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The linear plasmid pBSSB1 mediates the flagellar phase variation in H:z66 positive

Salmonella enterica serovar Typhi (S. Typhi). The gene named stp17 (S. Typhi plasmid

number 17 gene) is located on pBSSB1 and encodes the protein STP17. The expression

pattern at the protein-level and function of STP17 remains unknown. In this study,

the recombinant protein STP17His6 was expressed, purified and used to prepare the

polyclonal anti-STP17 antibody. We detected protein-level expression of stp17 in S. Typhi

and further investigated the protein expression characteristics of stp17 in different growth

phases by western blot analysis. The effects of STP17 on bacterial growth and motility

were analyzed. In addition, the structure of STP17 was predicted and the active site

of STP17 was identified by site-directed mutagenesis. The results showed that STP17

was expressed stably in the wild type strain of S. Typhi. STP17 expression at the protein

level peaks when cultures reach an OD600 value of 1.2. The growth rate and motility of

the ∆stp17 strain were significantly decreased compared with the wild type strain (P <

0.05) and this phenotype was restored in the stp17 complementary strain. Moreover,

the growth rate and motility of the stp17 over-expression strain was greater than the

wild type strain. STP17 contains nine Helix segments, six Stand segments and some

Coil segments in the secondary structural level. The top-ranked 3-D structure of STP17

predicted by I-TASSER contains a putative ATPase domain and the amino acid residues

of GLY16, GLY19, LYS20, ASN133, LYS157, and LYS158 may be the active site residues

of STP17. Finally, STP17 was able to catalyze the ATP to ADP reaction, suggesting that

STP17 may be an ATPase. To our knowledge, this is the first report describing the protein

expression characteristics of STP17 in S. Typhi, showing that STP17 promotes bacterial

growth and motility, which may be associated with its potential ATPase activity.
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INTRODUCTION

Salmonella enterica serovar Typhi (S. Typhi) is an important
human pathogen responsible for typhoid fever (Everest et al.,
2001; Wain et al., 2015). Harm caused by S. Typhi has
been greatly reduced by development and use of antibiotics.
However, typhoid fever remains a common disease in tropical
and subtropical regions, with many drug-resistant strains
having been isolated (John et al., 2016; Yap et al., 2016).
In addition, S. Typhi is an important model organism for
researching the expression and regulation of prokaryotic genes
(Winter et al., 2014).

Most serovars of S. enterica contain fliC and fljB genes
encoding the phase-1 and phase-2 flagellar antigen respectively
at different chromosomal loci, and show biphasic characteristics
(Simon et al., 1980). Biphasic serovars of S. enterica alternatively
express two flagellar antigens through a process called “phase
variation,” which is mediated by a hin located upstream fljBA
(Henderson et al., 1999). S. Typhi normally do not possess
flagellar antigen phase variation because they only harbor
the fliC gene (H:d) and lack the fljB gene. However, some
isolates of S. Typhi, from Indonesia contain an fljB gene
equivalent (fljBz66) which encode the novel flagellin named
H:z66 (Guinee et al., 1981). fljBz66 is located on linear
plasmid pBSSB1 which is the first non-bacteriophage-related
linear plasmid found in Enterobacteriaceae and mediates the
unidirectional flagellar phase variation of the S. Typhi z66-
positive strain (Baker et al., 2007a,b). S. Typhi z66-positive strain
was isolated mainly from Indonesia and caused the incidences
of serious typhoid fever which may be due to the escaping
immunologic surveillance through its unique unidirectional
flagellar phase variation (Baker et al., 2008; Hatta et al.,
2011).

Thirty-three putative genes are encoded on pBSSB1 and
most remain to be elucidated with the exception of three
genes: 030, fljBz66, and fljAz66 (Baker et al., 2007a,b). The
genes fljBz66 and fljAz66 have been well studied in terms of
gene expression regulation and have been found to mediate
the flagellar variation in z66-positive S. Typhi (Huang et al.,
2004; Xu et al., 2008, 2010; Zou et al., 2009). The seventeenth

gene, here named stp17 (S. Typhi plasmid number 17 gene),
is immediately adjacent to the possible replication origin of
pBSSB1 and is predicted to encode a putative nucleotide binding
protein STP17 (Baker et al., 2007a). In 2014, the expression
characteristic of stp17 in mRNA level was demonstrated (Zhao
et al., 2014). However, the function of stp17 has not previously
been described. Here, we demonstrate that stp17 may promote
bacterial growth and motility through the ATPase activity of
STP17.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Culture
Conditions
A z66-positive wild-type strain, S. Typhi GIFU10007, was used in
this study. Mutants and plasmids used in this work are listed in
Table 1. Primer sequences are described in Table 2. Bacteria were
cultured in Luria–Bertani (LB) broth at 37◦C.

