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Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most

common causes of morbidity and mortality world-wide. Involvement of Porphyromonas

gingivalis in atherosclerosis is supported by observations from epidemiological, clinical,

immunological, and molecular studies. Previously we reported that P. gingivalis vesicles

have a much higher invasive efficiency than their originating cells. Here, we further

compare the role of P. gingivalis cells and their vesicles in expression of chemoattractant

proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as

E-selectin in human umbilical vein endothelial cells (HUVECs). Both P. gingivalis 33277

cells and vesicles were able to up-regulate expression of these molecules, while the

vesicles acted as more potent inducers of the inflammatory response associated with the

development of atherosclerosis, consequently resulting in significant monocyte adhesion

to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8

and E-selectin in endothelial cells induced by P. gingivalis correlated with the invasive

ability of P. gingivalis cells and vesicles. Non-invasive bacterial cells and vesicles had no

effect on expression of these genes. This study highlights the potential risk of P. gingivalis

cells and vesicles in initiation of atherosclerosis and provides a potential target for the

development of novel therapeutics against bacteria-associated atherosclerosis.
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INTRODUCTION

Porphyromonas gingivalis, a Gram-negative bacterium, is associated with chronic periodontitis and
with several systemic diseases including atherosclerosis (Lamont and Jenkinson, 1998; Ximénez-
Fyvie et al., 2000; Hajishengallis et al., 2012; Hussain et al., 2015). Recently, a keystone pathogen
hypothesis regarding the pathogenesis of periodontitis has been proposed, suggesting that the
presence of P. gingivalis in the oral cavity, even at low-abundance, is capable of disturbing host-
microbial homeostasis and inducing periodontitis (Hajishengallis et al., 2011, 2012). Previous
studies demonstrated that P. gingivalis disrupts tissue homeostasis through manipulation of innate
immunity, including complement and proinflammatory cytokines (Hajishengallis and Lamont,
2014; Hajishengallis, 2015).
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P. gingivalis vesicles originate from outer membrane blebbing
and contain mostly outer membrane components including
lipopolysaccharides and outer membrane proteins (Xie, 2015)
and exhibit the primary features of this organism. In fact, we
recently demonstrated that P. gingivalis vesicles exhibit much
higher invasive efficiency than their originating bacterial cells,
although it appears that both invasive processes involve a
clathrin-mediated endocytic machinery (Ho et al., 2015, 2016).
Previous studies suggested that the effect of P. gingivalis vesicles
on the human immune response system is a complicated matter
and not always consistent with those induced by P. gingivalis
cells. Animal studies have demonstrated that P. gingivalis vesicles
with strong immunogenicity were able to elicit P. gingivalis-
specific IgG and IgA in the serum of intranasal vaccinated mice
as well as IgA in saliva, whereas whole cells did not (Nakao
et al., 2011; Bai et al., 2015). It was suggested that the increased
antigenicity found in vesicles might result from the more
concentrated immune-dominant determinants on the vesicles
compared to P. gingivalis cell surfaces. In addition, P. gingivalis
vesicles appeared to repress immune responses induced by
IFN-γ. Expression of several genes involved in IFN-γ signal
transduction, including genes encoding class II transactivator,
Jak1, and Jak2, proteins required for expression of MHC class II
molecules, were down-regulated in vascular endothelial cells in
the presence of P. gingivalis vesicles (Srisatjaluk et al., 2002). Since
MHC class II molecules are essential for antigen presentation, it
is likely that inhibition of their expression facilitates P. gingivalis’
escape from immune surveillance.

In the study presented here, built on our previous work
on comparison of host cell invasion efficiencies of P. gingivalis
cells and their vesicles, we further determined the ability of
P. gingivalis to induce innate immune responses in human
umbilical vein endothelial cells (HUVECs). We found that
after exposure to P. gingivalis cells or vesicles, HUVECs
selectively expressed inflammatory mediators including IL8 and
endothelial-leukocyte adhesion molecules such as E-selectin,
which resulted in monocyte adhesion to HUVECs. These
findings represent insight into the molecule mechanisms of P.
gingivalis associated-atherogenesis.

