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The growth-stimulating effects of catecholamine stress hormones have been

demonstrated in many pathogens. However, catecholamine-induced growth and its

underlying mechanisms remain poorly understood in Aeromonas hydrophila. The present

study sought to demonstrate that norepinephrine (NE), epinephrine (Epi), dopamine

(Dopa), and L-dopa stimulate the growth of A. hydrophila in iron-restricted media

containing serum. NE exhibited the strongest growth stimulation, which could be blocked

by adrenergic antagonists. Furthermore, it was demonstrated that NE could sequester

iron from transferrin, thereby providing a more accessible iron source for utilization by

A. hydrophila. The deletion of the amoA gene associated with amonabactin synthesis

revealed that the amonabactin siderophore is not required for NE-stimulated growth.

However, the deletion of the TonB2 energy transduction system resulted in the loss of

growth promotion by NE, indicating that a specific TonB-dependent outer membrane

receptor might be involved in the transport of iron from transferrin. Collectively, our data

show that catecholamine sensing promotes the growth of A. hydrophila in a manner that

is dependent on the TonB2 energy transduction system.

Keywords: Aeromonas hydrophila, stress, catecholamine, TonB2 energy transduction system, amonabactin

INTRODUCTION

Aeromonas hydrophila inhabits various aquatic environments and is responsible for motile
Aeromonad septicemia (MAS), leading to large economic losses in the global aquaculture industry
(Galindo et al., 2006). This bacterium also causes intestinal and extraintestinal infections in
humans and other animals (Parker and Shaw, 2011). As well as being a beneficial symbiont, this
bacterium often resides in the host without causing harm. However, once normal host defenses
are compromised, A. hydrophila takes advantage of this opportunity to inflict damage to the host
(Parker and Shaw, 2011). Thus, the stress status of a host may determine the outcome of an
infection.

Stress is unavoidable in the aquaculture environment. The accumulation of Vibrio splendidus
increased in juvenile oysters after mechanical stress, such as shaking (Lacoste et al., 2001). The
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exposure of fish to common stressors such as handling increased
incidence of disease (Van Weerd and Komen, 1998). Peters
et al. (1988) investigated the response of rainbow trout to
the simultaneous exposure to stress and A. hydrophila, and
found that this bacterium spread to more organs and was in
greater number in the stressed fish compared to the unstressed
fish. The mechanism of this phenomenon is unknown. One
potential explanation is that stress-associated hormones may be
released under stress, and these hormones depress the function
of the immune system and exert deleterious effects on the
immune response of the host (Freestone and Lyte, 2008). In
addition, studies have shown that microbes can recognize and
respond to neurohormone signals to modulate bacterial growth
and virulence-associated gene expression (Burton et al., 2002;
Sperandio et al., 2003). Norepinephrine (NE) has been reported
to increase motility, chemotaxis, and the production of shiga
toxins in Escherichia coli O157:H7 (Lyte et al., 1996; Bansal et al.,
2007). Furthermore, NE increased both the cellular cytotoxicity
and enterotoxicity of Vibrio parahaemolyticus and up-regulated
the transcription of type III secretion system-1 genes (Nakano
et al., 2007). Dopamine (Dopa) and epinephrine (Epi) have
been found to increase biofilm formation in Streptococcus
pneumonia (Sandrini et al., 2014). These observations indicate
that stress hormones can regulate the behavior of pathogens.
To date, information on the link between stress hormones and
A. hydrophila remains limited. Only one study has reported that
the treatment of A. hydrophila cultures with NE resulted in
dramatic increases in bacterial growth (Kinney et al., 1999), but
the mechanism underlying this has not been investigated.

