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Autophagy, an intracellular degradation process, is increasingly recognized as having

important roles in host defense. Interactions between Shigella flexneri and the autophagy

machinery were first discovered in 2005. Since then, work has shown that multiple

autophagy pathways are triggered by S. flexneri, and autophagic responses can have

different roles during Shigella infection. Here, we review the interactions between

S. flexneri and the autophagy machinery, highlighting that studies using Shigella can

reveal the breadth of autophagic responses available to the host.
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INTRODUCTION

The process of autophagy degrades intracellular material via fusion with lysosomes, and is
evolutionarily conserved (de Duve and Wattiaux, 1966; Mizushima et al., 1998; Kabeya et al.,
2000; Yang and Klionsky, 2010). It was originally discovered as a non-selective nutrient recycling
process in response to starvation (Takeshige et al., 1992). More recently, it has been demonstrated
that autophagy can act in a selective manner to maintain cellular homeostasis (Khaminets et al.,
2015), and that selective autophagy plays an important role in innate immunity by eliminating
intracellular pathogens (Levine et al., 2011; Shibutani et al., 2015). Studies using cellular (in vitro)
and animal (in vivo) models have shown that a variety of intracellular bacterial pathogens can
interact with the autophagy machinery, and autophagic responses can restrict or promote bacterial
replication depending on the infection context. In this review, we discuss canonical and non-
canonical autophagy pathways, their interplay with invasive bacteria, and highlight what has been
discovered from their interactions with Shigella flexneri.

Canonical and Non-canonical Autophagy Pathways
The process of canonical autophagy is dependent on the systematic recruitment of about 40
autophagy-related (ATG) proteins to an isolation membrane called a phagophore (Feng et al.,
2014). First, the Unc-51 like kinase (ULK) complex (ULK1, ULK2, ATG13, ATG101, FIP200),
and ATG9L recruit the autophagy-specific class III phosphoinositide 3-kinase [PI(3)K] complex
(ATG14L, VPS34, Beclin-1, VPS15) to generate phosphatidylinositol 3-phosphate [PI(3)P]
required for phagophore formation. Next, members of the WD-repeat domain phosphoinositide-
interacting (WIPI) protein family (WIPI1-WIPI4) bind PI(3)P, ATG2, and ATG16L1, and recruit
the ATG16L1 complex (ATG16L1, ATG5, ATG12) to elongate the phagophore. Finally, the
accumulation of ATG16L1 initiates the conjugation of microtubule-associated protein light
chain 3 (LC3) family members to the phagophore, and closes the autophagosome. Thereafter,
autophagosomes mature along the endocytic pathway and fuse with lysosomes to form degradative
autolysosomes.
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In contrast to canonical autophagy, non-canonical autophagy
is a mechanism in which only some ATGs help to form an
autophagosome-like vacuole (Codogno et al., 2012; Huang and
Brumell, 2014). In this case, a subset of ATG proteins can be
recruited to an already-existing (and likely damaged) membrane
that is different from a phagophore, e.g., a vacuole containing
Salmonella or mycobacteria. LC3-associated phagocytosis (LAP)
is the best-studied example of a non-canonical autophagy
pathway (Cemma and Brumell, 2012; Huang and Brumell, 2014).
Toll-like receptors (TLRs) initiate LAP, then ATG5, Beclin-1,
and ATG7 are subsequently recruited to promote phagosome
maturation, lysosomal fusion, and killing of phagocytosed
bacteria (Sanjuan et al., 2007; Lam et al., 2013; Martinez et al.,
2015).

