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LeuO is a conserved and pleiotropic transcription regulator, antagonist of the

nucleoid-associated silencer protein H-NS, and important for pathogenicity and

multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is

complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition,

in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription

regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits

activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is

likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive

feedback network, which theoretically can result in bi-stability and heterogeneity, or be

maintained in a stable OFF or ON states by an additional signal. Here we performed

quantitative and single-cell expression analyses to address the antagonistic regulation

and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO

promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids.

The data revealed uniform regulation of leuO expression in the population that correlates

with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a

straightforwardmodel of antagonistic regulation of leuO expression by the two regulators,

LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at

standard laboratory growth conditions feedback regulation of leuO is of minor relevance

and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state.

Keywords: transcription regulator, nucleoid-associated protein, H-NS, H-NS antagonist, feedback regulation

INTRODUCTION

LeuO is a conserved and pleiotropic LysR-type transcription factor that has been best characterized
in Escherichia coli and Salmonella enterica. LeuO functions both as activator and as repressor,
and is presumably a tetramer, similar to other LysR-type regulators (Maddocks and Oyston, 2008;
Guadarrama et al., 2014). LeuO is a master regulator withmore than 100 target loci, and supposedly
an important H-NS antagonist, since many LeuO-activated loci are H-NS repressed (Ueguchi et al.,
1998; Chen et al., 2003; Chen and Wu, 2005; De la Cruz et al., 2007; Stoebel et al., 2008; Stratmann
et al., 2008, 2012; Shimada et al., 2011; Dillon et al., 2012; Ishihama et al., 2016). In addition,
genomics data revealed a significant overlap of co-regulation by LeuO and H-NS both in E. coli
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and in S. enterica, where 78 and 40%, respectively, of the LeuO
targets are H-NS bound (Shimada et al., 2011; Dillon et al.,
2012; Ishihama et al., 2016). H-NS represses transcription by
formation of extended complexes on the DNA (Dillon and
Dorman, 2010; Landick et al., 2015; Winardhi et al., 2015). For
activation of H-NS repressed loci by LeuO several mechanisms
have been proposed including alteration of the repressing H-NS
nucleoprotein-complex, the prevention of spreading of the H-
NS complex, and competition with H-NS for DNA binding
(Chen and Wu, 2005; Shimada et al., 2011; Dillon et al.,
2012). The biological role of LeuO is pleiotropic. LeuO is
relevant for pathogenicity in S. enterica, for biofilm formation
in Vibrio cholerae and E. coli, as well as the acid stress
response and multidrug efflux in E. coli (Stoebel et al., 2008;
Shimada et al., 2009, 2011; Dillon et al., 2012). Further, LeuO
activates expression of the H-NS repressed genes coding for the
CRISPR/Cas immunity system in E. coli and S. enterica (Pul et al.,
2010; Westra et al., 2010; Medina-Aparicio et al., 2011).

In accordance with the pleiotropic role of LeuO, transcription
of leuO is tightly controlled. Under laboratory conditions the
leuO gene is repressed by H-NS and by the H-NS paralog
StpA, and thus the leuO gene is silent in E. coli and S. enterica
(Klauck et al., 1997; Chen et al., 2001). Moderate upregulation
of leuO expression was observed in stationary phase and under
amino acid starvation (Fang and Wu, 1998; Fang et al., 2000;
Majumder et al., 2001; Shimada et al., 2011; Dillon et al., 2012).
In addition, positive autoregulation by LeuO and transcriptional
coupling of leuO expression to expression of neighboring genes
by DNA supercoiling has been reported (Fang and Wu, 1998;
Chen et al., 2003). Furthermore, in E. coli leuO is activated by
the heterodimeric transcription regulator BglJ-RcsB (Stratmann
et al., 2012). Activation of leuO by BglJ-RcsB is inhibited by
LeuO, and LeuO represses leuO transcription in hns and in
hns stpA mutants (Figure 1A). Thus, LeuO is also a negative
autoregulator (Stratmann et al., 2012). The leuO gene is preceded
by at least two promoters (P1 and P2) which are repressed
by H-NS and StpA and negatively autoregulated by LeuO
in hns stpA mutants; the P2 promoter is activated by BglJ-
RcsB (Stratmann et al., 2012). BglJ-RcsB is a heterodimer that
activates transcription of various loci in E. coli (Venkatesh et al.,
2010; Stratmann et al., 2012; Salscheider et al., 2014). BglJ-
RcsB consists of RcsB, the response regulator of the Rcs two-
component phosphorelay system (Majdalani and Gottesman,
2005), and BglJ, which has initially been found as an activator
of the bgl operon (Giel et al., 1996). Further, BglJ-RcsB is active
independent of phosphorylation of RcsB by the Rcs phosphorelay
(Venkatesh et al., 2010; Stratmann et al., 2012; Pannen et al.,
2016).

Intriguingly, activation of leuO by BglJ-RcsB is one element
of a presumptive double-positive feedback loop, since LeuO in
turn activates expression of the yjjQ-bglJ operon that is likewise
H-NS repressed (Stratmann et al., 2008). This double-positive
feedback loop is interlocked with a negative feedback loop which
is based on negative autoregulation by LeuO (Figure 1). Such a
network motif can function like a switch that is stable both in the
OFF as well as in the ON state. Often an external signal locks
such feedback loops in one state. Further, bi-stability resulting

FIGURE 1 | (A) Regulation of leuO by interlocked double-positive and

negative feedback loops. Transcription of leuO is repressed by H-NS and

StpA, and is activated by the BglJ-RcsB heterodimer. LeuO activates

transcription of the yjjQ-bglJ operon that is also repressed by H-NS. Mutual

positive regulation represents a double-positive feedback loop. In addition,

LeuO inhibits activation of the leuO promoter P2 by BglJ-RcsB resembling a

negative feedback. (B) Experimental system for analyzing regulation of leuO

transcription by BglJ-RcsB and LeuO. To monitor leuO transcription a PleuO

mVenus fusion was constructed by replacement of the native leuO gene with

mVenus. The chromosomal copy of bglJ was deleted (allele 1[yjjP-yjjQ-bglJ])

to avoid feedback regulation via LeuO. BglJ and LeuO were provided by two

sets of compatible plasmids that are pKES303 (PBAD leuO, p15A-ori) and

pKETS26 (PUV5 bglJ, pSC-ori) or plasmid pKES302 (PBAD bglJ) and

pKETS25 (PUV5 leuO). Expression of bglJ and leuO, respectively, was induced

with gradually increasing concentrations of the inducers arabinose and IPTG,

respectively. To avoid feedback regulation by arabinose the strain background

is 1(araC araBAD) 1araH-F, Pcp8 araE resulting in constitutive expression of

the arabinose transporter AraE. In addition, the lac genes were deleted, allele

1(lacI-lacZYA), for enabling gradual induction by IPTG.

in population heterogeneity and oscillation can be based on
interlocked positive and negative feedback loops (Angeli et al.,
2004; Alon, 2007; Shoval and Alon, 2010).

In this study we addressed the antagonistic regulation
of leuO transcription by BglJ-RcsB and LeuO, which is
presumably a crucial element in the complex control of leuO
expression. For quantitative and single-cell expression analysis,
we established a reporter fusion of the leuO promoter region
(PleuO) to mVenus and expressed bglJ and leuO in trans
using tightly controlled and gradually inducible plasmidic
expression systems. Expression analyses of the PleuO mVenus
reporter at steady state growth conditions revealed uniform
expression. The level of leuO expression correlates with the
relative cellular concentration of BglJ and LeuO. The data
are in agreement with a straightforward model of antagonistic
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regulation by the two regulators that act independently of each
other.