It has previously been reported that growth promotion
by stress hormones might be attributable to increased iron
accessibility in bacterial cells (Freestone et al., 2003). And
siderophore synthesis and uptake systems are key elements in
the mechanism by which stress hormones induce growth (Burton
et al., 2002; Freestone et al., 2003). Iron is an essential element
for almost all living bacteria. Because of the low bioavailability
of iron in the environment, bacteria have developed specific
uptake strategies. A. hydrophila has been shown to possess
multiple systems for the sequestration of host iron, including
heme-bound iron transport (Maltz et al., 2015), the utilization
of enterobactin siderophores produced by enterobacteriaceae
(Funahashi et al., 2013), and the secretion of amonabactin
(Barghouthi et al., 1989). After the ferri-siderophores and other
iron sources specifically bind to outer membrane receptors,
an energy generation system for transport is required (Postle
and Larsen, 2007). During this process, the transmembrane
transporter activity and ATP synthase has been demonstrated
to increase significantly in abundance to enhance iron transport
and maintain cellular iron homeostasis in A. hydrophila (Yao
et al., 2016). Nevertheless, it remains unclear how Aeromonas
species keep the iron homeostasis and its regulation under stress
conditions.

The majority of our knowledge regarding bacteria-
catecholamine interactions originates from studies of
mammalian pathogens, and our understanding of the
interactions between aquatic bacterial pathogens and
catecholamine is relatively lacking. In the current study, we

aimed to investigate the impact of NE and its related compounds
on the growth of A. hydrophila NJ-35, an isolate from a diseased
cyprinoid fish, in iron-restricted media, and to determine
whether amonabactin is required for NE-mediated A. hydrophila
growth promotion or whether other NE response mechanisms
are present.

MATERIALS AND METHODS

Ethics Statement
Experiments involving live animals were carried out according
to animal welfare standards and were approved by the Ethical
Committee for Animal Experiments of Nanjing Agricultural
University, China. All animal experiments complied with the
guidelines of the Animal Welfare Council of China.

Bacterial Strains and Growth Media
The bacterial strains and plasmids used in this study are listed
in Table 1. A. hydrophila NJ-35, which belongs to the ST251
clonal group, was isolated from dead cultured cyprinoid fish in
the Jiangsu province of China in 2010 (Pang et al., 2015).

TABLE 1 | Bacterial strains and plasmids used in this study.