Interplay between Invasive Bacteria and
the Autophagy Machinery
In the case of bacterial autophagy (also called xenophagy),
autophagy receptors such as p62 (sequestosome 1) and NDP52
(nuclear dot protein, 52 kDa) act as cytosolic sensors, bind
ubiquitinated substrates and LC3 family proteins to selectively
target bacteria to degradation by canonical autophagy (Levine
et al., 2011). Canonical autophagy can control the fate of
some intracellular bacteria, such as Listeria monocytogenes
(Yoshikawa et al., 2009), Francisella tularensis (Checroun et al.,
2006), Salmonella enterica subsp. enterica serovar Typhimurum
(Thurston et al., 2009; Zheng et al., 2009), and Mycobacterium
tuberculosis (Gutierrez et al., 2004). As a result, canonical
autophagy is recognized as a critical component of innate
immunity (Levine et al., 2011; Shibutani et al., 2015). On the
other hand, some bacteria can replicate inside autophagosome-
like structures generated by non-canonical autophagy (Huang
and Brumell, 2014). Legionella pneumophila (Choy et al., 2012;
Asrat et al., 2014), Coxiella burnettii (Newton et al., 2014),
Yersinia pseudotuberculosis (Moreau et al., 2010), Brucella
abortus (Starr et al., 2012), Staphylococcus aureus (Fraunholz
and Sinha, 2012), and Salmonella Typhimurium (Yu et al.,
2014) have been described to benefit from non-canonical
autophagy.

To determine the precise role of autophagy in host defense
against bacteria, it has been useful to investigate the role of
bacterial autophagy in vivo. Animal models used to study
bacterial autophagy in vivo include Dictyostelium discoideum
(amoeba; Tung et al., 2010), Caenorhabditis elegans (nematode;
Jia et al., 2009; Zou et al., 2014), Drosophila melanogaster (fruit
fly; Yano et al., 2008), Danio rerio (zebrafish; Mostowy et al.,
2013; van der Vaart et al., 2014), and Mus musculus (mouse;
Castillo et al., 2012; Wang et al., 2012; Watson et al., 2012;
Benjamin et al., 2013; Bonilla et al., 2013; Conway et al., 2013;
Marchiando et al., 2013; Kimmey et al., 2015). In agreement
with results obtained in vitro, the impact of autophagy in vivo
depends on the bacterial pathogen under investigation. These
alternative outcomes highlight the molecular complexity of
bacterial autophagy. They also suggest difficulties in therapeutic
manipulation of autophagy to protect against bacterial
infection.

INTERACTIONS BETWEEN S. FLEXNERI

AND THE AUTOPHAGY MACHINERY

Shigella spp. are Gram-negative enteroinvasive pathogens,
causing 163 million illness episodes worldwide per annum (Lima
et al., 2015). S. flexneri possess a virulence plasmid which encodes
a type III secretion system (T3SS), a needle-like apparatus used
to inject bacterial effector proteins into the host cell and enable
an intracellular lifestyle (Phalipon and Sansonetti, 2007; Ogawa
et al., 2008). Minutes after invasion of host cells, including
epithelial cells and macrophages, S. flexneri lyses the phagocytic
vacuole and gains access to the host cytosol where it replicates
(Ray et al., 2009; Fredlund and Enninga, 2014). To counteract
Shigella replication in the cytosol, the host cell employs a variety
of antimicrobial responses, including antibacterial autophagy
and septin caging (septin caging as a mechanism of host defense
will be described later in the text; Ogawa et al., 2005; Mostowy
et al., 2010). However, to evade cytosolic immune responses,
some cytosolic Shigella can subvert the host actin cytoskeleton
to form propulsive actin tails and spread from cell-to-cell
(Bernardini et al., 1989; Welch andWay, 2013). Thus, in addition
to being an important human pathogen, S. flexneri has emerged
as a paradigm to study cell-autonomous immunity and host cell
biology during infection (Sansonetti, 2006; Ashida et al., 2011,
2015; Mostowy and Shenoy, 2015).