Construction of stp17 Mutant,
Complementation and Over-Expression
Strains
The stp17 gene deletionmutant of S. Typhi was prepared through
homologous recombination mediated by the suicide plasmid
pGMB151, as previously described (Huang et al., 2004; Zhang
et al., 2012a). The stp17 deletion mutant was confirmed by
sequencing analysis and designated as ∆stp17.

For complementary expression of stp17 in ∆stp17, the CDS
of stp17 was amplified with pfu DNA polymerase by PCR.
The amplicon was inserted into the complementary vector
pACYC184 to form the recombinant plasmid pACYC184-
stp17, which was verified by sequencing analysis. Then, the
strain ∆stp17 was transformed by the recombinant plasmid
pACYC184-stp17 and designated as the stp17 complementary
strain ∆stp17(pACYC184-stp17). As a control, the strain ∆stp17
was also transformed with the empty vector pACYC184 and
named ∆stp17(pACYC184).

The stp17 ORF (a 642-bp DNA fragment) was cloned
into the expression vector pBAD/gIII which can be induced
by L-arabinose to generate the recombinant plasmid (pBAD-
stp17). The recombinant plasmid pBAD-stp17 was confirmed
by sequence analysis and subsequently transformed into the
wild type strain S. Typhi GIFU10007 to generate the over-
expression strain wt(pBAD-stp17). As a control, the strain S.
Typhi GIFU10007 was also transformed with the empty vector
pBAD/gIII and named wt(pBAD). Over-expression of stp17 in
wt(pBAD-stp17) was induced by L-arabinose (0.1% wt/vol).

Expression and Purification of the
Recombinant Protein STP17His6
The entire stp17 ORF (a 642-bp DNA fragment) containing aNco
I site (5′-end) and a Xho I site (3′-end) was amplified by PCR.
Then, the resulting PCR product was digested withNco I andXho
I and cloned into plasmid pET28b which carries a N-terminal
His-tag digested with the same enzymes. The resulting stp17
recombinant expression plasmid pET28b-stp17 was transformed
into E. coli BL21(DE3) cells. The cell cultures were incubated
at 37◦C in LB medium until the OD600 reached 0.6. To induce
expression of the recombinant protein, IPTG was added at a
final concentration of 0.03mM. The culture was grown for 5 h
at 37◦C and harvested by centrifugation (4000 r/min, 10min,
4◦C). Bacteria were re-suspended in 20ml PBS. After bacteria
were lysed with an ultrasonic cell disruptor, bacterial lysate
was purified using a Ni-NTA agarose column as directed by
the manufacturer (QIAGEN). Recombinant protein STP17His6

was eluted with elution buffer containing 250mM imidazole.
Purified STP17His6 from the elution buffer was concentrated
in PBS using Amicon Ultra-15 Centrifugal Filter Unit with
Ultracel-10 membrane, according to the manufacturer’s protocol
(Millipore Corporation, Bedford, MA, USA). Purified STP17His6

was analyzed by SDS-PAGE.

Production of Polyclonal Antibody of
STP17
To prepare the polyclonal antibody of STP17, purified STP17His6

wasmixed completely with an equal volume of Freund’s complete
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TABLE 1 | Strains and plasmids used in the study.

Strain or plasmid Relevant characteristics Reference or source

STRAINS

S. Typhi GIFU10007 Wild-type strain, Z66+ Laboratory collection

SY372λpir E. coli host strain of suicide plasmid Laboratory collection

1stp17 GIFU10007(1stp17) This work

1stp17(pACYC184) 1stp17containing pACYC184 empty vector This work

1stp17(pACYC184-stp17) 1stp17 containing pACYC184-stp17,recombinant plasmid This work

wt(pBAD) GIFU10007 containing pBAD, empty vector This work

wt(pBAD-stp17) GIFU10007 containing pBAD-stp17,recombinant plasmid This work

DH5a(pET28b-stp17) E. coli DH5A containing pET28b-stp17,recombinant plasmid This work