MATERIALS AND METHODS

Bacterial Strains and Vesicle Preparation
and Quantification
P. gingivalis 33277 was grown from frozen stocks in TSB
(trypticase soy broth) or on TSB blood agar plates supplemented
with yeast extract (1 mg/mL), hemin (5 µg /mL), and menadione
(1 µg/mL), and incubated at 37◦C in an anaerobic chamber (85%
N2, 10% H2, 5% CO2). P. gingivalis vesicles were prepared as
previously described (Furuta et al., 2009). Briefly, P. gingivalis
was grown to the late exponential phase and growth media were
collected by centrifugation at 10,000 × g for 15 min at 4◦C
and filtered through 0.22-µm-pore-size filters (Cell Treat, MA,
USA) to remove residual bacteria. Vesicles were collected by
ultracentrifugation at 126,000× g for 2 h at 4◦C and resuspended
in phosphate-buffered saline (PBS) containing 10% glycerol.

Quantitation of P. gingivalis Vesicles
Since quantifying vesicles by their protein or lipid content in
weight represents the most common way to normalize data (Kulp
and Kuehn, 2010), we quantitated OMVs using both protein and
lipid assays. Proteins and lipids were extracted from vesicles in
PBS using a BugBuster R© Protein Extraction Reagent (Novagen,
MA, USA). The quantity of OMV lipid was assessed using the
fluorescent lipophilic dye FM4-64 as described (Macdonald and
Kuehn, 2013), and was quantitated by titration of P. gingivalis
lipopolysaccharide (LPS-PG, InvivoGen, San Diego, California).
Protein concentrations were determined with a Bio-Rad Protein
Assay Kit (Bio-Rad, CA, USA). Results revealed that 1 × 106 P.
gingivalis cells is equivalent to 100 ng protein or 3.6 µg lipid of
vesicles. Thus, for in vitro infection experiments, 1 × 105 host
cells were exposed to 1 × 106 P. gingivalis cells or vesicles with
100 ng protein.

Treatment of Endothelial Cells with
P. gingivalis 33277 and Its Vesicles
Umbilical vein endothelial cells (HUVECs) from American Type
Culture Collection (ATCC, VA, USA), were cultured in specific
media, according to the manufacturer’s instructions. Prior to
treatment, HUVECs (1× 105) were seeded and grown overnight
in poly-L-lysine coated plates (CellTreat) at 37◦C, 5% CO2, and
then exposed to P. gingivalis 33277 (1 × 106) or its vesicles (100
ng). The cytotoxicity of treatments was evaluated with a Pierce
LDH Cytotoxicity Assay Kit (Thermo Scientific, MA, USA).
There was no cytotoxicity detected under our experimental
conditions.

PCR Array
After exposure to P. gingivalis 33277 cells or their vesicles,
the HUVECs were immediately transferred to TRIzol (Thermo
Scientific) to release RNA. The total RNA was purified using an
RNeasy Mini Kit (QIAGEN, CA, USA). A total of 500 ng RNA
was reverse-transcribed to cDNA with an RT2 First strand Kit
(QIAGEN) and suspended with dd-H2O in a final solution of
111 µL. cDNAs were then subjected to a Human Antibacterial
Response RT2 Profiler PCR Array (QIAGEN) that includes a
set of optimized real-time PCR primer assays on 96-well-plates.
Real-time PCR was run on a CFX96 TouchTM Real-Time PCR

TABLE 1 | Differential expression of inflammatory response related genes

in HUVECs.