RESULTS

Experimental System for Analyzing
Regulation of leuo Expression by BglJ and
LeuO
The regulation of leuO transcription by BglJ-RcsB and LeuO
is an important element in the control of the LeuO master
regulator. To address regulation of leuO transcription that is
directed by at least two promoters (PleuO) in dependence of the
concentrations of BglJ and LeuO, a suitable experimental system
was established. First, the mVenus reporter gene (coding for
the yellow fluorescent proteinmVenus) was fused to the leuO
promoter-regulatory region by replacement of the leuO gene
resulting in allele PleuO mVenus, 1leuO (Figure 1B). Second,
BglJ and LeuO were ectopically expressed from two different
sets of plasmids. In one plasmid set, bglJ was expressed under
control of the IPTG-inducible lacUV5 promoter (PUV5) using
low-copy plasmid pKETS26 (pSC origin of replication), and
leuO was expressed under control of the arabinose-inducible
PBAD promoter using the low to medium copy plasmid pKES303
(pBAD30-derived, p15A origin of replication). In the other
plasmid set, bglJ was expressed under control of the PBAD
promoter (pKES302, p15A-ori) and leuO under control of
IPTG-inducible Ptac promoter (pKEHB27, pSC-ori). The genes
encoding the AraC and the LacI regulators, respectively, are also
carried on these plasmids. Additionally, the yjjQ-bglJ operon
was deleted resulting in allele 1(yjjP-yjjQ-bglJ) to ensure that
only plasmid-encoded BglJ is present in the cell. Note that
RcsB is not limiting for activation of leuO and other loci by
BglJ-RcsB (Salscheider et al., 2014; Pannen et al., 2016). Third,
to allow controlled and finely tunable expression of bglJ and
leuO directed by the arabinose-inducible PBAD promoter and the
IPTG-inducible PUV5 and Ptac promoters, respectively, additional
mutations and modifications were introduced into the reporter
strain (Figure 1B). The PUV5 promoter is gradually induced
over a range of inducer concentrations (IPTG) when the lactose
permease gene lacY is deleted (Jensen et al., 1993). Therefore, the
lacZYA operon and the lacI gene were deleted in the reporter
strain resulting in allele 1(lacI-lacZYA) (Table 1). Likewise, the
arabinose regulon was modified to ensure a gradual induction
of the PBAD promoter with arabinose, as described before
(Khlebnikov et al., 2001; Kogenaru and Tans, 2014). Briefly, the
PBAD promoter is known to have a stochastic behavior when
induced with arabinose. This stochastic behavior is caused by
the araE and araFGH genes encoding the arabinose transporters,
because induction of the transporter genes by arabinose leads to
a higher arabinose uptake and thus positive feedback (Siegele
and Hu, 1997; Megerle et al., 2008). In addition, a negative
feedback caused by fermentation of intracellular arabinose
through the AraBAD enzymes leads to a non-gradual induction
(Siegele and Hu, 1997). To avoid the negative and positive
feedback, the araC gene and the araBAD and araFGH operons
were deleted. Further, the low affinity arabinose transporter

araE was put under the control of constitutive promoter Pcp8,
as described (Khlebnikov et al., 2001; Kogenaru and Tans,
2014). The genotype of the resulting reporter strain U69 is
PleuO mVenus 1leuO 1(yjjP-yjjQ-bglJ) ϕ(1araEp Pcp8 araE)
1(araH-F) 1(araC-araBAD) 1(lacI-lacZYA) (Table 1). Using
this strain the expression level of PleuO mVenus was measured
by flow-cytometry to quantify the cellular fluorescence in the
population. Further, to ensure steady state conditions, cultures
were grown in nutrient-poor tryptone medium. In this medium
cultures that were inoculated from fresh overnight cultures to
OD600 of 0.05 reached an OD600 of about 0.7–1 after 5 h of
growth.

Regulation of leuO Promoter by BglJ–RcsB
and by LeuO
First, activation of the PleuO mVenus fusion by BglJ-RcsB was
tested. To this end, the reporter strain U69 was transformed with
low-copy plasmid pKETS26 carrying bglJ under control of the
IPTG-inducible PUV5 promoter (PUV5 bglJ, pSC-ori), and with
plasmid pKES302 carrying bglJ under control of the arabinose-
inducible PBAD promoter (PBAD bglJ, p15A-ori), respectively
(Figure 2). Expression of bglJ was either not induced or induced
by gradually increasing inducer concentrations. The analysis
of PleuO mVenus expression by flow-cytometry revealed that
gradual induction of PBAD bglJ expression (plasmid pKES302)
with 2µM–50µM arabinose resulted in full activation of PleuO
mVenus even at the very low arabinose concentration of 2µM
(Figures 2B,C). Induction of PBAD bglJ with 100µM arabinose
or higher concentrations caused growth defects. However,
induction of PUV5 bglJ with IPTG concentration ranging from
10µM to 100µM led to a gradual increase in expression of
PleuO mVenus and this increase was uniform in the population
(Figures 2B,D). The presence of the PUV5 bglJ or the PBAD bglJ
plasmids per se did not cause a significant increase in expression
of PleuO mVenus (Figures 2B–D). Likewise, IPTG or arabinose
induction of transformants of the empty vectors pBAD30 and
pKETS24, respectively, had no effect (Figure 2B). Taken together
these data confirm activation of leuO transcription by BglJ-RcsB,
they suggest that low cellular levels of BglJ are sufficient for
activation, and that the PUV5 bglJ plasmid is suitable for gradual
induction of bglJ, while the PBAD bglJ plasmid is not suitable.

Second, autoregulation of PleuO mVenus by LeuO was
analyzed using the leuO providing plasmids PUV5 leuO
(pKETS25, pSC-ori) and Ptac leuO (pKEHB27, pSC-ori) which
carry leuO under control of the IPTG-inducible PUV5 and
Ptac promoters, respectively. In addition, a PBAD leuO plasmid
(pKES303, p15A-ori) was used. The promoter PUV5 (carrying the
UV5mutation in the—10 box and the lacL8mutation in the CRP-
binding site) is∼10 times weaker than the Ptac promoter (Lanzer
and Bujard, 1988), while the tightly regulated PBAD leuO plasmid
presumably directs similar levels of LeuO as the Ptac leuO plasmid
considering that the PBAD promoter is approximately 3 fold
weaker than Ptac and that the copy number of the PBAD plasmid
(pKES303, p15A-ori) is ∼3-fold higher than the copy number
of the pSC-derived Ptac plasmid (Guzman et al., 1995). Flow
cytometry revealed a slight increase in PleuO mVenus expression
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TABLE 1 | E. coli K12 strains.

Strain Genotype Reference/Construction

BW27269 BW25113 1(araH-araF)572kan = CGSC strain #7877 (laboratory storage number

T1857)

Khlebnikov et al., 2001

BW27270 BW25113 1araEp-531kan ϕPcp8araE535 (= kanPcp8araE) = CGSC strain #12117

(laboratory storage number T1858)

Khlebnikov et al., 2001

S3974 BW30270 ilvG+ [=MG1655 rph+ ilvG+] (non-motile) Venkatesh et al., 2010

S4197 BW30270 ilvG+ 1lacZ [=MG1655 rph+ ilvG+ 1lacZ] (non-motile) Venkatesh et al., 2010

T17 S4197 1(yjjP-yjjQ-bglJ)cm parent of strain T23 in (Stratmann et al., 2012)

T1024 S3974 1(lacI-lacZYA)FRT S3974 × PCR S911/S937 (pKD3); × pCP20

T1037 T1024 PleuO− leuO::mVenuscm T1024 × PCR T547/T548 (pKES292)

T1094 S3974 PleuOmVenuscm, 1leuO S3974 × PCR T585/T548 (pKES292)

T1095 S3974 PleuOmVenuskan, 1leuO S3974 × PCR T585/T548 (pKES293)

