURP population snapshot. The predict founder of a cluster is shown in blue, while the others in black. On the right, a customized

representation of the CCs takes into consideration the type of mutations. Near the lines of connection, the mutations involved in the transition from a spa type to the

next one are reported in detail. All DNA changes are meant to occur from the founder to the periphery. Legend: numbers along the lines refer to the repeat sequence

involved in the mutation; + indicates the acquisition of a repeat sequence; -indicates the loss of a repeat sequence; within circles the numbers of the strains of each

CC appear between brackets; extensive losses including more than a repeat sequence are reported along the lines between brackets; s.n. mut.: single nucleotide

mutation of a sequence repeat.

infections in orthopedic patients from Norway. MSSA isolates
from orthopedic implant-related infections of Swiss and French
hospitals, mainly belonging to the ST30-CC30, were highlighted
by Post et al. (2014). Rincón et al. (2013) analyzed numerous
isolates obtained from osteomyelitis in South American hospitals
and described a high percentage of MSSA belonging to different
genetic lineages, including ST30.

The absence of mecA and IS256 (Tables 3, 4) reaffirms that
antibiotic-resistance and hypervirulence (Benson et al., 2014) are
not strictly necessary for the success of S. aureus lineages within
CC30 and that other determinants might play a more relevant
role, conferring greater fitness, and efficiency in host colonization
and invasion (Ziebuhr et al., 1999; Arciola et al., 2002, 2004, 2015;
Kiem et al., 2004; Valle et al., 2007; McAdam et al., 2012; Cheung
et al., 2014; Lin et al., 2015).

In the Bayesian phylogenetic reconstruction of the CC30
lineage, presented in a recent work of McAdam et al. (2012),
many of the CC30 related to hospital acquired EMRSA-16
exhibited the same genetic properties of the isolates of the
present study. McAdam et al. (2012) showed that tst gene
is absent in the isolates of the pandemic phage type 80/81
and SWP lineages, while present in 83% of isolates from the
HA-EMRSA-16 lineage (ST36). Moreover, while phage type
80/81 and SWP clones were pvl-positive with a prevalence

of 90%, EMRSA-16 and the other epidemic CC30 were all
pvl-negative.

In our results, we observed the absence of pvl in all
strains except one and 85% prevalence for tst. It is likely that
MSSA-CC30 strains, especially those harboring tst, were strictly
associated with the contemporary epidemic CC30 and related
to the hospital acquired EMRSA-16 clone. In contrast to phage
type 80/81 and SWP clones, the other epidemic CC30 related to
EMRSA-16 appeared to be restricted to hospital settings and had
reduced virulence, due in part to the low levels of expression of
toxins such as PVL and LukE/LukD (Campoccia et al., 2008).
McGavin et al. (2012) suggested that clade 3, comprising the
contemporary hospital-associated MSSA-CC30 clone, brought a
large burden of diseases due to its ability to persist in human
hosts at the expense of an attenuated virulence. With regard to
the strain cra2380, it turned out pvl-positive and tst-negative; this
strain belongs to exactly the same MLST allelic profile (ST243)
and spa type (t021) of the ATCC25923 reference strain. As
reported by Chen et al. (2013), the ATCC25923 strain, isolated
in USA (WA) in 1945, is a PVL-positive (PVL haplotype: H1a)
CA-MSSA clinical strain belonging to the phage type 80/81
lineage.

The analysis of spa sequences by BURP algorithm allowed
identification of two spa clonal complexes (CC021/012, CC166)
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and a singleton. As in the work of Wiśniewska et al. (2014),
spa-CC021/012, with the main type t021 related to CC30, was
the most frequent genetic lineage among our strains. CC166
strains and the singleton strain were all found to belong to the
sequence type ST34 and exhibited some characteristic traits such
as the absence of cna, a gene otherwise frequent within the
predominant spa-CC021/012. S. aureus ST34 genetic background
has been suggested to be of hybrid origin, being derived from
recombination of large, contiguous portions of the chromosomes
of genetically distinct parent backgrounds, with only part of
the genome coming from CC30 (Robinson and Enright, 2004;
Thomas et al., 2012). This notion may explain why ST34 lineage
lacks the bbp-cna gene combination and may also provide an
explanation why these strains belong to a different spa type.
With the exclusion of the strains of the ST34 lineage, 91% of the
remaining 22 strains possessed the bbp-cna gene combination,
encoding for a couple of adhesins able to bind the most abundant
bone proteins and crucial in the pathogenesis of orthopedic
implant infections (Campoccia et al., 2009).

Moreover, all the strains shared the agr type III polymorphism.
It should be remarked that strains with the same agr tend to
be characterized by a well-defined pattern of virulence genes
generated by intraspecific cross-inhibitions (Goerke et al., 2003).

In Tables 2–4, the MSSA ST30-t012 and ST30-t021 genetic
patterns emerged as the two most prevalent spa repeat
successions t021, differing from t012 in only one repeat sequence,
indicating that they are likely to be close relatives. Holtfreter
et al. (2007) showed that in MSSA-CC30 isolates, the spa type
t012 was the most prevalent among nasal isolates, while the
spa type t021 was most prevalent among blood culture isolates.
In Denmark, in a study of MSSA clinical isolates from blood
cultures, the authors presented ST30-t021 as the most frequent
genetic lineage (Gomes et al., 2006). Fenner et al. also observed
t021 and t012 in invasive MSSA (Fenner et al., 2008) in a Swiss

University Hospital, as did Nulens et al. (2008) in bloodstream

isolates collected from a Dutch university hospital. Post et al.
(2014) indicated the presence of spa type t012 (ST30) as the most
frequent among the MSSA isolates.

The most prevalent clonal type ST30-t012 of our collection
has also been recurrently observed in Portugal, Spain, Belgium,
the Netherlands and in the USA, by analyzing MSSA isolates
from different time periods (Aires de Sousa et al., 2005; Rijnders
et al., 2009; Argudín et al., 2013; Miko et al., 2013; Tavares
et al., 2014). In other countries, such as China, Taiwan, the
African countries of Cameroon, Madagascar, Senegal, Niger and
Morocco, MSSA genetic lineages from community infections
were dissimilar (Rijnders et al., 2009; Breurec et al., 2011; He
et al., 2013). The reason for the differences in MSSA lineages
among various countries still remains not well understood. Also
the discovery of a new spa type (t13129) and of two new sequence
types (ST2954, ST2960) suggests that there is still much to be
revealed about the evolution of CC30. The success of CC30 could
be multifactorial and its panel of adhesins represents a successful
strategy for renewing and continuing its adaptation to different
niches.
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