1' frontiers

in Cellular and Infection Microbiology

PERSPECTIVE
published: 22 June 2016
doi: 10.3389/fcimb.2016.00067

OPEN ACCESS

Edited by:

Damien F. Meyer,

Centre de Coopération Internationale
en Recherche Agronomique pour le
Développement (CIRAD), France

Reviewed by:

Jason A. Carlyon,

Virginia Commonwealth University
School of Medicine, USA

Olivier Vallon,

Centre National de la Recherche
Scientifique, France

*Correspondence:
Steven G. Ball
steven.ball@univ-lille1.fr

Received: 15 April 2016
Accepted: 07 June 2016
Published: 22 June 2016

Citation:

Cenci U, Ducatez M, Kadouche D,
Colleoni C and Ball SG (2016) Was
the Chlamydial Adaptative Strategy to
Tryptophan Starvation an Early
Determinant of Plastid
Endosymbiosis?

Front. Cell. Infect. Microbiol. 6:67.
doi: 10.3389/fcimb.2016.00067

CrossMark

Was the Chlamydial Adaptative
Strategy to Tryptophan Starvation an
Early Determinant of Plastid
Endosymbiosis?

Ugo Cenci, Mathieu Ducatez, Derifa Kadouche, Christophe Colleoni and Steven G. Ball *

Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des
Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Chlamydiales were recently proposed to have sheltered the future cyanobacterial
ancestor of plastids in a common inclusion. The intracellular pathogens are thought
to have donated those critical transporters that triggered the efflux of photosynthetic
carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to
have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for
photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons
underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid
endosymbiosis. In particular we show that half of the genes encoding enzymes of
tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration
is an essential cue triggering two alternative modes of replication in Chlamydiales.
In addition, sophisticated tryptophan starvation mechanisms are known to act as
antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their
tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan
by the plastid ancestor. This would have allowed massive expression of the tryptophan
rich chlamydial transporters responsible for symbiosis. It would also have allowed
possible export of this valuable amino-acid in the inclusion of the tryptophan hungry
pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport
this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters
homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to
Archaeplastida thereby considerably strengthening our proposal.

Keywords: plastid, endosymbiosis, tryptophan metabolism, Chlamydiales, Photosynthesis