T1241 BW30270 ilvG+ (motile) Pannen et al., 2016

T1902 T1241 PmolRmVenuscm T1241 × PCR T946/T947 (pKES292)

U1 T1241 1(araC-araBAD) T1241 × pKETS27

U3 T1241 1(araC-araBAD) 1(lacI-lacZYA) U1 × pKETS28

U9 U3 PleuOmVenuskan, 1leuO U3 × T4GT7 (T1095)

U11 U3 1(yjjP-yjjQ-bglJ)cm U3 × T4GT7 (T17)

U15 U3 1(yjjP-yjjQ-bglJ)FRT U11 × pCP20

U16 U3 PleuOmVenuskan, 1leuO 1(yjjP-yjjQ-bglJ)cm U9 × T4GT7 (T17)

U20 U3 PleuOmVenusFRT, 1leuO 1(yjjP-yjjQ-bglJ)FRT U16 × pCP20

U47 U3 kanPcp8-araE U3 × T4GT7 (BW27270)

U49 U3 1(yjjP-yjjQ-bglJ)FRT kanPcp8araE U15 × T4GT7 (BW27270)

U51 U3 PleuOmVenusFRT, 1leuO 1(yjjP-yjjQ-bglJ)FRT kanPcp8araE U20 × T4GT7 (BW27270)

U53 U3 Pcp8araE U47 × pCP20

U55 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE U49 × pCP20

U57 U3 PleuOmVenusFRT, 1leuO 1(yjjP-yjjQ-bglJ)FRT Pcp8araE U51 × pCP20

U59 U3 Pcp8araE 1(araH-araF)kan U53 × T4GT7 (BW27269)

U61 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)kan U55 × T4GT7 (BW27269)

U62 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)kan U56 × T4GT7 (BW27269)

U63 U3 PleuOmVenusFRT, 1leuO 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)kan U57 × T4GT7 (BW27269)

U65 U3 Pcp8araE 1(araH-araF)FRT U59 × pCP20

U67 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)FRT U61 × pCP20

U69 U3 PleuOmVenusFRT, 1leuO 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)FRT U63 × pCP20

U76 U65 PmolRmVenusFRT U65 × T4GT7 (T1092); x pCP20

U92 U3 Pcp8araE 1(araH-araF)FRT PleuO leuO::mVenuscm U65 ×T4GT7 (T1037)

U93 U3 Pcp8araE 1(araH-araF)FRT PleuOmVenuscm, 1leuO U65 × T4GT7 (T1094)

U94 U3 Pcp8araE 1(araH-araF)FRT PleuO leuO::mVenusFRT U92 × pCP20

U95 U3 Pcp8araE 1(araH-araF)FRT PleuOmVenusFRT, 1leuO U93 × pCP20

U96 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)FRT PleuO leuO::mVenuscm U67 × T4GT7 (T1037)

U97 U3 1(yjjP-yjjQ-bglJ)FRT Pcp8araE 1(araH-araF)FRT PleuO leuO::mVenusFRT U96 × pCP20

Alleles 1(araC-araBAD) and 1(lacI-lacZYA) were constructed by homologous recombination, as described (Hamilton et al., 1989), using repts plasmids pKETS27 and pKETS28,

respectively. Transcriptional fusions ofmVenus to the leuO promoter (PleuO-mVenus) and downstream of the leuO gene (PleuO-leuO::mVenus) were constructed by Red-Gam mediated

recombination, as described (Datsenko andWanner, 2000). Red-Gam expression carried on plasmid pKD46 was induced with 10mM arabinose. Plasmids pKES292 and pKES293 were

used as templates for amplification ofmVenus-FRT-kan/cm-FRT fragments. The oligonucleotides used for generating the PCR fragments are indicated by “PCR T547/T548.” Deletion

of the lac genes in strain T1024 was constructed as described (Datsenko and Wanner, 2000) using oligonucleotides S911/S937 for generating the PCR fragment of pKD3 as template.

Resistance cassettes flanked by FRT (Flp-recombinase target) sites were deleted using temperature sensitive plasmid pCP20, as described (Datsenko and Wanner, 2000). The transfer

of alleles by transduction using phage T4GT7 is indicated by “x T4GT7 (donor strain).” All alleles were confirmed by PCR. Alleles PleuO-leuO::mVenuscm in strain T1037, PleuOmVenuscm

in strain T1094 and PleuOmVenuskan in strain T1095 were confirmed by sequencing. Further designations are cm = chloramphenicol resistance, kan = kanamycin resistance, FRT =

Flp recombinase target site, repts = temperature sensitive replication.

at low levels of induction of plasmidic leuO (Figure 3).The data
seem in agreement with weak positive autoregulation that was
reported previously (Fang and Wu, 1998; Chen et al., 2003), but
are statistically not significant (student’s t-test, P-value > 0.05).

Antagonistic Regulation of the leuO

Promoter by BglJ–RcsB and by LeuO
Next we addressed antagonistic regulation of PleuO mVenus
by BglJ-RcsB and by LeuO. To this end, the PleuO mVenus
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FIGURE 2 | Activation of leuO transcription by BglJ. Expression of PleuO
mVenus (in strain U69) and PleuO leuO::mVenus (strain U97) transcriptional

fusions was determined by flow cytometry in absence and presence of the

transcriptional activator BglJ, which was provided by plasmids. Expression

was analyzed after 5 h of growth in tryptone medium without and with

indicated inducer concentrations at an optical density OD600 of approximately

0.7–1. (A) Fluorescence intensity directed by PleuO mVenus in individual cells

of transformants of strain U69 with the empty vectors pKETS24 (PUV5 in

pSC-ori) and pBAD30 (PBAD in p15A-ori). Yellow fluorescence (X-axis) is given

in arbitrary units and the Y-axis gives the number of cells that were counted.

The median of the fluorescence intensity is given in the upper right corner of

the graph. (B) Plot of the median fluorescence values that are shown in (C)

(solid line with filled dots) and (D) (solid line with filled squares PleuO mVenus

and dashed line with open squares PleuO leuO::mVenus). In addition, median

fluorescence values of transformants of vector controls are shown (pKETS24,

PUV5 as dotted line and filled squares, and pBAD30, PBAD dotted line with

gray dots). (C) Fluorescence intensity of transformants of strain U69 with

plasmids pKES302 (PBAD bglJ in p15A-ori) and pKETS24 (PUV5 in pSC-ori).

The arabinose concentration used for induction of bglJ expression is given

underneath the panels. (D) Fluorescence intensity of transformants of strain

U69 (PleuO mVenus) with plasmids pKETS26 (PUV5 bglJ in pSC-ori) and

pBAD30 (PBAD in p15A-ori), as well as of strain U97 (PleuO leuO::mVenus).

The IPTG concentration used for induction of bglJ expression is given

underneath the panels. Shown are representative data.

reporter strain U69 was transformed with the two sets of leuO
and bglJ expressing plasmids. First we analyzed antagonistic
regulation of leuO transcription using the plasmid set, in which
bglJ is expressed under control of the PBAD promoter (PBAD
bglJ, pKES302) and leuO is expressed under control of the Ptac
promoter (Ptac leuO, pKEHB27). Induction of bglJ expression
with 2µM–50µM arabinose caused full activation of PleuO
mVenus (Figure 4), irrespective of the arabinose concentration,

FIGURE 3 | Autoregulation of leuO transcription. Fluorescence

expression levels directed by the PleuO mVenus fusion were determined by

flow cytometry. The PleuO mVenus reporter strains U69 carrying a deletion of

bglJ (1yjjP-yjjQ-bglJ) and its isogenic wild-type bglJ+ derivative U95 were

transformed with plasmids pKETS25 (pSC-ori) that carries leuO under control

of PUV5, pKEHB27 (p15A-ori) that carries leuO under control of Ptac, and

pKES303 (p15A-ori) that carries leuO under control of PBAD. The fluorescence

median is plotted against the inducer concentration. Expression was analyzed

by flow cytometry after 5 h of growth in trypton medium, IPTG, and arabinose

were added at the indicated concentrations. Statistical analysis suggests that

the difference in the expression level is not significant (P > 0.05).

as shown above (Figure 2). Simultaneous induction of leuO by
IPTG strongly reduced BglJ-RcsB-mediated activation of PleuO
mVenus, but even full induction of plasmidic leuO expression
with 200µM IPTG did not completely abrogate BglJ-RcsB-
mediated activation (Figure 4). These results indicate that the
level of BglJ provided by the PBAD bglJ plasmid is above
a threshold up to which LeuO can fully inhibit BglJ-RcsB
activation. Since the PBAD bglJ plasmid does not allow gradual
activation, this plasmid set does not seem suitable for gradual
induction of both regulators.