Autophagy Pathways Induced during
Shigella Invasion of Host Cells
S. flexneri invasion of normally non-phagocytic epithelial cells
relies upon T3SS effector proteins to induce reorganization of the
host cell cytoskeleton, membrane ruffling, and bacterial uptake
(Cossart and Sansonetti, 2004). Following entry, the pattern
recognition nucleotide-binding oligomerization domain (NOD)-
like receptors NOD1 and NOD2 detect bacterial peptidoglycan
and trigger pro-inflammatory signaling cascades that restrict
bacterial survival (Philpott et al., 2014). Work using the human
epithelial cell line HeLa and S. flexneri has demonstrated that
NOD proteins interact with ATG16L1, thereby recruiting the
autophagy machinery to the bacterial entry site at the plasma
membrane (Travassos et al., 2010). These data suggest that NOD
proteins link bacterial sensing with autophagosome biogenesis
(Figure 1). Interestingly, ATG16L1 also has an autophagy-
independent role in the control of Shigella and NOD-mediated
inflammatory responses in epithelial cells (Sorbara et al., 2013).
In this case, ATG16L1 inhibits NOD1- and NOD2-driven
cytokine responses to cytosolic bacteria.

LAP can also occur during Shigella invasion of epithelial
cells (Figure 1), where LAP is dependent on the activity of the
T3SS (Campbell-Valois et al., 2015). However, Shigella has a
mechanism mediated by the T3SS effector IcsB to counteract
LAP. IcsB is a 52 kDa protein that uses the bacterial chaperone
IpgA for its stability (Ogawa et al., 2003). Secreted IcsB localizes
around the bacterial surface, and though not required for
bacterial entry, plays an important role during cell-to-cell spread.
Soon after bacterial entry, IcsB recruits transducer of CDC42-
dependent actin assembly 1 (Toca-1) to prevent the recruitment
of NDP52 and LC3 (Baxt and Goldberg, 2014). In uninfected
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FIGURE 1 | Interactions between S. flexneri and the autophagy machinery. Left: Summary of host mechanisms targeting S. flexneri to degradation by

autophagic processes. NOD1/2 detects bacterial peptidoglycan during bacterial entry and recruits ATG16L, thereby triggering an autophagic response. In

LC3-associated phagocytosis (LAP), a subset of autophagy proteins (e.g., LC3) is recruited to phagosomal membranes and promotes fusion with lysosomes.

Membrane remnants can recruit autophagy components by ubiquitination (Ub), and also by recognition of host cell β-glycans by galectin-8 (GAL8). In the cytosol,

actin-polymerizing bacteria can be recognized by ATG5 and entrapped in septin cage-like structures, thereby targeting bacteria to autophagic degradation and

preventing their dissemination. Right: Overview of S. flexneri effectors that inhibit degradation by autophagic processes. During invasion, the bacterial effector IcsB

recruits Toca-1, which prevents the recruitment of LC3 and other autophagy markers. In the cytosol, Shigella can circumvent Atg5-recognition of IcsA and septin

caging by expressing IcsB. Another mechanism of S. flexneri to inhibit autophagosome formation in the cytosol is to secrete VirA to inactivate Rab1.

cells, Toca-1 and neuronal Wiskott-Aldrich syndrome protein
(N-WASP) are recruited to the membrane by direct interactions
with the Rho guanosine triphosphatase (GTPase) CDC42 (Ho
et al., 2004). In contrast, S. flexneri recruits Toca-1 via IcsB (to
inhibit recognition by autophagy machinery) and N-WASP via
IcsA (to polymerize actin; Leung et al., 2008; Baxt and Goldberg,
2014). Of note, S. flexneri can also be recognized by LC3 after cell-
to-cell spreading, when the bacterium is entrapped in a double-
membrane vacuole (Campbell-Valois et al., 2015). Here, Shigella
can avoid autophagic degradation by secreting IcsB and VirA (the
virulence factor VirA will be described later in the text), which
act synergistically to promote bacterial escape from LC3-positive
vacuoles.