BL21(pET28b-stp17) E. coli BL21 containing pET28b-stp17,recombinant plasmid This work

1pBSSB GIFU10007 cured pBSSB1 This work

1pBSSB (pBAD) 1pBSSB containing pBAD empety vector This work

1pBSSB (pBAD-stp17) 1pBSSB containing pBAD-stp17 recombinant plasmid This work

PLASMIDS

pGMB151 Suicide plasmid; sacB; Ampr Laboratory collection

pGMB-stp17 pGMB151 containing stp17 deleted homologous fragments This work

pACYC184 Complementary vector; Chlr, Tetr Laboratory collection

pACYC184-stp17 pACYC184 containing stp17 gene This work

pBAD/gIII Expression vector; Ampr Laboratory collection

pBAD-stp17 pBAD/gIII containing stp17 gene This work

pET28b Expression vector; Kanar Laboratory collection

pET28b-stp17 pET28b containing stp17 gene This work

TABLE 2 | Primers used in this study.

Primers Sequence(5′-) Purpose

F1A(BamH I) TTAGGATCCAGTTCCGAATCCCATAGGC stp17 mutant construction

F1B CGAATAGATAACACCTCCCTTATAGTTCCA

F2A AGGGAGGTGTTATCTATTCGGAAGGTACAGG

F2B(BamH I) CTAGGATCCAGCAGCATTATTACTATGTGC

C-stp17-A(Xba I) CGTCTAGAGGCAACTCCTTAGTTATG pACYC184-stp17 construction

C-stp17-B(Hind III) GCAAGCTTGTAAGAGTCACCGGCATT

O-stp17-A(Nco I) GTACCATGGGTATGTTAGGGGGTTTTATGAT pBAD-stp17 construction

O-stp17-B(Hind III) GCCAAGCTTTTATGCCTTCTCTTTTGCTTTC

P-stp17-A(Nco I) GACCATGGATATGTTAGGGGGTTTTATG pET28b-stp17 construction

P-stp17-B(Xho I) ATCTCGAGTGCCTTCTCTTTTGCTTT

Underline means the sequences recognized by specific restriction endonucleases.

adjuvant and 1ml of mixture which contained 50µg STP17His6

was injected subcutaneously into each rabbit. After 1 week,
purified STP17His6 was mixed completely with an equal volume
of Freund’s un-complete adjuvant and the mixture was used
to immunize the rabbits as above every 2 weeks. The rabbits
were immunized for total five times. Finally, the antiserum was
obtained from the carotid artery, andwas purified through salting
out extraction with ammonium sulfate to prepare the rabbit
polyclonal antibody of STP17.

Verifying STP17 Expression in S. Typhi
GIFU10007 by Western Blot Analysis
S. Typhi wild type and mutant ∆stp17 strains were cultured
overnight with shaking (250 rpm) at 37◦C. Bacteria were
normalized to OD600 0.6. Proteins were separated by 15%

SDS-PAGE and electrophoretically transferred to polyvinylidene
difluoride (PVDF) membrane. The PVDF membrane was
blocked with 5% dried skim milk. Rabbit anti-STP17 antiserum
as the primary antibody was used at a dilution of 1:500 and
incubated with the membrane for 2 h at room temperature.
HRP-conjugated goat anti-rabbit-IgG antibody (Sigma-Aldrich,
St. Louis, Missouri, USA) was used at a dilution of 1:10,000
as the secondary antibody. Horseradish peroxidase-antibody
conjugates were detected by chemiluminesence.

Investigation of STP17 Expression in
S. Typhi GIFU10007 by Western Blot
Analysis
The expression characteristics of STP17 protein in S. Typhi
GIFU10007 under different growth phases were investigated by
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western blot. S. Typhi cells were collected when their OD600

values were 0.2, 0.5, 0.8, 1.2, and 1.6, respectively. Western
blotting experiments in triplicate were performed as previously
described.