Second, we analyzed antagonistic regulation of PleuO mVenus
using the reverse set of plasmids that includes PUV5 bglJ
(pKETS26) and PBAD leuO (pKES303) (Figure 5). With this set
of plasmids expression levels of BglJ are lower and gradual
induction of bglJ by IPTG resulted in a gradual increase in
activation of the PleuO mVenus fusion by BglJ-RcsB (Figure 5,
compare with data in Figure 2). Simultaneous gradual induction
of plasmidic PBAD leuO with arabinose and of PUV5 bglJ with
IPTG led to a uniform decrease of expression of PleuO mVenus
in the whole population as compared to level of activation by
BglJ-RcsB alone (Figure 5). Induction of leuO with an arabinose
concentration of 50µM was sufficient to completely abrogate
activation by BglJ-RcsB (bottom right panel, Figure 5B). A plot
of the median values of the flow cytometry results visualizes the
gradual effects (Figure 5A).

Taken together, the data confirm that LeuO counteracts
activation of the leuO promoter by BglJ-RcsB. Further, the data
show that antagonistic regulation of the leuO promoters by
LeuO and by BglJ-RcsB depends on the relative concentration
of BglJ and LeuO, and the data indicate that BglJ-RcsB-mediated
activation of PleuO mVenus is inhibited by LeuO only if BglJ levels
are rather low. The experimental data shown in Figure 5 were
used to describe PleuO activity in dependence of the concentration
of BglJ and LeuO by a thermodynamicmodel based onMichaelis-
Menten kinetics. In this model it was assumed that BglJ and
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FIGURE 4 | Antagonistic regulation of PleuO mVenus transcription by

BglJ-RcsB and LeuO. Fluorescence of transformants of PleuO mVenus strain

U69 with plasmids pKES302 (PBAD bglJ) and pKEHB27 (Ptac leuO) was

monitored by flow cytometry. (A) The median fluorescence is plotted against

the arabinose concentration used for induction of bglJ. Each line graph

represents the set of data obtained of cultures grown with the specified IPTG

concentration used for induction of leuO. (B) Flow cytometry data of cultures

grown with increasing arabinose (rows) and IPTG (columns) concentration.

Plotted in each panel are the cell counts against the fluorescence intensity. The

fluorescence distribution in each panel is in agreement with uniform expression

within the population. The fluorescence median that is plotted in (A) is given

within each panel. Cultures were inoculated from overnight cultures to an

OD600 of 0.05 and grown for 5 h in 10ml tryptone medium containing

ampicillin, chloramphenicol, as well as IPTG and arabinose at the indicated

concentrations.

LeuO regulate PleuO independently of each other. Fitting of the
function to the experimental data was significant (P-value <

0.001) (function plotted in Figure 6).

Analysis of Feedback Regulation of leuO
via yjjQ–bglJ and by LeuO
Next we addressed the relevance of the presumptive double-
positive feedback regulation of leuO and bglJ by including the
native gene of one of these two players, while providing the other
one by the expression plasmid. In particular, we analyzed whether
presence of the native yjjQ-bglJ operon that is activated by LeuO
results in enhanced PleuO mVenus expression, when LeuO is
provided in trans. Second, we tested whether the presence of
native leuOmight affect activation of PleuO by BglJ-RcsB.

FIGURE 5 | Antagonistic regulation of PleuO mVenus transcription by

BglJ and LeuO. Transformants of PleuO mVenus strain U69 with plasmids

pKES303 (PUV5 bglJ) and pKEHB28 (PBAD leuO) were grown for 5 h in

tryptone medium containing arabinose and IPTG at the indicated

concentrations. Fluorescence was monitored by flow cytometry. (A) The

median fluorescence is plotted against the IPTG concentration that was used

for induction of bglJ. Each line graph represents the set of median

fluorescence data that was obtained when plasmidic leuO was induced with

the indicated arabinose concentrations. (B) Flow cytometry data of cultures

grown with increasing IPTG (rows) and arabinose (columns) concentration

(presentation of data as in Figure 4).

For determining whether activation of the H-NS repressed
yjjQ-bglJ operon by LeuO may yield sufficient BglJ protein
for activation of PleuO we compared PleuO mVenus expression
in (yjjQ-bglJ)+ strain U95 with expression in the isogenic
1(yjjQ-bglJ) strain U69 (Figure 3). The data revealed no
difference between wild-type yjjQ-bglJ+ strain U95 and 1(yjjQ-
bglJ) strain U69 suggesting that activation of yjjQ-bglJ by
LeuO is either too low to provide sufficient levels of BglJ
for activation of PleuO mVenus or that LeuO interferes
with activation by BglJ-RcsB. Second, we analyzed whether
the presence of native leuO may affect activation of the
leuO promoter by BglJ-RcsB. For this analysis the leuO
gene was retained at its native locus and the fluorescence
reporter gene mVenus was inserted downstream of leuO (as
a transcriptional fusion) resulting in allele PleuO leuO::mVenus
in strain U97. Transformants of this strain with bglJ carrying

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 September 2016 | Volume 6 | Article 106

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Breddermann and Schnetz Antagonostic Regulation of leuO

FIGURE 6 | Modeling of antagonistic regulation of leuO transcription

by BglJ-RcsB and LeuO. To describe the transcription rate directed by PleuO
in dependence of the concentration of BglJ and LeuO, a thermodynamic

model based on Michaelis-Menten kinetics was used. In this model it was

assumed that BglJ and LeuO bind and regulate leuO transcription

independently of each other. Median fluorescence values of flow cytometry

data (Figure 5) were fitted to the function (bottom) describing leuO promoter

activity in dependence of promoter occupancy by BglJ and LeuO. Fitting of

the parameters to the experimental data by nonlinear regression according to

(Fox and Weisberg, 2011) yielded P-values < 0.001. The data were plotted

with Mathematica (Wolfram Research) using logarithmic scales for induction of

plasmidic leuO with arabinose (ara) and of plasmidic bglJ with IPTG.

plasmid pKETS26 (PUV5 bglJ, pSC-ori), were grown with IPTG
concentrations ranging from 10µM to 200µM and PleuO
leuO::mVenus expression was determined by flow cytometry.
Comparison of the data obtained of PleuO leuO::mVenus with
the data obtained for PleuO mVenus (1leuO) revealed no
significant difference (Figures 2B,D). These data indicate that
induction of the native leuO gene by BglJ does not provide
sufficient LeuO to antagonize BglJ-RcsB-mediated activation of
leuO.