Genes HUVECs treated with 3327 HUVECs treated with 3327

cellsa vesiclesb

Fold changec P-value Fold changec P-value

CXCL1 1.075 ± 0.06 0.056 2.725 ± 1.03 0.022

CXCL2 1.045 ± 0.13 0.288 2.512 ± 0.66 0.008

IL-8 1.220 ± 0.12 0.018 3.406 ± 1.20 0.013

HUVECs (2.5 × 105 ) were exposed to P. gingivalis 33277 cells (2.5 × 106 )a or their

vesicles. (250 ng)b for 2 h. Gene expression was determined using Human Antibacterial

Response. PCR Array, and fold changec of gene expression level is relative to that in

HUVECs without any treatment.
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FIGURE 1 | Expression of inflammatory gene s in human endothelial cells in response to P. gingivalis infection. HUVECs were infected with different

P. gingivalis strains including wild type 33277, its isogenic fimA mutant (FAE), the isogenic ginginpain mutant (KDP128, rgpA−, rgpB−, and kgp−), heat treated 33277

and W83 strains, as well as the vesicles derived from these strains for 2h. mRNA levels of cxcl-1 (A), cxcl2 (B), il-8 (C), tlr2 (D), and tlr4 (E) were determined in the

infected HUVECs using qPCR. Expression level of each gene was normalized with that of Glyceraldehyde 3-phosphate dehydrogenase gene (gapdh). Each bar

represents means of fold change with standard deviation of three biological replicates relative to that found in PBS treated HUVECs (1 unit). Asterisks indicate

statistical significance of expression level in HUVECs treated and untreated with P. gingivalis (P < 0.05; t-test).

Detection System (Bio-Rad). Data were analyzed using a RT2
Profiler PCR Array Data Analysis (version 3.5, QIAGEN). RNA
from three independent cultures was analyzed.

Determination of P. gingivalis Invasive
Ability Using Confocal Microscopy
HUVECs, after exposed to P. gingivalis cells or their vesicles, were
fixed with 2% formaldehyde in a Vascular Cell Basal Medium
(ATCC) at room temperature for 10 min after treatments,
permeabilized with 0.1% Triton X-100 for 10 min, and blocked
with 10% horse serum in PBS for 1 h. The cells were then
immunostained with polyclonal antibodies of P. gingivalis 33277,
and anti-E-selectin monoclonal IgG (Santa Cruz Biotechnology,
Texas, USA), followed by donkey anti-rabbit IgG conjugated Alex

Fluor 546, chicken anti-mouse IgG conjugated Alex Fluor 488, or
donkey anti-mouse IgG conjugated to Alex Fluor 546 (Thermo
Scientific). Nuclei were stained with DAPI (Thermo Scientific).
Confocal images were acquired using a Nikon A1R confocal
microscope, and bacterial invasion abilities were determined by
measuring intracellular florescence intensity in 10 random areas
(5.6× 5.6 µm) with an imaging software NIS-Elements AR 4.20.

RNA Isolation and qPCR
HUVECs treated with bacterial cells or vesicles were harvested
by centrifugation and homogenized in Trizol Reagent (Thermo
Scientific). The RNA in the supernatant was then purified using
an RNeasy mini spin column (QIAGEN). RNA samples were
digested on the column with RNase-free DNase. RT-PCR analysis
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was performed by using a QuantiTect SYBR Green RT-PCR Kit
(QIAGEN) on the iCycler MyiQTM Real-Time PCR detection
system (Bio-Rad) according to the manufacturer’s instructions.
Primers are listed in Table S1. Amplification reactions consisted
of a reverse transcription cycle at 50◦C for 30 min, an initial
activation at 95◦C for 15 min, and 40 cycles of 94◦C for 15 s,
58◦C for 30 s, and 72◦C for 30 s. The expression levels of the
investigated genes for the test sample were determined relative
to the untreated calibrator sample by using the comparative
cycle threshold (∆CT) method. The ∆CT were calculated by
subtracting the average CT-value of the test sample from the
average CT-value of the calibrator sample, and were then used
to calculate the ratio between the two by assuming 100%
amplification efficiency. By loading the same amount of total
RNA for any comparable samples, the ∆CT represents the
difference on gene expression between the samples.

Enzyme-Linked Immunosorbent Assay
(ELISA)
ELISA was performed using a Human IL-8 Single Analyte
ELISArray Kit (QIAGEN), according to the manufacturer’s
instruction. HUVECs were exposed to P. gingivalis 33277 cells or
vesicles for 0, 2, 6, and 36 h. The culture media of HUVECs were
collected and subjected to ELISA analysis. Concentration of IL-8
was determined using the standard curve of IL-8.