Together, different sensing mechanisms including NOD1/2
and LAP trigger autophagic recognition of invading Shigella.
These mechanisms can be viewed as a crucial aspect of host
defense to control bacteria at the onset of bacterial interactions
with the host cell.

Autophagy Pathways Induced by Shigella
Rupture of the Phagocytic Vacuole
Shortly after invasion of host cells, S. flexneri can exit the
phagocytic vacuole and gain access to the cytosol. In epithelial
cells, rupture of the phagocytic vacuole by Shigella can initiate
autophagy by inducing nutrient starvation (Tattoli et al., 2012).
In this case, Shigella causes downregulation of the autophagy
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inhibitor mammalian target of rapamycin complex 1 (mTORC1,
which inhibits the ULK1–Atg13–FIP200 complex in the presence
of nutrients). From this, it has been proposed that Shigella-
induced amino acid starvation can be sensed by the host cell to
initiate an immune response.

When Shigella ruptures its phagocytic vacuole in epithelial
cells, membrane remnants can be ubiquitinated (Dupont et al.,
2009; Figure 1). Here, autophagy receptors p62 and NDP52
recognize ubiquitinated membrane remnants and recruit LC3-
positive membrane for autophagosome biogenesis. Moreover,
p62 on membrane remnants colocalizes with nuclear factor
kappa B (NF-κB) signaling molecules, including tumor necrosis
factor (TNF) receptor-associated factor 6 (TRAF6), thereby
serving to dampen the inflammatory response (Dupont et al.,
2009). Thus, autophagic degradation has important roles in the
control of both infection and inflammation (Shi et al., 2012;
Deretic et al., 2013; Shibutani et al., 2015).

Membrane damage exposes host cell glycans to the
cytosol, which are damage-associated molecular patterns
(DAMPs) recognized by galectins, a family of beta-galactoside-
binding proteins (Figure 1). Studies using epithelial cells and
macrophages have demonstrated that galectin-3 and galectin-8
accumulate at sites of membrane damage induced by Shigella
(Paz et al., 2010; Thurston et al., 2012). While a role for galectin-3
in host defense is not yet clear, galectin-8 initiates the recruitment
of NDP52 and LC3 to direct the autophagy machinery to the
ruptured phagocytic vacuole (Thurston et al., 2012). The
galectin-8-NDP52-LC3 pathway is viewed to occur upstream of
the ubiquitin-NDP52-LC3 pathway also targeting the phagocytic
vacuole ruptured by Shigella (Paz et al., 2010; Thurston et al.,
2012; Boyle and Randow, 2013). In both cases, membrane can act
as a danger signal used to direct autophagy components toward
invasive bacteria. However, canonical autophagy may also
promote repair of damaged vacuolar membranes, as in the case
of S. Typhimurium-containing vacuoles (Kreibich et al., 2015).
Therefore, the precise role of membrane recognition by the
autophagy machinery in the restriction of bacterial proliferation
is unknown.

Autophagy Pathways Induced by Shigella
in the Cytosol
Once in the cytosol, S. flexneri can subvert the host actin
cytoskeleton by expressing the outer membrane autotransporter
protein IcsA to recruit N-WASP and the actin related protein
2/3 (ARP2/3) complex, inducing actin-based motility to spread
from cell-to-cell (Welch and Way, 2013). IcsA-mediated actin
polymerization is also required for recognition of cytosolic
Shigella by the autophagy machinery in epithelial cell lines
and mouse embryonic fibroblasts (MEFs; Ogawa et al., 2005;
Mostowy et al., 2010, 2011). IcsA is recognized by ATG5,
triggering the formation of an isolation membrane (Ogawa
et al., 2005). Infection of epithelial cell lines and MEFs has
shown that this process can be independent of ubiquitin, and is
coincident with ATG5 binding to the adaptor protein tectonin
beta-propeller repeat containing 1 (TECPR1; Ogawa et al., 2011).
TECPR1 interacts with WIPI-2 and PI(3)P, and recruits LC3 to
target Shigella to autophagic degradation.