Furthermore, we analyzed whether LeuO inhibits BglJ-
RcsB-mediated activation of leuO transcription indirectly by
downregulating BglJ-RcsB activity rather than by inhibiting
activation of the leuO P2 promoter by BglJ-RcsB. To this
end, activation of another BglJ-RcsB-activated promoter, the
molR promoter (Salscheider et al., 2014), was analyzed in
absence and presence of LeuO. BglJ was provided by PUV5
bglJ plasmid pKETS26, and LeuO was provided by PBAD leuO
plasmid pKES303. As control, transformants with the empty
vectors were analyzed in parallel. Activity of the molR promoter
was determined using a PmolR mVenus reporter fusion. The
expression analyses demonstrate that LeuO neither does affect
activation of PmolR by BglJ-RcsB nor does LeuO-mediated
activation of the native yjjQ-bglJ operon present in strain U76
lead indirectly to activation of PmolR (Figure 7). We note that
induction of the PBAD leuO with 50µM arabinose resulted
in slower growth to OD600 = 0.6 after 5 h as compared
to OD600 = 1 which may explain the 1.5-fold reduce in
basal expression of PmolR mVENUS in transformants of PBAD

FIGURE 7 | Activation of the molR promoter (PmolR) by BglJ-RcsB is

not affected by LeuO. For determining activation of PmolR by BglJ-RcsB

strain U76 was used that carries a replacement of the molR coding region by

mVenus. Transformants of U76 with plasmids carrying PUV5 bglJ (pKETS26)

and Ptac leuO (pKES303) as well as control plasmids (pKETS24 and pBAD30)

were grown in tryptone medium for 5 h. For induction (+) IPTG (100µM) and

arabinose (50µM) were added. When harvested, the cultures had an OD600

of approximately 1, while induction of leuO resulted in slower growth to OD600

of approximately 0.6. Yellow fluorescence of three biological replicates was

determined and expression levels are given in arbitrary units (a. u.).

leuO plasmid pKES303 and control plasmid PUV5 pKETS24
(Figure 7).

DISCUSSION

In E. coli transcription of leuO is directed by at least two
promoters, P1 and P2, which are repressed by H-NS and
StpA. The P2 promoter requires activation by BglJ-RcsB, while
LeuO inhibits activation of P2 by BglJ-RcsB. In addition,
LeuO represses the leuO promoters in hns stpA mutants. Thus,
leuO is antagonistically regulated by BglJ-RcsB and LeuO. The
characterization of leuO transcription using a leuO promoter-
mVenus reporter fusion revealed that the antagonistic regulation
of leuO transcription by LeuO and by BglJ-RcsB correlates to the
relative cellular amounts of these regulators. The experimental
data are in agreement with a theoretical model according to
which LeuO and BglJ-RcsB regulate transcription independently.
Further, data indicate that double-positive feedback regulation of
leuO and bglJ is of minor relevance, at least at the laboratory
steady state conditions tested, since deletion of leuO and
bglJ, respectively, had no significant effect on the regulation
of the leuO promoter reporter fusion by LeuO and BglJ-
RcsB.

Activation of the leuO P2 promoter by the BglJ-RcsB
heterodimer does not occur under standard lab conditions due
to H-NS-mediated repression of the yjjQ-bglJ operon (Stratmann
et al., 2008, 2012). To address the antagonistic regulation of
leuO transcription by BglJ-RcsB and LeuO, we tested low to
medium copy plasmids for gradual induction of bglJ under
control of the PUV5 and PBAD promoter, respectively. The
data show that rather low amounts of BglJ are sufficient
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for full activation of the leuO P2 promoter (Figures 2, 4,
5). Gradual activation of leuO by BglJ-RcsB was observed
only upon gradual induction of bglJ provided by the low-
copy PUV5 bglJ plasmid, while bglJ expression levels directed
by the PBAD bglJ plasmid turned out to be too high even
when induced with just 2µM arabinose, while induction with
100µM arabinose caused growth defects. Likewise, we addressed
autoregulation of leuO transcription by gradual induction of
leuO carrying plasmids, which carry leuO under control of
the PUV5, Ptac, and PBAD promoter, respectively. The data
(Figure 3) indicate that positive autoregulation of leuO that was
reported previously (Fang and Wu, 1998; Chen et al., 2003;
Stratmann et al., 2012) is negligible at steady state growth
conditions.

Further experiments, with simultaneous gradual induction
of bglJ and leuO revealed that the activity of the leuO promoter
correlates with the relative BglJ and LeuO concentrations

(Figure 5). Interestingly, no switch-like response was observed.
This might be plausible, because the distance of the LeuO
DNA-binding sites to the BglJ-RcsB DNA-binding site is
more than 100 bp (Stratmann et al., 2012), and LeuO and
BglJ-RcsB presumably can bind simultaneously. Therefore,
the LeuO-mediated inhibition of activation by BglJ-RcsB
is putatively not caused by competition for binding, but
by another mechanism, as for example inhibition of RNA
polymerase binding to leuO promoter P2 or inhibition of
transcription initiation at P2 by LeuO. Such a mechanism
of repression is supported by in vitro DNA binding
analyses, which revealed that LeuO inhibits open complex
formation by RNA polymerase at sites mapping next to leuO
promoter P1 and reduces open complex formation by RNA
polymerase at sites close to P2 (Stratmann et al., 2012). A
thermodynamic model based on Michaelis-Menten kinetics
(Figure 6) supports the interpretation that antagonistic

TABLE 2 | Plasmids.

Plasmid Featuresa Reference, Construction

pBAD30 araC PBAD MCS ori-p15A amp Guzman et al., 1995

pKD3 FRT cm FRT oriRγ amp Datsenko and Wanner, 2000

pKD4 FRT kan FRT oriRγ amp Datsenko and Wanner, 2000

pKD46 PBAD λ-Red-recombinase amp (repts ori-pSC) Datsenko and Wanner, 2000

pCP20 cI857 λ-PR flp-recombinase cm amp (repts ori-pSC) Cherepanov and Wackernagel, 1995

pVS133 mVenus (yfp variant) in pTrc99a V. Sourjik laboratory, Germany, and (Amann et al., 1988)

pKESK10 lacI PUV5 bglG ori-pSC cm Dole et al., 2002

pKESK22 lacIq Ptac MCS in ori-p15A kan Stratmann et al., 2008

pKETS1 lacIq Ptac bglJ in pKESK22 (ori-p15A kan) Venkatesh et al., 2010

pKETS5 lacIq Ptac leuO in pKESK22 (ori-p15A kan) Stratmann et al., 2012

pKETS27 chi-site polB’ 1araDABC yabI chi-site tetR (repts

ori-pSC)

fragments flanking araC-BAD were amplified by PCR with T646/T647 and T648/T649, and

cloned into a tetR repts ori-pSC vector, chi-sites were included to enhance homologs

recombination

pKETS28 chi-site cynX 1 lacAYZI mhpR chi-site tetR (repts

ori-pSC)

fragments flanking lacI-lacZYA were amplified by PCR with T650/T651 and T652/T653, and

cloned into a tetR repts ori-pSC vector, chi-sites were included to enhance homologs

recombination

pKES285 pKD3 with MCS (BamHI SpeI EcoRI SalI) pKD3 (NdeI) × annealed oligos T540/T541

pKES287 pKD4 with MCS (BamHI SpeI EcoRI SalI) pKD4 (NdeI) × annealed oligos T540/T541

pKES292 mVenus (with enhanced RBSb) in pKD3 mVenus fragment amplified by PCR with T146/T368 of pVS133, digested with BamHI, EcoRI

cloned into BamHI, EcoRI-digested vector plasmid pKES285

pKES293 mVenus (with enhanced RBS) in pKD4 mVenus fragment cloned as pKES292, but into vector plasmid pKES287

pKES302 araC PBAD bglJ in pBAD30 (ori-p15A amp) bglJ fragment of pKETS1 (EcoRI, XbaI) cloned into pBAD30 (EcoRI, XbaI)

pKES303 araC PBAD leuO in pBAD30 (ori-p15A amp) leuO fragment generated by PCR with primers S326/T558, EcoRI and XbaI digested, and

cloned into pBAD30 (EcoRI, XbaI)