Monocyte Adhesion to HUVEC
HUVECs (5 × 104/well) were seeded on 24-well plates and
cultured for 2 days to reach a confluent monolayer. HUVECs
were then co-cultured with P. gingivalis 33277 cells (5 × 106) or
vesicles (250 ng) for 20 h, and washed with phosphate-buffered
saline (PBS) to remove unbound bacterial cells or vesicles. THP-
1 cells were labeled with the fluorescent dye calcein AM (10 µM;
Thermo Scientific) for 1 h, washed, and resuspended in RPMI
medium containing 10% FBS. The labeled THP-1 cells (4 × 105)
were incubated with HUVEC monolayers for 2 h. After being
washed with RPMI medium containing 10% FBS, adhesion of
THP-1 cells to HUVEC was visualized under a Nikon TE2000-
E immunofluorescence microscope. Fluorescence images were
analyzed by imaging software NIS-Elements AR 4.20 to measure
florescence intensity in 10 random areas (5.6× 5.6 µm).

Statistical Analyses
A student’s t-test was used to determine statistical significance
of the differences in expression level of inflammatory genes in
HUVECs in the presence or absence of P. gingivalis cells or
vesicles. P < 0.05 was considered significant. Values are shown
±SD unless stated otherwise.

RESULTS

Differential Expression of Inflammatory
Genes in HUVECs in Response to
P. gingivalis Stimulation
Innate immune responses in HUVECs induced by P. gingivalis
cells or vesicles were first examined using a PCR array that
includes 84 key genes involved in innate immune response. The

FIGURE 2 | Invasive activity of P. gingivalis cells and vesicles into

HUVECs. After exposed to P. gingivalis cells or vesicles, HUVECs were

immune strained with P. gingivalis antibodies and analyzed under a confocal

microscope. The number of HUVECs carrying intercellular P. gingivalis cells or

vesicles (infection rate) was determined by counting the infected HUVECs in

30 random areas. Each bar represents the percentage of HUVECs with

intercellular cells or vesicles. The SEs are indicated (n = 3). An asterisk

indicates the statistical significance of invasive rates between P. gingivalis

33277 cells or vesicles and cells and vesicles of other P. gingivalis strains (P <

0.05; t-test).

relative expression level of these genes in the HUVECs exposed to
either P. gingivalis cells or vesicles was determined by comparing
to those observed in HUVECs without any treatment. Three
genes encoding CXCL1, CXCL2, and IL-8 were found to be the
most highly expressed genes in HUVECs treated with vesicles
derived from P. gingivalis 33277 for 2 h (Table 1). The gene
encoding IL-8 was the only one, out of 84 inflammatory genes,
that was slightly up-regulated in HUVECs exposed to 33277 cells.

To assess the reliability of the PCR array results, we conducted
qRT-PCR to measure mRNA levels for key genes involved in
inflammatory responses individually using the identical total
RNA samples used in the PCR array but different sets of primers
(Table S1). Five inflammation related genes, including cxcl1,
cxcl2, cxcl8 (IL-8), tlr-2, and tlr-4, were tested. Ratios of the
transcripts from untreated HUVECs to HUVECs treated with
33277 cells or vesicles, determined by the PCR array or by
qRT-PCR of individual genes, were in a good concordance.
Expression of cxcl1, cxcl2, and IL8 were up-regulated ∼2–3 fold
in the vesicle-treated HUVECs compared to those in untreated
cells (Figures 1A–C). Significant increase in the mRNA level of
these genes was also observed in HUVECs treated with 33277
cells but at a lower degree. Up-regulated toll like receptor 4
was found in HUVECs treated with 33277 cells or vesicles,
while expression of toll like receptor 2 was not altered in these
cells (Figures 1D,E). Heat treatment of 33277 cells or vesicles
abolished their activity to induce expression of cxcl1, cxcl2,
and IL8, suggesting involvement of protein molecules. Other P.
gingivalis strains including W83, the fimA mutant (FAE), and
the gingipain triple mutant (KDP128, rgpA−, rgpB−, and kgp−)
were also examined for their role in the induction. There was
no significant alteration in expression of these inflammatory
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genes in the HUVECs treated with P. gingivalis cells or vesicles,
except for the vesicles derived from the fimA mutant (FAE). It
should be pointed out that although the fimA mutant loses its
invasive activity, its vesicles are able to invade host cells without
the FimA protein (Mantri et al., 2015). These data imply that
the invasive ability of P. gingivalis is required for modulation of
inflammatory gene expression. This is based on the observation
that W83 cells and vesicles, the fimA mutant cells, the gingipain
mutant cells and vesicles, and heat treated 33277 cells and vesicles
showed little invasive activity (Figure 2) and were not able to
significantly upregulate expression of the inflammatory genes
tested. To confirm this assumption, HUVECs were pretreated
with dynasore (30 µM), a potent inhibitor of P. gingivalis
invasion (Ho et al., 2016). As expected, P. gingivalis 33277 cells
and vesicles no long elicited expression of IL-8 in HUVECs
(Figure 3).