To protect itself from autophagic recognition, cytosolic S.
flexneri can inhibit the interaction between IcsA and ATG5 by
secreting IcsB, which binds to IcsA and competitively inhibits
ATG5 binding (Ogawa et al., 2005; Figure 1). The region of
IcsA bound by IcsB/ATG5 overlaps with one of the three N-
WASP interacting regions (Ogawa et al., 2005; May and Morona,
2008). It is unknown if N-WASP competes with IcsB/ATG5
in binding to the same region of IcsA, or whether the two
other binding regions of IcsA are sufficient to recruit N-WASP.
Bacteria without IcsB exhibit an intracellular replication defect
in MEFs, highlighting the crucial role of ATG5 recognition in
the control of Shigella (Ogawa et al., 2005). Historically, this
discovery made Shigella the first example of an intracellular
pathogen having an effector that inhibits autophagic recognition
for intracellular survival.

Shigella expression of VirA is a separate mechanism to
counteract autophagy in epithelial cells (Dong et al., 2012).
VirA is localized upstream of IcsA on the Shigella virulence
plasmid and is secreted during invasion of host cells (Uchiya
et al., 1995), where it acts as a GTPase-activating protein
(GAP) that inactivates the GTPase Rab1 (Dong et al., 2012;
Figure 1). Rab1, implicated in vesicular transport between the
endoplasmic reticulum (ER) and the Golgi, has an important
role in autophagosome formation (Zoppino et al., 2010). By
inactivating Rab1, VirA disrupts ER-to-Golgi trafficking, and
mediates suppression of autophagosome formation against S.
flexneri (Dong et al., 2012). VirA is one of 2 bacterial effectors
discovered so far, the other being the type 4 secretion system
(T4SS) effector RavZ from L. pneumophila (Choy et al., 2012),
that can directly interfere with the autophagy machinery (Huang
and Brumell, 2014; Mostowy and Shenoy, 2015).

Septins, GTP-binding proteins essential for cell division
(Saarikangas and Barral, 2011; Mostowy and Cossart, 2012b),
interact with the autophagy machinery and play a crucial role
in the control of cytosolic S. flexneri (Mostowy et al., 2010,
2011). Septins are recognized as cytoskeletal components because
they form filaments that associate with cellular membranes,
actin filaments, and microtubules (Saarikangas and Barral, 2011;
Mostowy and Cossart, 2012b; Bezanilla et al., 2015). In epithelial
cells, septins are recruited to sites of IcsA-mediated actin
polymerization and form cage-like structures necessary for the
recruitment of ubiquitin, p62, NDP52, and LC3 to cytosolic
Shigella (Mostowy et al., 2010, 2011; Figure 1). Consistent with
its role as an autophagy inhibitor, IcsB also masks Shigella
from septin caging (Mostowy et al., 2010, 2011). Importantly,
septin cages have also been observed in vivo using zebrafish,
highlighting septin assembly as an evolutionarily conserved
determinant of host defense (Mostowy et al., 2013). From the
Shigella-zebrafish infectionmodel, p62 is crucial for septin caging
and the restriction of bacterial replication by autophagy in vivo.
On the other hand, rapamycin (an inhibitor of mTOR and
stimulant of autophagy) can increase Shigella replication and
decrease zebrafish survival. Overall, these data indicate that host
survival depends on the appropriate autophagic response to
control Shigella infection in vivo (Mostowy et al., 2013). In the
case of humans, the ATG16L1 T300A polymorphism linked to
Crohn’s disease, an inflammatory bowel disease, can reduce the
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TABLE 1 | S. flexneri mechanisms to induce, evade, or interfere with the autophagy machinery.