A GROWING CASE FOR THE DIRECT INVOLVEMENT OF
CHLAMYDIALES IN PLASTID ENDOSYMBIOSIS

The case for a direct involvement of Chlamydiales in plastid endosymbiosis started with
the discovery of an unexpectedly high number of LGTs (Lateral Gene Transfers) uniting
the C. trachomatis genes to plants (Stephens et al., 1998). Yet, no extant plants are known
to be infected by Chlamydiales. Stephens et al. (1998) correctly concluded that these LGTs
were probably very ancient and could be dated back to a time when the protist ancestor
of plants displayed exposed membranes, and therefore were infected by related pathogens.
As the databases increased in size, the initial observations by Stephens et al. (1998) were
strengthened by several independent studies that all pointed to a selective enrichment of
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Archaeplastida in LGTs from Chlamydiales (Brinkman et al,
2002; Huang and Gogarten, 2007; Becker et al., 2008; Moustafa
etal.,, 2008; Collingro et al., 2011; Ball et al., 2013). Archaeplastida
are defined by the three major eukaryotic lineages that diversified
after primary plastid endosymbiosis (Rhodophyceae: red algae;
Chloroplastida: green algae and land-plants and Glaucophyta:
glaucophytes). Because nearly half of the LGTs detected were
shared between several of the three distinct Archaeplastida
lineages, it was concluded that these events could be dated
back to their common ancestors, over a billion years ago, back
to the time of plastid endosymbiosis (Huang and Gogarten,
2007; Becker et al, 2008; Moustafa et al., 2008; Collingro
et al,, 2011; Ball et al,, 2013). Plastid endosymbiosis consists
of a process by which a eukaryote phagotroph internalized
a cyanobacterial ancestor (the cyanobiont) and established a
symbiotic link consisting of photosynthetic carbon export from
the cyanobiont to the host cytosol (McFadden, 2014). Huang and
Gogarten (2007) were the first to propose that this chlamydial
phylogenetic signal could be explained if the pathogens were
persistent and took an active part in the process of metabolic
integration of the evolving organelle. Independently from these
phylogenetic studies, metabolic networks that operated in the
common ancestor of Archaeplastida were reconstructed through
comparison of the accessible red and green algae genome
sequences (Deschamps et al, 2008). The primordial carbon
flux that united the two disconnected host and cyanobacterial
enzyme networks was, from such studies, proposed to consist
of the export of the bacterial specific glycosyl-nucleotide ADP-
Glc (adenosine diphosphate-glucose) and its incorporation into
the host glycogen pools. However, a glycogen synthase utilizing
a substrate absent from eukaryotes was unlikely to have been
encoded by the host prior to endosymbiosis. From the phylogeny
of extant enzymes, it was proposed that this glycogen synthase
was a Chlamydiales effector secreted by the TTS (type three
secretion system) into the host cytosol. This prediction was
verified both by a semi-in vitro system using a heterologous
Shigella flexnerii system and by in vivo immunolocalization
(Ball et al., 2013; Lu et al, 2013). This lead to propose that
three rather than two genomes were united in the coding of
functions involved in symbiosis establishment. The “Ménage-
a-trois” (MAT) hypothesis explained both, the phylogenetic
signal found in Archaeplastida, and the molecular nature of the
carbon flux involved (Ball et al., 2013). In its first version, the
MAT proposed that the cyanobiont escaped from a phagocytic
vacuole to the cytosol of a host that had been infected
previously by a Chlamydiales (Ball et al., 2013). Following the
publication of the first glaucophyte genome description (Price
et al., 2012), Facchinelli et al. (2013a) reported that UhpC, a
chlamydial Glucose-6-P transporter was likely derived from the
true ancestral carbon translocator that exported photosynthetic
carbon from the cyanobiont. To accommodate all results,
Facchinelli et al. (2013b) proposed that the cyanobacterium and
the chlamydial pathogen/symbiont were located in the same
inclusion. Glucose-6-P was suggested to have been exported from
the cyanobiont by UhpC into the inclusion lumen where it drove
glycogen synthesis. Chlamydial-driven glycogen synthesis was
indeed recently shown to occur in the C. trachomatis inclusion