We then determined IL-8 level in the culture supernatant of
HUVECs exposed to P. gingivalis 33277 cells or vesicles. IL-8
level was 90% less in the culture supernatant in the presence of
33277 cells compared to that found in the supernatant without
33277 cells, indicating degradation of IL-8 by the bacterial
cells (Figure 4A). Previously, we showed that gingipains were
enriched in P. gingivalis vesicles (Mantri et al., 2015), however,

FIGURE 3 | Inhibition of P. gingivalis induced IL-8 expression by

dynasore. HUVECs were treated with dynasore (30 µM) prior to be exposed

to P. gingivalis 33277 cells or vesicles. Expression level of IL-8 was determined

using qRT-PCR and normalized with that of gapdh. Each bar represents

means of fold change relatively to that found in HUVECs without P. gingivalis

treatment (1 unit). Asterisks indicate the statistical significance of expression

level in HUVECs treated and untreated with P. gingivalis (P < 0.05; t-test).

a much slower degradation of IL-8 was observed in the presence
of 33277 vesicles, especially at 2 or 6 h exposure. We therefore
speculate that membrane-associated gingipains have limited
enzymatic activity.

IL-8 level in the cytoplasm of HUVECs was visualized using
confocal microscopy. Significantly increased expression of IL-8
was found in HUVECs treated with P. gingivalis 33277 vesicles
for 18 h (Figure 4B). Quantitation of IL-8 was conducted using
imaging software NIS-Elements AR 4.20 to measure florescence
intensity in 10 random areas (5.6 × 5.6 µm), and 2.5- and 4-
fold increase of IL-8 was observed inHUVECs treated with 33277
cells or with the vesicles compared to that in untreated HUVECs
(Figure 4C), suggesting that degradation does not occur in
cytoplasm. It is likely that the HUVECs treated with 33277

FIGURE 4 | Determination of IL-8 level in the culture supernatants and

cytoplasm of HUVECs. (A) HUVECs were exposed to P. gingivalis 33277

cells or vesicles for 2, 6, and 36 h, and culture supernatants collected. IL-1

level in the culture supernatants was measured using ELISA with a Human

IL-8 Single Analyte ELISArray Kit (Qiagen). Each bar represents means of IL-8

concentration with standard deviation of three biological replicates. Asterisks

indicate statistical significance of IL-8 concentration in the culture

supernatants of HUVECs treated and untreated with P. gingivalis (P < 0.05;

t-test). (B) Intracellular IL-8 was visualized in HUVECs using anti-E-selectin

antibody and Alexa Fluor 546-conjugated secondary antibody (red) under a

confocal microscope. Scale bar 20 µm. (C) Intracellular IL-8 was quantitated

using an imaging software NIS-Elements AR 4.20. Asterisks indicate the

statistical significance of florescence intensity in HUVECs treated and

untreated with P. gingivalis (P < 0.05; t-test).
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vesicles constitutively release more IL-8, which may maintain a
stable level of IL-8 in the micro-environment, although secreted
IL-8 will eventually be degraded by extracellular P. gingivalis cells
and vesicles.

