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A commentary on

Plastid establishment did not require a chlamydial partner

by Domman, D., Horn, M., Embley, T. M., and Williams, T. A. (2015). Nat. Commun. 6:6421. doi:
10.1038/ncomms7421

Several groups have independently proposed an active role for Chlamydiales in primary plastid
establishment in Archaeplastida (Huang and Gogarten, 2007; Becker et al., 2008; Moustafa et al.,

2008). We relied on a combination of biochemical and phylogenetic evidence to erect the MAT
(Ménage à Trois) hypothesis (Ball et al., 2013; Facchinelli et al., 2013). Under this scenario,
Chlamydiales sheltered the once free-living cyanobacterial plastid ancestor from host defenses
and provided critical components such as carbohydrate transporters and protein effectors that
allowed the storage of exported carbohydrates into host glycogen pools. A recent paper byDomman
et al. (2015) reassessed the phylogenies published by us and others on these components. These
authors applied evolutionary models that better account for across-site and across-branch sequence
compositional variation (i.e., Bayesian approaches with the CAT family of evolutionary models
Lartillot and Philippe, 2004) to reanalyze proteins involved in glycogen metabolism. These are
either chlamydial effectors (GlgC, ADP-glucose pyrophosphorylase; GlgP, glycogen phosphorylase;
GlgX, glycogen debranching enzyme; and GlgA, glycogen synthase) or chlamydial transporters
(UhpC, G6P import protein). Previous trees often used automated phylogenomic pipelines that
relied on single-matrix (usually best-fit) substitution models (e.g., LG,WAG) that could potentially
provide incorrect inference due to rate heterogeneity across sites (Morgan et al., 2013). Based on
their results, the authors (Domman et al., 2015) argued that GlgC and GlgP now show evidence
of being of cyanobacterial and host origin, respectively, that Chlamydiales and Archaeplastida
are united by the LGT (Lateral Gene Transfer) of GlgX but that the direction of transfer from
chlamydiales to Archaeplastida is no longer clear. Furthermore, our hypothesis that chlamydiales
have provided GlgA and UhpC to the Archaeplastida is now in question. Below, we inspect these
issues in detail.

GLGC AND GLGP

Domman et al. (2015) favor a cyanobacterial and host origin, respectively, for ADP-glucose
pyrophosphorylase and glycogen phosphorylase in Archaeplastida with no involvement of
Chlamydiales. We fully agree with this hypothesis and have presented it on several occasions
(reviewed in Ball et al., 2011). The problemwe see here is that by including these genes in their study
with the aim of rejecting the MAT hypothesis, these authors imply that because GlgC and GlgP are
chlamydial effector enzymes, they should also have been chlamydial LGTs in extant Archaeplastida.
This is incorrect and we have stated the opposite (Ball et al., 2013). To clarify, among the chlamydial
effectors, only GlgX and GlgA were needed to establish the initial symbiosis.
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FIGURE 1 | Glycogen particle debranching in eukaryotes and bacteria. A 40nm diameter hydrosoluble glycogen particle is displayed on top emphasizing the

outer chains connected to the particle through a single α-1,6 linkage. One-third in weight of the total glucose resides are these outer chains which are directly available

to the hydrosoluble enzymes involved in glycogen breakdown. In both bacteria and eukaryotes these outer chains enlarged in the top panel are first recessed through

glycogen phosphorylase which in the presence of orthophosphate releases glucose-1-P. All reported glycogen phosphorylases stop at a four glucose residue distance

from the first encountered α-1,6 branch (displayed in red). Bacteria and eukaryotes differ at the subsequent steps (Cenci et al., 2014). Bacteria directly hydrolyse the

remaining outer α-1,6 linkage through the so-called direct debranching enzyme (DBE) generating a smaller glycogen particle and releasing a small chain of four

glucose residues (maltotetraose) in the cytosol. Bacteria must then metabolize these small chains and do so with the help of MOS metabolism enzymes. DBE belongs

to the GH13 glycosyl hydrolase family. Eukaryotes first hydrolyse the α-1,4 preceding the branch and transfer the maltotriose (displayed in blue in the right panel) outer

chain to the neighboring chain allowing for further digestion with glycogen phosphorylase. The α-1,6 linked glucose at the remaining branch is then hydrolyzed by a

second active site on the same enzyme named indirect debranching enzyme (iDBE) releasing glucose which is phosphorylated to glucose-6-P by hexokinase. No