pKETS25 lacI PUV5 leuO ori-pSC cm leuO fragment generated by PCR with primers T644/T645 of pKETS5, digested with EcoRI

and BamHI, and cloned into EcoRI, BamHI digested pKESK10

pKETS26 lacI PUV5 bglJ ori-pSC cm cloning of bglJ fragment of pKETS1 (BamHI, EcoRI) into BamHI, EcoRI digested pKESK10

pKEHB27 lacIq Ptac leuO ori-pSC cm replacement of lacI PUV5 in pKETS25 by lacIq Ptac fragment of pKESK22

pKEHB28 lacIq Ptac bglJ ori-pSCori cm replacement of lacI PUV5 in pKETS26 by lacIq Ptac fragment of pKESK22

pKEHB29 araC P ara mVenus in pBAD30 (ori-p15A amp) mVenus fragment of pVS133 cloned in pBAD30 (EcoRI, XbaI)

aThe following abbreviations and genetic designations are used: FRT, Flp recombinase target site; MCS, multiple cloning site; genes coding for antibiotic resistance are designated as

amp, ampicillin resistance, cm, chloramphenicol resistance, kan, kanamycin resistance. Origins of replications include ori-pSC (derived of low-copy plasmid pSC101), ori-p15A (derived

of low to medium copy plasmid p15A), and Pir-dependent oriRy.
bm Venus was fused to the enhanced RBS (ribosomal binding site) that is derived of phage T7, gene 10 (Olins and Rangwala, 1989).
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TABLE 3 | Oligonucleotides.

Oligo Sequencea Purpose

S326 aagaattcggatccGTGTGACAGTGGAGTTAAGTATGCCAG leuO fragment

S911 TTTGTTCATGCCGGATGCGGCTAATGTAGATCGCTGAACTgtgtaggctggagctgcttcg construction of 1(lacI-lacZYA)

S937 ATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATcatatgaatatcctccttagttcctattcc construction of 1(lacI-lacZYA)

T146 ctgaagcttgctagctcgaggaattcaataattttgtttaactttaagaaggagatatacatATGAGCAAGGGCGAGGAGCTG mVenus amplification from pVS133

T368 cgatggatccaattgtctagaTTACTTGTACAGCTCGTCCATGCC mVenus amplification from pVS133

T540 TAGGATCCATACTAGTAAGAATTCGTGTCGAC MCS

T541 TAGTCGACACGAATTCTTACTAGTATGGATCC MCS

T547 CAGTGGATGGAAGAGCAATTAGTCTCAATTTGCAAACGCTAAttcaataattttgtttaactttaagaaggagatatacat mVenus integration at leuO

T548 TAAACCAGACATTCATGTCTGACCTATTCTGCAATCAGgtgtaggctggagctgcttcg mVenus integration at leuO

T558 agtgtctagaTGACCTATTCTGCAATCAGTTAGCG leuO fragment

T585 TTTATATGCATGATAAATCATATTCTTCAGGATTATTTCTCTGCATTCCAttcaataattttgtttaactttaagaaggagatatacat leuO replacement bymVenus

T644 gaccgaattcGTGTGACAGTGGAGTTAAGTATGCCAG leuO fragment

T645 aggtggatccTGACCTATTCTGCAATCAGTTAGCG leuO fragment

T646 gaccctgcagGCTGGTGGGACCAAATGCCGCCACCGA for araC-BAD deletion

T647 gaccgaattcTAATGACTGTATAAAACCACAGCCAATC for araC-BAD deletion

T648 gaccgaattcTAATTGGTAACGAATCAGACAATTGACG for araC-BAD deletion

T649 gacctctagaGCTGGTGGACAAGACTATCTCCTAAACCCCAACC for araC-BAD deletion

T650 gaccctgcagGCTGGTGGGTGCTGATTGGTCTTAATATGCGACC for lacI-ZYA deletion

T651 gaccgaattcAGTTCAGCGATCTACATTAGCCGCA for lacI-ZYA deletion

T652 gaccgaattcATTCACCACCCTGAATTGACTCTCTTC for lacI-ZYA deletion

T653 gacctctagaGCTGGTGGTAACAGCAGGCTGGATGTCAGGG for lacI-ZYA deletion

T946 CGCATAAATACTGGTAGCATCTGCATTCAACTGGATAAAATTACAGGGATGCAGAaataattttgtttaactttaagaaggagatatacatat mVenus integration at molR

T947 GTTGGGCGTTATCCGCCAGCCACGGTAATTCCTTGTCCATGCTCTTTCCgtgtaggctggagctgcttcg mVenus integration at molR

aSequences homologous to the indicated target loci are printed in capital letters, sequences in lower case that map at the 3′ ends serve for annealing to the pKD3 and pKD4 derived

template plasmids pKES292 and pKES293 to generate PCR fragments for Red-Gam mediated integration. In addition, 5′ extensions of oligonucleotides are shown in lower case letter,

restriction endonuclease sites are underlined, and chi-sites are underlined and shown in upper case letters.

regulation by BglJ-RcsB and LeuO is mediated by independent
mechanisms.

Previous data suggested that LeuO is controlled by interlocked
double-positive and negative feedback control, because LeuO
activates expression of the H-NS repressed yjjQ-bglJ operon
(Stratmann et al., 2008). In the present study we analyzed
whether activation of bglJ by LeuO may indirectly also turn
on transcription of PleuO mVenus (Figure 3) or PmolR mVenus
as another BglJ-RcsB target (Figure 7), which was not the case
indicating that activation of the native yjjQ-bglJ operon by LeuO
does not yield sufficient BglJ. Likewise, expression analyses of an
mVenus fusion downstream of the leuO coding region yielded
the same results as the PleuO mVenus reporter indicating that
LeuO levels, when expressed from its native locus, remain too
low to antagonize BglJ-RcsB. Taken together, double-positive
feedback regulation of the leuO and yjjQ-bglJ loci is not relevant,
at least at laboratory conditions, since the presence of the native
leuO gene had no effect on BglJ-RcsB mediated activation of
leuO that was triggered by plasmidic bglJ. Likewise the presence
of native bglJ had no influence. Thus, the data suggest that
repression of leuO by H-NS and StpA and of yjjQ-bglJ by H-NS
dominates regulation of these loci and keeps them in the OFF
state.

MATERIALS AND METHODS

Strains, Media, and Plasmids
Bacterial cultures of E. coli K-12 were grown in LB (10 g/l Bacto
Tryptone, 5 g/l Bacto Yeast Extract, 5 g/l NaCl) or tryptone
(10 g/l Bacto Tryptone, 5 g/l NaCl) media. Antibiotics were
added with concentrations of 50µg/ml ampicillin, 15µg/ml
chloramphenicol, and 25µg/ml kanamycin. Strains, listed in
Table 1, were constructed by transduction using phage T4GT7,
by Red-Gam mediated gene deletion or gene replacement, and
by homologous recombination, as described (Wilson et al., 1979;
Hamilton et al., 1989; Datsenko and Wanner, 2000). Plasmids
and their construction are listed in Table 2 and oligonucleotides
are listed in Table 3. Standard molecular techniques, such as
cloning, PCR, culture growth and induction of plasmid-provided
genes, were performed according to standard protocols (Ausubel
et al., 2005).

Flow Cytometry and Fluorescence Assay
For expression analyses by flow cytometry cultures of
transformants were inoculated from fresh overnight cultures to
an OD600 of 0.05 and grown for 5 h at 37◦C in 10ml tryptone
medium containing antibiotics for selection of the plasmids. The
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cultures were diluted to OD600 of 0.1 and kept on ice prior to
analysis by flow cytometry. Flow cytometry was performed on a
BD FACScalibur flow cytometer using CellQuest software (BD
Biosciences, Franklin Lakes, NJ, USA). For each sample, 50,000
events were measured at a rate between 500 and 1000 events
per second. The experiments were repeated at least twice and
representative sets of data are shown.