Induction of Adhesion Molecule
Expression in HUVECs by P. gingivalis
To determine the effect of P. gingivalis infection on expression
of atherosclerosis-associated proteins, we measured expression
of three adhesion molecules (E-selectin, VCAM1, and ICAM-
1) in HUVECs at the transcriptional level using qRT-PCR. The
results showed that mRNA of E-selectin was increased about 2
and 5 fold in the HUVECs treated with P. gingivalis 33277 cells or
vesicles, respectively, compared to those detected in the HUVECs
without any treatment (Figure 5A). This phenomenon of up-
regulated adhesion molecules appears specific to E-selectin, as
there was no alteration in mRNA levels of VCAM1 and ICAM-
1 in HUVECs treated P. gingivalis (data not shown). A three-
fold increase in mRNA level of E-selectin was also detected in
the HUVECs treated with vesicles derived from FAE (the fimA
mutant) but not the FAE cells. This effect was also not observed
in the HUVECs treated with P. gingivalis W83, KDP128, or heat
treated 33277, nor their vesicles. Not surprisingly, treatment of
HUVECs with dynasore (30 µM) blocked P. gingivalis 33277-
induced up-regulation of E-selectin (Figure 5B).

To determine if expression of E-selectin protein is elevated
on the surface and/or in the cytoplasm of the HUVECs
exposed to 33277 cells or vesicles, we performed confocal
microscopic analysis using HUVECs with or without membrane
permeabilization. Consistent with mRNA level of E-selectin,
E-selectin protein was also significantly enhanced in cytoplasm
of HUVECs when the cells were exposed to 33277 vesicles
and permeabilized before immunofluorescence staining

(Figures 6A,B). Additionally, we examined the surface
expression of E-selectin on the HUVECs that were not
permeabilized before staining. E-selectin expression was also
enhanced on the surface of the HUVECs exposed to 33277 cells
and to a much greater extent when exposed to 33277 vesicles
(Figure 6C).

E-selectin is known as endothelial-leukocyte adhesion
molecule 1, and over-expression of E-selectin on activated
endothelial cells leads to initial adhesion of leukocytes
to endothelium. Using an adhesion assay, we found that
attachment of monocytes (THP-1) on HUVEC monolayers
was significantly enhanced. Compared to the attachment of
THP-1 to HUVECs, 6- and 25-fold THP-1 cells were found
on HUVEC monolayers treated with either P. gingivalis 33277
cells or vesicles, respectively (Figures 7A,B). We also examined
THP-1binding to HUVEC monolayers treated with dynasore
or anti E-selectin antibody. As shown in Figures 7, THP-1
attachment to the monolayers was significantly reduced when
dynasore (30 µM) was added to the cultural media of HUVEC
monolayers during exposure of P. gingivalis vesicles, or when
the monolayers were treated with anti E-selectin antibody prior
addition of THP-1. These results indicate that P. gingivalis
invasion and its induced E-selectin expression are key events for
promoting attachment of monocytes on HUVEC monolayers.

DISCUSSION

An association between P. gingivalis infection and atherosclerosis
has been extensively investigated in in vitro, ex vivo, and
animal models, which has made this bacterium a model of
atherosclerosis initiated by microorganisms (Reyes et al., 2013).
Previous studies have focused on intact P. gingivalis cells,
based on the discovery of proteins and DNA of this bacterium

FIGURE 5 | Expression of E-selectin in HUVECs exposed to P. gingivalis strains. (A) mRNA level of E-selectin in HUVECs in response to live P. gingivalis

33277, heat-treated 33277, the fmA mutant (FAE), the gingipain mutant (KDP128), heat treated 33277, and W83 strains and their derived vesicles was determined

using qRT-PCR. (B) HUVECs were treated with dynasore (30 µM) prior to be exposed to P. gingivalis 33277 cells or vesicles. mRNA level of IL-8 was normalized with

that of Glyceraldehyde 3-phosphate dehydrogenase gene (gapdh). Each bar represents means of fold change relative to that found in PBS treated HUVECs (1 unit).