(Gehre et al., 2016). In this case glycogen synthesis was sustained
independently of UhpC and in the absence of cyanobiont by
the influx of carbon from the host cytosol. Furthermore, the
excess carbon available in the inclusion in this version of the
MAT was proposed to have been exported to the cytosol in the
form of ADP-Glc, thanks to the presence of a nucleotide sugar
translocator (NST) on the inclusion membrane. The latter had
been previously suspected to have played a major role in plastid
endosymbiosis (Colleoni et al.,, 2010; reviewed in Ball et al.,
2015). Here again, very recent studies have proven that NSTs do
provide substrate for glycogen synthesis in the inclusion lumen
of Chlamydiaceae (Gehre et al.,, 2016). This modified version
of the MAT displays many advantages by comparison to the
initial proposal. First, it explains through a single co-infection the
simultaneous presence of all partners of the tripartite symbiosis.
Second, and most importantly, it proposes a mechanism by
which the cyanobiont would have been sheltered from the
host antibacterial defense mechanisms, since the inclusion
is tailored to achieve this. Third, because Simkaniaceae and
Parachlamydiaceae are known to contain functional type four
secretion systems (Collingro et al., 2011), the confined inclusion
environment would have facilitated conjugative transfer of
Chlamydiales genes to the cyanobiont. This, in turn, would have
allowed the expression of hydrophobic chlamydial transporters,
which are unlikely to define TTS cargo, on the cyanobiont
inner membrane at the very onset of plastid endosymbiosis.
This early transfer of key chlamydial transporter genes was
indeed required to initiate symbiosis. Among the chlamydial
transporters evidenced on the plastid inner membranes of all
Archaeplastida (green and red algae and glaucophytes) is the
ATP import protein, the hallmark of “energy parasitism” of many
intracellular bacteria and of all Chlamydiales. It is known that free
living mutant cyanobacteria defective for the accumulation of
glycogen stores die in darkness, possibly as a consequence of ATP
starvation (Griindel et al.,, 2012; Xu et al,, 2013). Cyanobacteria
exporting their photosynthetic carbon are expected to mimic
such glycogen defective mutants. Simultaneous transfer of both
the UhpC protein and the ATP carrier would have made carbon
efflux possible and viable. This would have been greatly facilitated
through such conjugative transfers. Weak evidence supporting
such transfers has indeed been previously produced by Everett
et al. (1999). Despite its appeal the phylogenetic foundations of
the MAT have been recently questioned because of uncertainties
evidenced in some of the single gene phylogenies sustaining
it (Domman et al., 2015). However, these uncertainties can be
confidently resolved by the use of straightforward biochemical
reasoning (Ball et al., 2016), thereby confirming the suspected
role of Chlamydiales in plastid endosymbiosis.

DO LATERAL GENE TRANSFERS FROM
CHLAMYDIALES TO ARCHAEPLASTIDA
BEAR FUNCTIONAL RELEVANCE?

The transfer of key chlamydial transporter genes such as UhpC
responsible for initiating carbon efflux from the cyanobiont
and the ATP carrier which obviates the ensuing negative
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consequences on cyanobacterial physiology, bear very clear and
strong functional relevance (Ball et al., 2015). Equally crucial was
the presence of the glycogen metabolism TTS effectors (GIgA
and GlgX) responsible for connecting supply and demand of
photosynthetic carbon in the host cytosol (Ball et al., 2013).
In both cases, Chlamydiales provided key proteins previously
absent respectively from the cyanobiont inner membrane or from
the host cytosol. However, all chlamydial LGTs evidenced in
Archaeplastida do not encode critical proteins suspected to have
been previously absent from the cyanobiont. In fact, a majority of
the ~50 chlamydial LGTs found in Archaeplastida have replaced
the corresponding cyanobacterial genes (Ball et al., 2013). At
first glance, this could bear weak or no functional relevance. The
chlamydial gene may, indeed, have been transferred by chance
faster than the native cyanobacterial gene.

By contrast to these chance replacements, it is also possible
that chlamydial versions may have been favored because of strong
functional selection. In this respect, thinking about biotic host-
pathogen interactions may lead to additional insights to our
understanding of chlamydial LGTs in specific pathways. From
considerations developed previously, the reasons underlying
the selection of the glycogen metabolism effectors are obvious.
We will address here the possible reasons underlying the
selection of chlamydia LGTs affecting tryptophan metabolism.
Tryptophan synthesis is, by far, the most energy consuming of
all amino-acid synthesis pathways (Akashi and Gojobori, 2002).
Tryptophan availability, as a consequence, constitutes the most
important environmental cue triggering the switch between the
virulent and persistent mode of pathogen replication (reviewed
by Abdelrahman and Belland, 2005; Bonner et al., 2014). In
mammalian cells, both host and pathogens have respectively
evolved a number of biotic interactions based on tryptophan
starvation and starvation evasion respectively (Wood et al., 2004;
Ouellette et al., 2006; reviewed by Bonner et al., 2014). Proteins
involved in each of these two distinct modes of chlamydia
replication are clearly under Trp content enrichment (Trp-up)
selection or on the contrary under Trp-down selection in all
Chlamydiales proteomes (Lo et al.,, 2012; Bonner et al., 2014).
In particular, transporters such as the aforementioned ATP
carrier, the UhpC and the TyrP/Mre (tryptophan and tyrosine)
transporters are notably enriched in tryptophan residues, and
are considered as paradigm genes involved in the virulent
mode of chlamydial replication. Tryptophan is synthesized from
chorismic acid by five distinct enzymatic steps involving seven
enzymes subunits. Among all Chlamydiales, Simkania negevensis
is the only organism that contains the full suite of aromatic
amino acid metabolism genes including tryptophan synthesis
from chorismic acid (Collingro et al., 2011; Bonner et al., 2014).
The seven Trp genes are organized in an operon that in addition
contains the TrpR repressor gene together with an attenuator
sequence and the AroA locus that encodes the enzyme catalyzing
the first committed step of the shikimate pathway that leads to
chorismate. This operon has been recently transferred, probably
by conjugation, to Coxiella burnetii, another intracellular
bacterium, where it was inactivated by mutation leading to
the presence of pseudogenes (Xie et al., 2003; Bonner et al.,
2014). Chlamydiaceae, on the other hand, are either lacking