Fluorescence directed by the PmolR mVenus fusion was
determined by Fluorescence spectroscopy using a CLARIOstar
plate reader (BMG LABTECH, Germany). Briefly, cultures were
grown as for flow cytometry and the fluorescence of cells
equivalent to 1.5 OD600 was measured using yellow fluorescent
proteins specific excitation (495–515 nm) and detection (540–
620 nm) channels. The average obtained of three biological
replicates was calculated and the standard deviation is less
than 25%.

Theoretical Model
To describe the transcription rate directed by PleuO in
dependence of the concentration of BglJ and LeuO, a
thermodynamic model based on Michaelis-Menten kinetics
was used. In this model it was assumed that BglJ and LeuO
regulate PleuO independently of each other. The binding
probabilities were defined as B/(Bo+B) and L/(Lo+L), where
B represents the concentration of BglJ in the cell, B0 the
BglJ concentration at which the promoter is half occupied,
L represents the concentration of LeuO and L0 the LeuO
concentration at which the promoter is half occupied. Since
LeuO acts as a repressor and BglJ as an activator of the leuO
promoter four different states with a different expression rate
were described. The basal expression level directed by PleuO
in absence of BglJ and LeuO was defined as η0. In presence of
LeuO and absence of BglJ, expression remains at a basal level
defined as η0. However, in presence of BglJ but absence of LeuO,
the expression level is higher which is defined as η1. When BglJ

and LeuO are bound at the same time, the expression rate is
defined as η0, because high levels of LeuO inhibit activation by
BglJ, when BglJ is provided by the low-copy PUV5 bglJ plasmid.
Taking these four different states into account the expression
rate of leuO in dependence of LeuO and BglJ concentration was
described as

ηB0,L0 (B, L) =
η0 + η0

L
L0

+ η1
B
B0

+ η0
L
L0

B
B0

(

1+ B
B0

) (

1+ L
L0

)

The function was fitted to the median expression values
determined by flow cytometry (PUV5 bglJ, and PBAD leuO,
Figure 5) using non-linear regression according to (Fox and
Weisberg, 2011), which yielded a high fitting significance (P-
value < 0.001).

AUTHOR CONTRIBUTIONS

HB contributed to the design of the work, acquired the data, and
together with KS interpreted the data and drafted the work. KS
conceived the project, contributed to the design of the work, and
drafted the work.

FUNDING

Funding was obtained by the Deutsche Forschungsgemeinschaft
through grant SCHN 371/10-2.

ACKNOWLEDGMENTS

We thank Dr. Thomas Stratmann and Robin Schwarzer for
construction of plasmids. We are grateful for discussions and
help with theoretical modeling to Prof. Johannes Berg and
Alexander Klassmann, University of Cologne.

REFERENCES

Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev.
Genet. 8, 450–461. doi: 10.1038/nrg2102

Amann, E., Ochs, B., and Abel, K.-J. (1988). Tightly regulated tac promoter vectors
useful for the expression of unfused and fused proteins in Escherichia coli. Gene
69, 301–315. doi: 10.1016/0378-1119(88)90440-4

Angeli, D., Ferrell, J. E. Jr., and Sontag, E. D. (2004). Detection of
multistability, bifurcations, and hysteresis in a large class of biological
positive-feedback systems. Proc. Natl. Acad. Sci. U.S.A. 101, 1822–1827. doi:
10.1073/pnas.0308265100

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J.
A., et al. (2005). Current Protocols in Molecular Biology. New York, NY: John
Wiley & Sons, Inc.

Chen, C. C., Fang, M., Majumder, A., andWu, H. Y. (2001). A 72-base pair AT-rich
DNA sequence element functions as a bacterial gene silencer. J. Biol. Chem. 276,
9478–9485. doi: 10.1074/jbc.M010501200

Chen, C. C., Ghole, M., Majumder, A., Wang, Z., Chandana, S., and Wu, H.
Y. (2003). LeuO-mediated transcriptional derepression. J. Biol. Chem. 278,
38094–38103. doi:10.1074/jbc.M300461200

Chen, C. C., and Wu, H. Y. (2005). LeuO protein delimits the transcriptionally
active and repressive domains on the bacterial chromosome. J. Biol. Chem. 280,
15111–15121. doi:10.1074/jbc.M414544200

Cherepanov, P. P., and Wackernagel, W. (1995). Gene disruption in Escherichia

coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of
the antibiotic-resistance determinant. Gene 158, 9–14. doi: 10.1016/0378-
1119(95)00193-A

Datsenko, K. A., and Wanner, B. L. (2000). One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A.
97, 6640–6645. doi: 10.1073/pnas.120163297

De la Cruz, M. A., Fernández-Mora, M., Guadarrama, C., Flores-
Valdez, M. A., Bustamante, V. H., Vazquez, A., et al. (2007). LeuO
antagonizes H-NS and StpA-dependent repression in Salmonella enterica

ompS1. Mol. Microbiol. 66, 727–743. doi: 10.1111/j.1365-2958.2007.0
5958.x

Dillon, S. C., and Dorman, C. J. (2010). Bacterial nucleoid-associated proteins,
nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195. doi:
10.1038/nrmicro2261

Dillon, S. C., Espinosa, E., Hokamp, K., Ussery, D. W., Casadesús, J., and Dorman,
C. J. (2012). LeuO is a global regulator of gene expression in Salmonella enterica

serovar Typhimurium. Mol. Microbiol. 85, 1072–1089. doi: 10.1111/j.1365-
2958.2012.08162.x

Dole, S., Kühn, S., and Schnetz, K. (2002). Post-transcriptional enhancement
of Escherichia coli bgl operon silencing by limitation of BglG-mediated
antitermination at low transcription rates Mol. Microbiol. 43, 217–226. doi:
10.1046/j.1365-2958.2002.02734.x

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 September 2016 | Volume 6 | Article 106

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Breddermann and Schnetz Antagonostic Regulation of leuO

Fang, M., Majumder, A., Tsai, K. J., and Wu, H. Y. (2000). ppGpp-dependent
leuO expression in bacteria under stress. Biochem. Biophys. Res. Commun. 276,
64–70. doi: 10.1006/bbrc.2000.3440

Fang, M., and Wu, H. Y. (1998). A promoter relay mechanism for sequential gene
activation. J. Bacteriol. 180, 626–633.

Fox, J., and Weisberg, S. (2011). “Appendix: nonlinear regression and nonlinear
least squares in R,” inAnRCompanion to Applied Regression. 2nd Edn. Available
online at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.
html: SAGE Publications.

Giel, M., Desnoyer, M., and Lopilato, J. (1996). A mutation in a new gene, bglJ,
activates the bgl operon in Escherichia coli K-12. Genetics 143, 627–635.

Guadarrama, C., Medrano-López, A., Oropeza, R., Hernández-Lucas, I., and
Calva, E. (2014). The Salmonella enterica serovar typhi leuo global regulator
forms tetramers: residues involved in oligomerization, dna binding, and
transcriptional regulation. J. Bacteriol. 196, 2143–2154. doi: 10.1128/jb.014
84-14

Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995). Tight regulation,
modulation, and high-level expression by vectors containing the arabinose
PBAD promoter. J. Bacteriol. 177, 4121–4130.

Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P., and Kushner, S.
R. (1989). New method for generating deletions and gene replacements in
Escherichia coli J. Bacteriol. 171, 4617–4622.