All experiments were repeated three times, and mean values are shown. The error bars indicate standard deviations. Asterisks indicate statistical significance of

expression level in HUVECs treated and untreated with P. gingivalis (P < 0.05; t-test).
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FIGURE 6 | Visualization of E-selectin in the cytoplasm and the surface

of HUVECs with confocal microscopy. (A) HUVECs were grown in a glass

bottom dish for 16 h, and then infected with P. gingivalis 33277 cells or its

vesicles. HUVECs were permeabilized. Internalized bacterial cells or vesicles

were probed with anti-P. gingivalis polyclonal antibodies, visualized by Alexa

Fluor 546-conjugated anti-rabbit IgG secondary antibody (red), E-selectin by

anti-E-selectin antibody and Alexa Fluor 488-conjugated secondary antibody

(green), and nucleus by DAPI (blue) Images are presented by differential

interference contrast (DIC). (B) E-selectin level in the cytoplasm was

determined using imaging software NIS-Elements AR 4.20. (C) Expression of

E-selectin on the surface of HUVECs without permeabilization was visualized

by anti-E-selectin antibody and Alexa Fluor 546-conjugated secondary

antibody (red). Scale bar, 20 µm. An asterisk indicates the statistical

significance of florescence intensity in HUVECs treated and untreated with

P. gingivalis vesicles (P < 0.05 by t-test).

in ex vivo samples. It was speculated that P. gingivalis may
enter microvasculature following tooth brushing or other dental
procedures, which may lead to transient bacteremia (Kinane
et al., 2005; Iwai, 2009). However, it has not been confirmed if
live cells of P. gingivalis cause low-grade inflammation in the
walls of arterial vessels. Based on the recent findings, including
the much more efficient invasive activity of P. gingivalis vesicles
and the presence of vesicle-associated major outer membrane
proteins, DNA, and RNA in the vesicles (Ho et al., 2015), we
propose a novel concept that vesicles serve a significant role
in atherogenesis, and they likely represent a “Trojan horse” to
induce infections at secondary sites, such as in the walls of vessels,
more so than intact P. gingivalis cells. In agreement with this
concept, data presented here demonstrate that the vesicles are
also more potent inducers of inflammation responses. Expression
of IL-8 and E-selectin, at both mRNA and protein levels, was
enhanced in HUVECs treated with P. gingivlais cells or vesicles,

and more so for those exposed to vesicles. We also observed
significantly enriched E-selectin on the surfaces of HUVECs
treated with P. gingivalis 33277 vesicles, as well as highly induced
monocyte adhesion to these HUVECs.

Interleukin (IL)-8 is a pro-inflammatory chemokine that
belongs to the CXC subfamily and is also known as CXCL8
(Bacon et al., 2002). IL-8 plays an important role in inflammation,
cancer, and cardiovascular disease through cell signaling and
activation (Baggiolini and Clark-Lewis, 1992; Apostolakis et al.,
2009; Chen et al., 2015). P. gingivalis-induced IL-8 production
has been found in neutrophils, THP-1 cells, human periodontal
ligament fibroblasts, and endothelial cells (Shelburne et al., 2007;
Jayaprakash et al., 2014; Zhang and Li, 2015; Damgaard et al.,
2016). However, reports on expression of IL-8 in human gingival
epithelial cells in response to P. gingivalis infection have been
conflicting (Takeuchi et al., 2013; Fujita et al., 2014; Yee et al.,
2014; Savitri et al., 2015), and it was suggested that the different
epithelial cell types used in those studies affect results. When
comparing the abilities of P. gingivalis 33277 cells and the vesicles
purified from the culture media to induce expression of IL-
8 at the transcriptional level in HUVECs, we found that the
mRNA level of IL-8 was higher in HUVECs treated with vesicles
than that in HUVECs treated with 33277 cells, despite identical
amounts of proteins and lipids were used. Interestingly, IL-8
accumulation in the culture media of HUVECs treated with
33277 vesicles was not significantly enhanced compared to that
in the culture media of untreated HUVECs, while IL-8 level
was dramatically decreased in the presence of P. gingivalis 33277
cells. Degradation of IL-8 has been reported previously, and
Stathopoulou et al. showed that 100% degradation of IL-8 by
live P. gingivalis cells could be reached after 30 min exposure
(Stathopoulou et al., 2009). It was suggested that lysine gingipain
(Kgp) is likely responsible for the degradation of IL-1 in culture
supernatants (Stathopoulou et al., 2009; Jayaprakash et al., 2014).
We reported earlier that gingipains were selectively enriched in
P. gingivalis vesicles (Mantri et al., 2015). It is likely therefore
that vesicle-associated gingipains are not as efficient as gingipains
secreted by live P. gingivalis cells.