Plasmid Curing and Complementation of
stp17 into pBSSB1-dificient Derivatives of
S. Typhi
The plasmid curing method was referred to the reference (El-
Mansi et al., 2000) with some following modifications. Sodium
dodecyl sulfate (SDS) was added to LB media and the final
concentration of SDS was adjusted to 1%. The wild-type strain S.
Typhi GIFU10007 was inoculated into the above SDS containing
LB and cultures were incubated overnight with shaking at 43◦C.
Subsequently, the cultures were inoculated into normal LB and
incubated overnight with shaking at 43◦C. The cultures were
inoculated into SDS containing LB again and cultured overnight
at 43◦C with shaking. Then, the cultures were placed on to SS
agar plates to select the possible pBSSB1-cured derivatives of S.
Typhi through the amplification of the gene fljBz66 located on
pBSSB1 by PCR. Finally, the possible pBSSB1-cured derivatives
of S. Typhi were verified by Southern-blot as previous described
(Zhang et al., 2012b) and designated as ∆pBSSB1. Then, the
strain ∆pBSSB1 was transformed by the recombinant plasmid
pACYC184-stp17 and designated as the stp17 complementary
∆pBSSB1 strain ∆pBSSB1(pACYC184-stp17). As a control, the
strain ∆pBSSB1 was also transformed with the empty vector
pACYC184 and named ∆pBSSB1 (pACYC184).

Structure Prediction of STP17 and
Mutagenesis of stp17 Gene
Based on the amino acid sequence of protein STP17 which were
retrieved fromGenBank (accession no. AM419040.1; Baker et al.,
2007a), its secondary structure and three-dimensional structure
were predicted by I-TASSER online server (http://zhanglab.
ccmb.med.umich.edu/I-TASSER/) as previous described (Cai
et al., 2013). In addition, the conserved ATPase domain of
STP17 was predicted, and the possible ATP binding site
residues of STP17 was analyzed through I-TASSER online
server as well. According to the predicted possible ATP
binding site residues of STP17, the site-directed mutations
were introduced into pACYC184-stp17 using standard PCR
mutagenesis techniques, and mutations were confirmed by
DNA sequencing. The mutants generated were the following:
1 stp17::pACYC184-stp17G16A, 1stp17::pACYC184-stp17G17A,
1 stp17::pACYC184-stp17G19A, 1 stp17::pACYC184-stp17K20A,
1stp17::pACYC184-stp17N133A, 1stp17::pACYC184-stp17R134A,
1stp17::pACYC184-stp17K157A, 1stp17::pACYC184-stp17K158A.

Growth Curve Assay
Bacteria were grown in LB medium at 37◦C. A single colony
of bacteria from a LB agar plate was inoculated into 2ml
of LB broth and incubated at 37◦C with shaking (250 rpm)
overnight. Then, the culture was diluted 1/100 in fresh LB broth
(containing L-arabinose (0.1% wt/vol) for the culturing of strains
harboring pBAD). Cell growth was monitored at OD600 every

hour using a BioPhotometer (Eppendorf, Hamburg, Germany).
The experiments were repeated at least three times.

Motility Assay
For detecting the motility of bacteria, different strains were
incubated until their OD600 reached 0.4. From each culture, 2µl
was inoculated onto a 0.3% semisolid LB agar plate (containing
L-arabinose 0.1% wt/vol) for the strains harboring pBAD). The
plates were incubated at 37◦C for 10 h and motility was assessed
qualitatively by examining the diameter of circular swimming,
which was formed by growing motile bacterial cells. Meanwhile,
the flagella gene fljBz66 and fliC expression of different strains
were examined by qRT-PCR.

STP17 ATPase Activity Assay
The potential ATPase activity of STP17 was determined by the
ATP assay kit (Beyotime, China) according to the manufacturer’s
recommended protocol. Briefly, STP17His6 protein was added to
the ATP solution provided in the assay kit at a concentration
of 10µM and then incubated at 25◦C for 10-, 30-, and
50min, respectively. The ATP concentration of the above
reaction mixtures was measured by a F-4500 fluorescent
spectrophotometer (Hitachi, Japan). As a control, BSA protein
which lacks ATPase activity was mixed with the ATP solution
and analyzed on the spectrophotometer. Because ATPase can
catalyze ATP into ADP and free phosphate, the reduction of ATP
concentration in the reaction mixture indicates the presence of
ATPase activity, which should be dependent on the added protein
being studied (STP17His6). These experiments were performed at
least three times.

Statistical Analysis
Data were analyzed using Prism 5 software. The Student’s t-test
was used to determine significant differences between results.
Significance was defined as P < 0.05.