anthranilate synthase only, or a number of additional enzymes
of the pathway (Collingro et al., 2011; Bonner et al.,, 2014;
Subtil et al., 2014). Unlike Simkaniaceae, the Chlamydiaceae have
indeed resorted to bypass the classical pathway by synthesizing
anthranilate from other sources than chorismate, such as the host
metabolite kynurenine, or the indole produced by other bacteria,
thereby illustrating one of the many adaptative responses of these
pathogens to the diverse host-induced tryptophan starvation
defense mechanisms (Bonner et al., 2014). Other Chlamydiales,
with the exception of Simkaniaceae, have lost the ability to
synthesize aromatic amino-acid and therefore rely entirely on
their hosts for tryptophan supply (Collingro et al., 2011; Subtil
etal., 2014).

FOUR OUT OF EIGHT TRP SYNTHESIS
AND EXPORT GENES ARE OF
CHLAMYDIAL ORIGIN IN
ARCHAEPLASTIDA

One previous study has documented the phylogeny of the Trp
synthesis genes of Archaeplastida (Reyes-Prieto and Moustafa,
2012). This study showed that the anthranilate synthase alpha
subunit (TrpE), the anthranilate phosphoribosyltransferase
(TrpD) and phosphoribosylanthranilate isomerase (TrpF)
defining the first, second and third biosynthetic steps were
all of non-cyanobacterial origin. Three previous studies had
documented either TrpD or TrpF or both as LGTs from
Chlamydiales (Huang and Gogarten, 2007; Moustafa et al.,
2008; Ball et al., 2013). Because all previous studies did not
lead to identical conclusions, we readdressed the phylogenies
of these enzymes with more extensive databases. We confirm
(Supplementary Figure 1) the results published by Reyes-Prieto
and Moustafa (2012) concerning TrpE and also conclude that
this gene experienced a clear LGT from Planctomycetes to
Archaeplastida. On the other hand, we present in Figures 1A,B
the phylogenetic trees corresponding to TrpE and TrpF
respectively. Both of these are here confirmed as chlamydial
LGTs. We have reproduced the phylogenies of TrpA, TrpB, and
TrpG coding, respectively, the two tryptophan synthase o and
subunits and the anthranilate synthase § subunit and conclude
that they all display very clear-cut cyanobacterial ancestry, as
previously demonstrated (Reyes-Prieto and Moustafa, 2012).
However, we now present the phylogeny of TrpC which, possibly
because of its complex pattern, was not previously reported.
TrpC encodes indole-3-glycerol phosphate synthase the fourth
and penultimate step of tryptophan biosynthesis. While
complex, this phylogeny shows that the Archaeplastida are here
distinctively polyphyletic (Figure 2A). Green alga, glaucophyte,
and plant sequences cluster clearly with cyanobacteria while,
as shown in Figure 2A, red algae have experienced yet another
previously undetected but well supported chlamydial LGT.
Hence on a total of seven protein subunits, three are entirely
cyanobacterial in all Archaeplastida, two are entirely chlamydial,
one is entirely planctomycetal, and one is partly chlamydial
(red algae) and partly cyanobacterial (glaucophytes and green
algae). The Planctomycete LGT of TrpE bears strong functional
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FIGURE 1 | Consensus tree obtained with Phylobayes 4.1 with Bayesian posterior probabilities mapped onto the nodes of (A)
phosphoribosylanthranilate isomerase (TrpF) and (B) anthranilate phosphoribosyltransferase (TrpD). Groups of interest are highlighted in purple
(Chlamydiales), green (green algae and plants), red (red algae), cyan (Glaucophyta), and blue (Cyanobacteria). Lineages putatively derived from secondary