The role of Selectin in atherosclerosis is known for its ability
to mediate rapid on-off interaction between monocytes and
endothelium, which is called rolling adhesion (McEver and Zhu,
2010; Telen, 2014). Firm adhesion of monocytes to endothelium
requires the presence of cytokines such as IL-8. Gerszten et al.
revealed, using videomicroscopy, that IL-8 arrested the rolling
monocytes on E-selectin-expressing endothelium. This likely
involves recognition of β2 leukocyte integrin and chemokine
receptor CXCR2 by IL-8 (Gerszten et al., 1999). It should be
pointed out that CXCR2 is a receptor for both CXCL1 and
IL-8; presumably up-regulation of CXCL1 may compensate
degradation of IL-8 by gingipains or have a synergistic effect in
monocyte adhesion.

One striking finding of this work is that mechanisms
contributing to up-regulation of IL-8 and E-selectin in HUVECs
appear to involve the invasive ability of P. gingivalis cells and
vesicles. Previous studies have shown an involvement of a
TonB-dependent receptor (RagB), LPS, and Fimbria-dependent
activation of IL-8 in primary human monocytes (Hutcherson
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FIGURE 7 | Attachment of monocytes to P. gingivalis-activated HUVECs. (A) The calcein AM labeled THP-1 cells (green) were incubated with P. gingivalis

33277 cell- or vesicle-activated HUVEC monolayers for 2 h. After removing the unbound THP-1 cells, THP-1 adhesion was visualized under an immunofluorescence

microscope. Scale bar, 100 µm. (B) Each bar represents the mean of fluorescence intensity in 10 random areas (5.6 × 5.6 µm) of immunofluorescence images.

Comparison highlighted with an asterisk indicates a significant difference between two relative levels of florescence intensity detected on HUVEC monolayers cultured

under different conditions (P < 0.05 by t-test).

et al., 2015), human oral keratinocytes (Luo et al., 2012),
and human aortic endothelial cells (Takahashi et al., 2006).
Expression of E-selectin in human endothelial cells is also up-
regulated by P. gingivalis penta-acylated lipid A and fimbrial
proteins (Chou et al., 2005; Reife et al., 2006; Takahashi
et al., 2006). We demonstrate here that the invasive ability of
P. gingivalis also contributes to elevated IL-8 and E-selectin
expression in human endothelial cells, which is in agreement
with an observation by Takahashi et al. that only invasive P.
gingivalis strains induced production of IL-8 and E-selectin
in human aortic endothelial cells (Takahashi et al., 2006).
Although the mechanisms have not been clarified, our data
indicate that a dynamin-mediated endocytosis is required for
eliciting expression of IL-8 and E-selectin. This conclusion is
based on our finding that dynasore, an inhibitor of dynamin-
mediated endocytosis (Macia et al., 2006), completely blocked the
ability of P. gingivalis cells and vesicles to induce IL-8, and E-
selectin expression. Collectively, our findings provide evidence
that the invasive P. gingivais strains, especially their vesicles,
are capable of inducing the production of pro-inflammatory
and adhesive molecules that are hallmarks of atherosclerosis.
Therefore, identification of agents to inhibit P. gingivalis invasion
is likely an efficient therapeutic approach for intervention of the
bacteria-associated atherosclerosis.
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