RESULTS

The Gene stp17 is Expressed and
Translated into STP17 Protein in S. Typhi
The gene stp17 is located on a linear plasmid named pBSSB1 in S.
Typhi and is predicted to encode a putative nucleotide binding
protein, STP17. In this study, expression of stp17 in E. coli
BL21(DE3) was generated with the expression vector pET28b.
Results showed that the purified recombinant protein STP17His6

was successfully obtained (Figure 1A). To verify whether the
stp17 gene is expressed and translated into STP17 protein in S.
Typhi, western blotting was performed to identify STP17 levels
in the S. Typhi wild type strain and the mutant strain ∆stp17
(Figure 1B). The results showed that the gene stp17 can be
translated into STP17 protein in S. Typhi.

Protein Expression Characteristics of
STP17 in different Growth Phases
We investigated the expression characteristics of STP17 in
different growth phases by western blot analysis. Five OD600

values (0.2, 0.5, 0.8, 1.2, and 1.6) corresponding to early log
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FIGURE 1 | Identification of stp17 expression in S. Typhi. (A) SDS-PAGE

analysis of STP17His6 protein purification; (B) Western blot analysis using the

purified anti-STP17His6 polyclonal antibody. Lane 1, ∆stp17; Lane 2, S. Typhi

GIFU 10007. DnaK: the loading control marker.

FIGURE 2 | Western blot analysis of STP17 protein levels in S. Typhi in

different growth phases. OD600 values (0.2, 0.5, 0.8, 1.2, and 1.6)

corresponding to early log phase, mid-log phase, late log phase, early

stationary phase and late stationary phase, respectively. DnaK: the loading

control marker.

phase, mid-log phase, late log phase, early stationary phase and
late stationary phase, respectively, were monitored. As shown
in Figure 2, stp17 can be expressed stably in normal growth
conditions with expression levels increasing with OD600 values
throughout log phase. The expression level of STP17 reaches
a peak value at an OD600 value of 1.2. Then, expression levels
decrease with OD600 values at stationary phase.

The Gene stp17 Affects the Growth of
S. Typhi in a pBSSB1 Independent Manner
To investigate the role of the stp17 gene in S. Typhi, the
stp17 mutant was constructed by homologous recombination
mediated by the suicide plasmid. We measured growth of the
wild-type and ∆stp17 strain and found that growth of stp17
mutant strain was significantly slower compared to wild type
(P < 0.05; Figure 3A). In addition, the growth of complementary
strain ∆stp17(pACYC184-stp17) restored to the wild type level
(Figure 3A). At the same time, we constructed the S. Typhi
stp17 over-expression strain wt(pBAD-stp17) and found that cell
growth upon STP17 over-expression was significantly increased
compared with the wild type strain (P < 0.05; Figure 3B).
As shown in Figure 3C, the growth of pBSSB1-deficient strain
∆pBSSB1 was obviously decreased compared with the wild type

strain because stp17 was absent due to the loss of pBSSB1.
However, the growth rate of stp17 complementary ∆pBSSB1
strain ∆pBSSB1(pACYC184-stp17) was similar to the wild type
strain. In addition, we compared the stability of pBSSB1 in wild
type and ∆stp17, and found no obvious difference presenting
after deletion of stp17 (data not shown). These results suggest
that stp17 has an effect on S. Typhi cell growth in a pBSSB1
independent manner.

The Gene stp17 Enhances the Motility of
S. Typhi in a pBSSB1 Independent Manner
As shown in Figure 4A, the motility of ∆stp17 was greatly
decreased compared with the wild type strain, and the motility
of pBSSB1-deficient strain ∆pBSSB1 was obviously decreased as
well because stp17 was absent due to the loss of pBSSB1. However,
bacterial motility was restored obviously in the complementary
strain ∆stp17(pACYC184-stp17) and ∆pBSSB1(pACYC184-
stp17). Moreover, the motility of stp17 over-expression strain
wt(pBAD-stp17) was much greater compared with the control
strain wt(pBAD) (Figure 4C). The ring diameters for various
strains are shown in Figures 4B,D. Moreover, the expression
of flagellar gene fljBz66 and fljC show no obvious difference
when stp17 was deleted (data not shown). This result suggests
that the differences of bacterial motility may be not due to the
different expression of flagellar gene. The data demonstrate that
stp17 affects the motility of S. Typhi in a pBSSB1 independent
manner.