endosymbiosis of Archaeplastida are displayed in brown. Bayesian posterior probabilities values (PP) higher than 0.7 are indicated onto the branches. The scale bars
indicate the inferred number of amino acid substitutions per site. The trees were manually rooted for convenience of display. The nodes uniting Archaeplastida and
their derived lineages to Chlamydiales by LGT are highlighted in bold. The Phosphoribosylanthranilate isomerase tree (A) shows a group with robust support (PP =
0.99) composed of Chlamydiales, all Archaeplastida, Alveolata, and the two intracellular y-proteobacteria pathogens Coxiella and Piscirickettsia. Bonner et al. (2014)
have proposed that Coxiella received its Tryptophan operon through LGT from Simkaniaceae (Chlamydiales) in a common intracellular environment (see text). (B)
shows that the three Archaeplastida lineages are united through LGT together with a complex pattern of secondary endosymbiosis lineages (PP = 0.98). Here again
intracellular y-proteobacteria are recovered for the same reasons. Sequences used in the trees were retrieved by homology searches with BLAST against sequences
2014), and genomes of interest. Sequences with an E < 1e-10 were selected and aligned using
MAFFT (Katoh and Standley, 2013). We used BMGE (Criscuolo and Gribaldo, 2010) with a block size of four and the BLOSUMS3O0 similarity matrix for block selection.
2010). “Dereplication,” using TreeTrimmer (Maruyama et al., 2013), was applied to supported monophyletic
clades in order to reduce sequence redundancy. The final set of sequences were selected manually. Finally, the sequences were re-aligned with MUSCLE (Edgar,
2004), block selection was carried out using BMGE with the same setting, and trees were generated using Phylobayes 4.1 (Lartillot et al., 2009) under the CAT+GTR
model (Lartillot and Philippe, 2004). The two chains were stopped when convergence was reached (maxdiff < 0.1) after at least 300 cycles and a burn-in different for
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significance since the alpha subunit of anthranilate synthase
exerts, by far, the strongest and most significant control on the
flux to tryptophan. It is quite striking that all cyanobacteria
in the TrpE phylogeny (Reyes-Prieto and Moustafa, 2012; and
our results) behave as an uninterrupted large monophyletic
group displaying congruence with 16S rRNA phylogeny. This
proves that unlike other genes of the Trp operon, this particular
cyanobacterial sequence has never been exchanged with other
bacteria possibly because of the high selection on its finely tuned
regulation. Hence a planctomycete LGT to cyanobacteria prior to
endosymbiosis is unlikely to explain the presence of this sequence
in Archaeplastida metabolism. We cannot distinguish however
a planctomycete LGT that selectively happened upon transfer
of the coding capacity to the nucleus from an LGT that took
place on the evolving plastid DNA. In this respect it is worth
stressing that Planctomycetes Verrumicrobia and Chlamydiales

are members of the same so-called PVC supergroup. Because
we only have one Chlamydiales (Simkania negevensis) sequence
encoding a catalytic anthranilate synthase subunit, it is possible
that what translates as a planctomycetal LGT today might turn
out to be of chlamydial origin upon further exploration of the
extant Chlamydiales diversity. On the other hand, a bona fide
planctomycete gene could very well have replaced a plastidial
gene of a different phylogenetic origin. In any case, the presence
of this foreign gene testifies that the tight cyanobacterial control
of the metabolic flux to tryptophan has been lost very early on
after plastid endosymbiosis.