Bacterial effector Role References

INDUCER OF AUTOPHAGOSOME FORMATION

Peptidoglycan Recognized by NOD1/2 and recruits ATG16L1 to entry site Travassos et al., 2010; Sorbara et al., 2013

Active T3SS Required for LC3 recruitment during LAP Campbell-Valois et al., 2015

IcsA Recognized by ATG5 inducing TECPR1 recruitment and septin caging Ogawa et al., 2005, 2011; Mostowy et al., 2010, 2011

EVASION OF AUTOPHAGY RECOGNITION

IcsB (early) Interacts with Toca-1 to prevent recognition by NDP52 Baxt and Goldberg, 2014

IcsB (late) Prevents ATG5 recognition of IcsA, counteracting recruitment of ubiquitin, p62,

NDP52, and TECPR1, and septin caging

Ogawa et al., 2005, 2011; Mostowy et al., 2010, 2011

IcsB, VirA Promotes escape from LC3-positive vacuoles after cell-to-cell spread Campbell-Valois et al., 2015

INTERFERENCE WITH AUTOPHAGY MACHINERY

VirA Inactivates Rab1 to inhibit autophagosome formation Dong et al., 2012

process of selective autophagy and host defense against Shigella
(Lassen et al., 2014).

DISCUSSION

Originally discovered as a bulk degradation process important
for cellular homeostasis (Yang and Klionsky, 2010), autophagy
has since been recognized as important for cell-autonomous
immunity and host defense (Levine et al., 2011; Mostowy and
Shenoy, 2015; Shibutani et al., 2015). On the other hand, some
intracellular pathogens have evolved mechanisms to evade or
interfere with autophagy processes for intracellular survival
(Mostowy and Cossart, 2012a; Choy and Roy, 2013; Huang
and Brumell, 2014). Adding to this complexity, it is now clear
that ATG proteins also have autophagy-independent roles in
immunity and cellular homeostasis (Huang and Brumell, 2014;
Mostowy and Shenoy, 2015). In this review, we have highlighted
how studies using Shigella can help to investigate the breadth of
autophagy responses available to the host.

The S. flexneri infection model can be used to study key issues
in cell-autonomous immunity and host cell biology, including
the ability of host cells to sense and defend against intracellular
bacteria. The host cell has evolved multiple sensing mechanisms
that together enable a multi-tiered defense network to counteract
Shigella invasion (Table 1). However, Shigella has co-evolved a
variety of protectionmechanisms, and in some cases can interfere
with host cell biology to circumvent autophagic processes
(Table 1). Despite the understanding gained from using the
Shigella infection model, many outstanding issues remain. For
example, what is the role of the host cytoskeleton in autophagy
and its ability to restrict or promote bacterial replication? Actin,
microtubules, intermediate filaments, and septins are four main
cytoskeletal components of mammalian cells, yet their precise

roles in autophagy are not understood (Mostowy, 2014). What
is the link between autophagy of bacteria and autophagy of
mitochondria (also called mitophagy)? Mitochondria can be
viewed as bacteria-derived endosymbionts, and recent studies
have discovered that autophagy of bacteria and mitochondria use
the same machinery (Manzanillo et al., 2013; Randow and Youle,
2014). Finally, to fully determine the role of autophagy in host
defense against Shigella will require in depth experimentation
to be performed in vivo. Though mammalian models remain
poorly suited to image the cell biology of Shigella infection in vivo,
the natural translucency of zebrafish larvae enables non-invasive
in vivo imaging at high resolution throughout the organism
(Kanther and Rawls, 2010; Renshaw and Trede, 2012). Exploiting
this, the in vivo role of Shigella interactions with the autophagy
machinery can be examined at the subcellular, cellular, and
whole-animal level (Mostowy et al., 2013).

Taken together, outcomes generated from studying the
interplay between S. flexneri and the autophagy machinery in
vitro using tissue culture cells and in vivo using animal models
can help to better understand fundamental mechanisms of host
defense. They could additionally suggest the development of
novel therapies for infectious diseases.
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