Structure Prediction of STP17
The structure of STP17 was predicted by I-TASSER online server,
as explained in Materials and Methods. As shown in Figure 5A,
the 213 amino acids of STP17 contains nine Helix segments,
six Stand segments and some Coil segments in the secondary
structural level. The top-ranked 3-D structure of STP17 predicted
by I-TASSER was shown in Figure 5B, and it contains a putative
ATPase domain like a pocket (Figure 5C), with the top-ranked
predicted residues GLY16, GLY17, GLY19, LYS20, ASN133,
ARG134, LYS157, and LYS158 as ATPase active site residues
(Figure 5A).

Identification of the Active Site Residues of
STP17
To define the active site of STP17 activity, eight mutants of
site-directed mutagenesis were generated, and their growth and
motility were compared to the wild type strain. As shown in
Figure 6, when the residues of GLY16, GLY17, GLY19, LYS20,
ASN133, ARG134, LYS157, and LYS158 mentioned above were
mutated, the growth andmotility of thesemutant strains∆stp17::
pACYC184-stp17G16A, ∆stp17::pACYC184-stp17G19A,_∆stp17::
pACYC184-stp17K20A,_∆stp17::pACYC184-stp17N133A,_∆stp17
::pACYC184-stp17K157A, and ∆stp17::pACYC184-stp17K158A

were significantly decreased compared with that of wild type
strain, while there was no obviously change in growth and
motility of mutant strains ∆stp17::pACYC184-stp17G17A and
∆stp17::pACYC184-stp17R134A. In addition, the stability of
wild type strain and above mutants shows no significant
difference (data not shown). All these results suggest that
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FIGURE 3 | Effect of stp17 on the growth rate of S. Typhi. (A) Growth curve of wild type strain, stp17 deletion mutant and stp17 complementary strain. (B)

growth curve of over-expression strain. (C) growth curve of wild type strain, pBSSB1-cured derivative and pBSSB1 complementary strain.

FIGURE 4 | Motility ring and diameter of S. Typhi. (A,B) Effect of stp17 and pBSSB1 on the motility of S. Typhi. (C,D) Effect of stp17 over-expression on the

motility of S. Typhi.

the amino acid residues of GLY16, GLY19, LYS20, ASN133,
LYS157, and LYS158 may be the active site residues of
STP17.

Analysis of ATPase Activity of STP17
To identify the potential ATPase activity of STP17, we
investigated whether the ATP concentration in solution could
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FIGURE 5 | Predicted 3-D structures and conserved domains of the protein STP17. (A) The amino acid sequence of STP17 and the predicted secondary

structure. (B) The top-ranked 3-D structure of STP17 predicted by I-TASSER. (C) The putative ATPase domain, the ligand molecule of STP17 is indicated by green

and the top-ranked predicted active residues GLY16, GLY17, GLY19, LYS20, ASN133, ARG134, LYS157, and LYS158 is shown by blue.

FIGURE 6 | Identification of the active site residues of STP17. (A) Growth cure of site-directed mutants of STP17. (B) Motility comparison of site-directed

mutants of STP17. G16A, G17A, G19A, K20A, N133A, R134A, K157A, and K158A represent eight mutants through site-directed mutagenesis.

be decreased in the presence of STP17. As shown in Figure 7,
the concentration of ATP in solution decreased markedly after
incubation with STP17 for 10min and continued to decrease
after incubation for 30- and 50-min, while the concentration
of ATP in solution containing the control protein BSA which
lacks the ATPase activity did not decreased. The reduction
in ATP concentration indicates catalytic activity of STP17,
suggesting that STP17 can catalyze ATP into ADP and free
phosphate.

DISCUSSION

Plasmids are extra chromosomal, self-replicating genetic
elements with additional functions, such as antibiotic resistance,
that are complementary to chromosomal DNA. In many cases,
bacterial plasmid DNA is circular. In 1979, the first linear plasmid
in a prokaryote was found in Streptomyces rochei (Hayakawa
et al., 1979). Subsequently, another kind of linear plasmid was
also found in Borrelia (Plasterk et al., 1985). However, most linear
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FIGURE 7 | Analysis of ATP reduction by STP17. BSA (Bovine Serum

Albumin), which lacks the ATPase activity, was used as a negative control.