We believe that the high proportion of chlamydial
LGTs to tryptophan metabolism in Archaeplastida is not
coincidental. What would be the purpose for Chlamydiales
to manipulate cyanobacterial tryptophan metabolism? We
surmise that Chlamydiales deregulated and increased the flux
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2015).

of cyanobacterial tryptophan synthesis at a very early stage of
plastid endosymbiosis, for two non-mutually exclusive reasons.
The first would be to supply more tryptophan for the synthesis of
the Trp-rich UhpC and ATP import proteins. This explanation
depends on the amount of transporter protein required to
trigger symbiosis. Nevertheless, extant plastidial carbohydrate
transporters are among the most abundant proteins on the
plastid’s inner membrane (Joyard et al., 1982). The second
reason would be to provide an ample supply of the previously
scarce and very highly treasured tryptophan for the chlamydial

partner of the “Ménage a trois.” The overflow of tryptophan in
the inclusion could also be further exported to the cytosol, for
the hosts benefits. Export of tryptophan from the cyanobiont
to the inclusion requires a transporter, which is apparently not
encoded by single-cell cyanobacteria (Zhao et al., 1994; this
work). The phylogeny presented in Figure 2B demonstrates that
the TyrP/Mtr E. coli transporters (Sarsero et al., 1991) known to
import respectively tyrosine and tryptophan in Chlamydiaceae
(Bonner et al., 2014) probably defines yet an unexpected
additional LGT from Chlamydiales to Archaeplastida. This LGT
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possibly escaped previous detection because of the proximity
of a subset of candidate donor cyanobacterial sequences
(Figure 2B). Indeed, only one previous report (Becker et al,
2008) considers this gene as a candidate LGT. While the very
few deltaproteobacteria found within the Archaeplastida do
not qualify as candidate donors, the cyanobacteria concerned
consist almost exclusively of Nostocales. Only two Chroococcales
sequences were detected, the most basal being Acaryochloris
which diversified after plastid endosymbiosis (Shih et al., 2013).
This clade distribution is consistent with an LGT from an
Archaeplastida ancestor to an Acaryochloris-like clade. The
phylogeny does not discriminate between two alternatives. On
the one hand, the gene might have originated in Nostocales, then
was transferred to Archaeplastida, Chlamydiales and finally the
full suite of y-proteobacteria. On the other hand, the latter might
have been of ancient proteobacterial origin with a transfer to
Archaeplastida through Chlamydiales and the final capture of
the gene by Nostocales. We favor a non-cyanobacterial origin
for TyrP among the deeply rooted y-proteobacteria as the latter
predate by far Nostocales diversification (Battistuzzi et al., 2004).

CONCLUSIONS AND FUTURE
DIRECTIONS

In this perspective, we propose that a Trp operon from a
Chlamydiales was donated to the cyanobacterial ancestor of
plastids through conjugation within a common chlamydial
inclusion. Conjugation and direct transfer of genes in the
cyanobiont genome would have offered a unique opportunity for
immediate expression of chlamydial proteins at the earliest stages
of symbiosis when protein translocation to the evolving plastid
was not yet established.

Increasing the flux to tryptophan after transfer of the
chlamydial operon was mostly beneficial to both the pathogen
and its host in face of restricted tryptophan supply. In addition,
the synthesis of large amounts of high Trp containing carbon
transporters responsible for the onset of plastid endosymbiosis
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