Ishihama, A., Shimada, T., and Yamazaki, Y. (2016). Transcription profile of
Escherichia coli: genomic SELEX search for regulatory targets of transcription
factors. Nucleic Acids Res. 44, 2058–2074. doi: 10.1093/nar/gkw051

Jensen, P. R., Westerhoff, H. V., and Michelsen, O. (1993). The use of lac-
type promoters in control analysis. Eur. J. Biochem. 211, 181–191. doi:
10.1111/j.1432-1033.1993.tb19885.x

Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L., and Keasling, J.
D. (2001). Homogeneous expression of the PBAD promoter in Escherichia

coli by constitutive expression of the low-affinity high-capacity AraE
transporter. Microbiology 147, 3241–3247. doi: 10.1099/00221287-147-1
2-3241

Klauck, E., Böhringer, J., and Hengge-Aronis, R. (1997). The LysR-like regulator
LeuO in Escherichia coli is involved in the translational regulation of rpoS by
affecting the expression of the small regulatory DsrA-RNA.Mol. Microbiol. 25,
559–569. doi: 10.1046/j.1365-2958.1997.4911852.x

Kogenaru, M., and Tans, S. J. (2014). An improved Escherichia coli strain to
host gene regulatory networks involving both the AraC and LacI inducible
transcription factors. J. Biol. Eng. 8, 1–5. doi: 10.1186/1754-1611-8-2

Landick, R., Wade, J. T., and Grainger, D. C. (2015). H-NS and RNA
polymerase: a love–hate relationship? Curr. Opin. Microbiol. 24, 53–59. doi:
10.1016/j.mib.2015.01.009

Lanzer, M., and Bujard, H. (1988). Promoters largely determine the efficiency of
repressor action. Proc. Natl. Acad. Sci. U.S.A. 85, 8973–8977.

Maddocks, S. E., and Oyston, P. C. F. (2008). Structure and function of the
LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154,
3609–3623. doi: 10.1099/mic.0.2008/022772-0

Majdalani, N., and Gottesman, S. (2005). The Rcs phosphorelay: a complex
signal transduction system. Annu. Rev. Microbiol. 59, 379–405. doi:
10.1146/annurev.micro.59.050405.101230

Majumder, A., Fang, M., Tsai, K. J., Ueguchi, C., Mizuno, T., andWu, H. Y. (2001).
LeuO expression in response to starvation for branched-chain amino acids.
J. Biol. Chem. 276, 19046–19051. doi: 10.1074/jbc.M100945200

Medina-Aparicio, L., Rebollar-Flores, J. E., Gallego-Hernández, A. L., Vázquez,
A., Olvera, L., Gutiérrez-Ríos, R. M., et al. (2011). The CRISPR/Cas immune
system is an operon regulated by LeuO, H-NS, and leucine-responsive
regulatory protein in Salmonella enterica Serovar Typhi. J. Bacteriol. 193,
2396–2407. doi: 10.1128/jb.01480-10

Megerle, J. A., Fritz, G., Gerland, U., Jung, K., and Rädler, J. O. (2008).
Timing and dynamics of single cell gene expression in the arabinose
utilization system. Biophys. J. 95, 2103–2115. doi: 10.1529/biophysj.107.1
27191

Olins, P. O., and Rangwala, S. H. (1989). A novel sequence element derived from
bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in
Escherichia coli. J. Biol. Chem. 264, 16973–16976.

Pannen, D., Fabisch, M., Gausling, L., and Schnetz, K. (2016). Interaction of the
RcsB response regulator with auxiliary transcription regulators in Escherichia

coli. J. Biol. Chem. 291, 2357–2370. doi: 10.1074/jbc.M115.696815
Pul, U., Wurm, R., Arslan, Z., Geissen, R., Hofmann, N., and Wagner, R.

(2010). Identification and characterization of E. coliCRISPR-cas promoters and
their silencing by H-NS. Mol. Microbiol. 75, 1495–1512. doi: 10.1111/j.1365-
2958.2010.07073.x

Salscheider, S. L., Jahn, A., and Schnetz, K. (2014). Transcriptional regulation by
BglJ–RcsB, a pleiotropic heteromeric activator in Escherichia coli. Nucleic Acids
Res. 42, 2999–3008. doi: 10.1093/nar/gkt1298

Shimada, T., Bridier, A., Briandet, R., and Ishihama, A. (2011). Novel roles of
LeuO in transcription regulation of E. coli genome: antagonistic interplay with
the universal silencer H-NS. Mol. Microbiol. 82, 378–397. doi: 10.1111/j.1365-
2958.2011.07818.x

Shimada, T., Yamamoto, K., and Ishihama, A. (2009). Involvement of leucine-
response transcription factor leuo in regulation of the genes for sulfa-drug
efflux. J. Bacteriol. 191, 4562–4571. doi: 10.1128/JB.00108-09

Shoval, O., and Alon, U. (2010). SnapShot: network motifs. Cell 143, 326.e321. doi:
10.1016/j.cell.2010.09.050

Siegele, D. A., and Hu, J. C. (1997). Gene expression from plasmids containing the
araBAD promoter at subsaturating inducer concentrations represents mixed
populations. Proc. Natl. Acad. Sci. U.S.A. 94, 8168–8172.

Stoebel, D. M., Free, A., and Dorman, C. J. (2008). Anti-silencing: overcoming
H-NS-mediated repression of transcription in Gram-negative enteric bacteria.
Microbiology 154, 2533–2545. doi: 10.1099/mic.0.2008/020693-0

Stratmann, T., Madhusudan, S., and Schnetz, K. (2008). Regulation of the yjjQ-bglJ
operon, encoding LuxR-type transcription factors, and the divergent yjjP gene
by H-NS and LeuO. J. Bacteriol. 190, 926–935. doi: 10.1128/JB.01447-07

Stratmann, T., Pul, Ü., Wurm, R., Wagner, R., and Schnetz, K. (2012). RcsB-
BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and
pleiotropic regulator of virulence determinants.Mol. Microbiol. 83, 1109–1123.
doi: 10.1111/j.1365-2958.2012.07993.x

Ueguchi, C., Ohta, T., Seto, C., Suzuki, T., and Mizuno, T. (1998). The leuO gene-
product has a latent ability to relieve the bgl silencing in Escherichia coli J.

Bacteriol. 180, 190–193.
Venkatesh, G. R., Kembou Koungni, F. C., Paukner, A., Stratmann, T., Blissenbach,

B., and Schnetz, K. (2010). BglJ-RcsB heterodimers relieve repression of
the Escherichia coli bgl operon by H-NS. J. Bacteriol. 192, 6456–6464. doi:
10.1128/JB.00807-10

Westra, E. R., Pul, U., Heidrich, N., Jore, M. M., Lundgren, M., Stratmann, T., et al.
(2010). H-NS-mediated repression of CRISPR-based immunity in Escherichia

coli K12 can be relieved by the transcription activator LeuO.Mol. Microbiol. 77,
1380–1393. doi: 10.1111/j.1365-2958.2010.07315.x

Wilson, G. G., Young, K. Y. K., Edlin, G. J., and Konigsberg, W. (1979). High-
frequency generalised transduction by bacteriophage T4. Nature 280, 80–82.
doi: 10.1038/280080a0

Winardhi, R. S., Yan, J., and Kenney, L J. (2015). H-NS regulates gene expression
and compacts the nucleoid: insights from single-molecule experiments.
Biophys. J. 109, 1321–1329. doi: 10.1016/j.bpj.2015.08.016

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Breddermann and Schnetz. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 September 2016 | Volume 6 | Article 106

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli
	Introduction
	Results
	Experimental System for Analyzing Regulation of leuo Expression by BglJ and LeuO
	Regulation of leuO Promoter by BglJ–RcsB and by LeuO
	Antagonistic Regulation of the leuO Promoter by BglJ–RcsB and by LeuO
	Analysis of Feedback Regulation of leuO via yjjQ–bglJ and by LeuO

	Discussion
	Materials and Methods
	Strains, Media, and Plasmids
	Flow Cytometry and Fluorescence Assay
	Theoretical Model

	Author Contributions
	Funding
	Acknowledgments
	References