MOS is released in the cytosol of eukaryotes through glycogen metabolism. iDBE is derived from a gene fusion between a GH13 and GH133 domain. Consequently

one finds iDBE candidate sequences in all eukaryotes unrelated to Archaeplastida that accumulate glycogen [all opisthokonts (fungi and animals), amoebozoa,

alveolata, glycogen accumulating excavata (Trichomonas, Giardia)] whereas the fusion has never been seen in bacteria despite the extensive databases that are

available (Ball et al., 2011, 2015). Bacterial GH13 DBE is likewise never seen in the aforementioned eukaryotic clades unrelated to Archaeplastida. In addition

eukaryotes do not contain cytosolic enzymes of MOS metabolism with the exception of maltase (DPE2) which selectively hydrolyses maltose generated by the

eukaryotic specific enzyme β-amylase.
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GLGX

Domman et al. (2015) accept that Chlamydiales and
Archaeplastida are united through LGT in this phylogeny.
However, the direction of transfer is judged to be unclear due
to the tree topology. Their phylogeny generally matches the
one we have previously presented (Ball et al., 2013). We have
emphasized previously that within the group of sequences proven
to be united by LGT, phylogenetic signal erosion does not allow
conclusions to be drawn about direction of transfer. Importantly,
as described below, our hypothesis in this regard is not based
solely on phylogenetic data but rather on what we consider
to be compelling biochemical evidence. By this, we mean that
GlgX is a direct debranching enzyme of bacterial origin, absent
in eukaryotes (Cenci et al., 2014). This enzyme ties together
glycogen and malto-oligosccharide (MOS) metabolism in the
bacterial cytosol as depicted in Figure 1. Glycogen-accumulating
heterotrophic eukaryotes use a different glucose-generating
pathway under control of an indirect debranching enzyme with
no release of MOS (Cenci et al., 2014). Eukaryotes typically
lack cytosolic MOS metabolism while able occasionally to
degrade maltose. Therefore, indirect and direct debranching
defines eukaryotes and bacteria, respectively, which clearly
distinguishes their glycogen and carbohydrate metabolisms. In
summary, by combining their phylogeny, which supports LGT
but is inconclusive with regard to the direction of transfer, with
knowledge of biochemistry, we surmise that Archaeplastida
gained the GlgX-encoding gene from Chlamydiales.

GLGA AND UHPC

The analysis done by Domman et al. (2015) emphasizes the
unclear origin of both genes within Archaeplastida. Here again,
we have reported the same result and discussed this issue in
detail (Ball et al., 2013). In both cases, whereas the Chlamydiales
remain the closest branching taxa to the Archaeplastida root,
we cannot exclude a small group of more distantly related
diverse Proteobacteria as potential LGT donors to Archaeplastida
(UhpC and GlgA). We have however not espoused the idea
that phylogenetic data alone prove LGT from Chlamydiales
to Archaeplastida, but strongly suggested it. This reflects the
relatively close and proximal position of Chlamydiales with
respect to the root of Archaeplastida and despite the ever-
growing database of Proteobacteria the taxonomically poorly
sampled Chlamydiales remain as the most closely related
clade to algae and plants. Once again some inference with
respect to biochemistry can be made in the face of obvious
phylogenetic uncertainty. Both GT5 types of ADP-Glc specific

glycogen (starch) synthases and UhpC-like proteins are not
present in eukaryotes, with the exception of Archaeplastida.
In addition, UhpC-like proteins are glucose-6-P sensors and
do not function in glucose-6-P transport in free-living bacteria
as found in Chlamydiales. This strongly suggests that the
neofunctionalization of a hexose-phosphate transporter from a
hexose-phosphate sensor (UhpC) occurred in an intracellular
bacterium, likely Chlamydiales. Therefore, for both UhpC and
GlgA, the direction of transfer is presumed to be from bacteria

to Archaeplastida. Moreover, an uninterrupted diversity of
cyanobacteria in this tree shows congruence with the 16S
rRNA phylogeny. The node uniting these taxa is >2 billion
years old and predates Archaeplastida diversification and plastid
endosymbiosis. The possible alternative topology of the GlgA
tree inferred by Domman et al. that rejects Chlamydiales as
“donors” of the GlgA gene places the Archaeplastida at the
root of this tree, implying that Archaeplastida diversification
predates that of cyanobacteria, which is by all accounts,
untenable.

In conclusion, in spite of the strong language used by
Domman et al. their results shed no new light on primary plastid
endosymbiosis and in fact do not differ significantly enough
from our (and other) published works to overturn tripartite
hypotheses. Therefore, we stand by the MAT hypothesis and the
idea that intracellular bacteria were essential to mitochondrial
and plastid acquisition (Ball et al., 2016). We will await novel
data from natural Chlamydiales pathogens or the results of
biochemical experiments that will, in our opinion, more likely tilt
the argument in one direction or another.
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