plasmids have been found in about a dozen of Streptomyces, and
their molecular size is between 12 and 640 kb (Hinnebusch and
Tilly, 1993; Zhong et al., 2010). In 2007, Baker et al. reported
an approximately 27 kb linear plasmid named pBSSB1 in the S.
Typhi z66-positive strain and indicated this plasmid mediates
unidirectional flagellar phase variation (Baker et al., 2007a,b).
The pBSSB1 plasmid is the first non-bacteriophage-related linear
plasmid found in Enterobacteriaceae (Baker et al., 2007a). It was
found that the factor for inversion stimulation (Fis) encoded by
the fis gene can affect the stability of pBSSB1 in S. Typhi (Zhang
et al., 2012b). There are 33 putative ORFs on pBSSB1 including
the operon fljBAz66, which encodes the phase-2 flagellin FljBZ66

and the repressor FljAZ66 of the phase-1 flagellin gene fliC,
respectively (Huang et al., 2004; Baker et al., 2007a,b; Zou et al.,
2009). There is also a notion that most of these genes encoded
on pBSSB1, except the fljBAz66, are pseudogenes (Simon et al.,
1980).

In this study, the gene stp17 was cloned and expressed
successfully in E. coli. The purified STP17His6 protein was gained
and the polyclonal anti-STP17 antibody was prepared in rabbit.
Then, the anti-STP17 antibody was used to investigate whether
the stp17 gene is expressed at the protein level through western
blot analysis. The results showed that STP17 was expressed well
in the wild type strain of S. Typhi. Gene expression of stp17 has
already been verified by qRT-PCR andNorthern-blot (Zhao et al.,
2014). Therefore, the gene stp17 is not a pseudogene and can be
expressed at both the mRNA and protein levels.

In 2014, we investigated the transcriptional expression of
several genes located on pBSSB1 in different growth phases
and environmental stresses and found that the expression of
stp17 increases with the OD600 value in log phase and is not
influenced by acidic stress, oxidative stress or osmotic stress
(Zhao et al., 2014). Here, the translational expression level of
stp17 was studied by western blot analysis. It was found that
the expression level of STP17 increased with the OD600 value
throughout log phase and reached a peak value at an OD600 of
1.2, then decreased in stationary phase. The expression profile
of stp17 at the mRNA and protein level under different growth
phases is very similar and shows that S. Typhi needs more STP17

when cells are in the growth period. When stp17 was deleted,
growth of the ∆stp17 strain was obviously slower than the wild
type strain. Moreover, cell growth under stp17 over-expression
was faster than the control strain. Therefore, STP17 may be
involved in promoting bacterial growth.

The DNA sequence of pBSSB1 shows that the stp17 gene is
supposed to encode a putative nucleotide binding protein and it is
immediately adjacent to the possible replication origin of pBSSB1
(Baker et al., 2007a). In addition, stp17 is predicted to encode a
protein containing a conserved domain, which is shared by the
ParA protein. ParA is involved in the segregation of plasmids and
bacterial chromosomal DNA (Motallebi-Veshareh et al., 1990;
Volante and Alonso, 2015). Therefore, stp17 is suggested to be
involved in the replication of pBSSB1. Although, it was shown
that the stability is not affected by stp17 in this study, future
studies are required to determine whether stp17 is involved in
replication or segregation of pBSSB1.

The amino acid sequence of STP17 was analyzed in this study
and an ATPase domain was predicted. The predicted activity of
STP17 was also identified in this study. Moreover, ParA, which
shares a conserved domain with STP17, was reported to possess
the sequence of a conserved and widespread family of ATPases
(Motallebi-Veshareh et al., 1990; Bignell and Thomas, 2001).
ATPases is very important to bacterial motility (Bai et al., 2014;
Lin et al., 2015). In bacteria, a specific protein export apparatus,
which utilizes ATP and proton motive force as the energy source
to transport component proteins to the distal growing end, is
crucial for self-assembly of the bacterial flagellum (Erhardt et al.,
2014; Minamino et al., 2014). It was reported that bacterial
motility was obviously reduced due to infrequent ATP hydrolysis
caused by mutation of the FliI6-FliJ complex, which is similar to
the FOF1-ATPase (Imada et al., 2016; Minamino et al., 2016). It
was shown that the motility of∆stp17 was significantly decreased
compared to the wild type strain in this study. One explanation
for this phenotype is that STP17 could utilize ATP and proton
motive force as the energy source through its ATPase activity to
help bacterial motility.

In summary, this study is the first to show that the stp17 gene
is not a pseudogene and is expressed well at the protein level.
Furthermore, our results show that stp17 plays an important role
in promoting the growth and motility of bacteria.
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