Strain or

plasmid

Descriptiona Source or

reference

STRAINS

NJ-35 Wilde-type, isolated from diseased

crucian carp, in China

Collected in our

laboratory

SM10 E. coli strain, λpir+, Kanr Melton-Witt et al.,

2012

1amoA amoA deletion mutant from NJ-35 This study

1tonB1 tonB1 deletion mutant from NJ-35 This study

1tonB2-1 tonB2-1 deletion mutant from NJ-35 This study

1tonB2-2 tonB2-2 deletion mutant from NJ-35 This study

1tonB3 tonB3 deletion mutant from NJ-35 This study

PLASMID

pYAK1 R6K-ori suicide vector, SacB+, Cmr Abolghait, 2013

pYAK1-amoA pYAK1 carrying the flanking sequence

of amoA, Cmr
This study

pYAK1-tonB1 pYAK1 carrying the flanking sequence

of tonB1, Cmr
This study

pYAK1-tonB2-1 pYAK1 carrying the flanking sequence

of tonB2-1, Cmr
This study

pYAK1-tonB2-2 pYAK1 carrying the flanking sequence

of tonB2-2, Cmr
This study

pYAK1-tonB3 pYAK1 carrying the flanking sequence

of tonB3, Cmr
This study

pMMB207 Low-copy-number vector, Cmr Morales et al.,

1991

pMMB-amoA Plasmid pMMB207 carrying the

complete ORF of amoA

This study

pMMB-tonB2-1 Plasmid pMMB207 carrying the

complete ORF of tonB2-1

This study

pMMB-tonB2-2 Plasmid pMMB207 carrying the

complete ORF of tonB2-2

This study

aCmr , chloramphenicol resistant; Kanr , kanamycin resistant.
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A. hydrophila and E. coli strains were grown at 28 and 37◦C,
respectively, in Luria-Bertani broth (LB) or on LB agar plates. As
necessary, antibiotics were used at the following concentrations:
chloramphenicol (Cm) (Sigma, St. Louis, USA), 34 µg/ml
for A. hydrophila; ampicillin (Amp) (Sigma), 100µg/ml
for E. coli. Serum-SAPI medium was used to assay growth
promotion (Kinney et al., 2000), with some modifications.
Briefly, serum-SAPI medium containing 6.25 mM ammonium
nitrate, 3.35 mM potassium chloride 2.77 mM dextrose, 1.84
mM monobasic potassium phosphate and 1.01 mM magnesium
sulfate was adjusted to pH 7.4 and supplemented with 10 mM
HEPES buffer and 10% fetal bovine serum. The apo-form of
bovine transferrin (ATF), the holo-form of bovine transferrin
(HTF), chlorpromazine, phentolamine hydrochloride, and
propranolol were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Norepinephrine (bitartrate salt), epinephrine
(bitartrate salt), dopamine hydrochloride, L-dopa, tyrosine,
and tyramine were purchased from Aladdin (Shanghai, China).
All reagents were freshly prepared before each experiment
and filter-sterilized using 0.22-µm (pore-size) membrane
filters.

Growth Assays
For bacterial growth assays, A. hydrophila NJ-35 was grown
overnight in LB medium at 28◦C. Cells were pelleted by
centrifugation at 5000× g for 10 min, washed and resuspended
in phosphate-buffered saline (PBS). An initial inoculum of ∼102

colony-forming units (CFU) ml−1 was diluted into serum-SAPI
medium to obtain the strongest possible growth stimulation. In
our pre-experiment, catecholamine hormones were confirmed
to have no effect on A. hydrophila growth in serum-SAPI
medium when the initial inoculum densities were >103 CFU
ml−1 (data not shown). Individual hormones were employed for
experimental cultures at a final concentration of 100 µM, which
was selected based on a preliminary study (Figure S1, take NE as
an example). Additionally, a catecholamine receptor antagonist
at a concentration of 400 mM was added to detect whether
it exerted effects on catecholamine-induced growth (Freestone
et al., 2007).

To investigate the role of transferrin in NE-induced growth,
the serum in SAPI medium was replaced with either 39 µM
(3mg/ml) ATF or HTF. This concentration was chosen on
the basis of previous reports that transferrin concentration in
mammal serum is in the range 1–3.6mg/ml (Burton et al.,
2002; Kasvosve and Delanghe, 2002) and our preliminary dose-
response studies, indicating that 3 mg/ml is the minimum
concentration of the transferrin for the optimum growth of
A. hydrophila (Figure S2). The initial concentration of bacteria
was 1 × 103 CFU/ml, higher than the concentration used in
serum-SAPI medium, since there was no growth of A. hydrophila
observed with the inoculums densities of <1 × 103 CFU/ml.
The cultures were grown in 1.5-ml EP tubes at 28◦C for
20 h, and 100-µl aliquots of bacteria were removed from
each tube every 2 h and plated on LB and the specific
growth rate was calculated described previously (Lindqvist
and Barmark, 2014). Each experiment was repeated four
times.

Biofilm Assay
A biofilm formation assay were performed utilizing the crystal
violet staining method described previously (Stepanovic et al.,
2000), with some modification. A. hydrophila NJ-35 was grown
overnight in LB broth at 28◦C, bacteria were washed three
times with PBS and diluted to an optical density of 0.01 at 600
nm (OD600) in serum-containing SAPI medium supplemented
with 100 µM individual hormones, and 200-µl aliquots of
suspension were dispensed into 96-well polystyrene plates. Then,
the plates were incubated for 18 h at 28◦C without agitation.
Next, the contents of the wells were poured off, and wells
were washed three times with 300 µl of sterile PBS. Adherent
bacterial cells were fixed with 200 µl of methanol for 15 min,
and then the methanol was removed. After drying for 15 min,
200 µl of crystal violet (1%wt/vol) per well was added, and
staining was carried out for 10 min. Then, the wells were
washed with ddH2O five times to remove unbound dye, and
the plates were air-dried. The formed biofilms were solubilized
in absolute ethanol, and the optical density was measured at
OD595. Wells that did not contain bacteria served as a negative
control.

In vitro Adhesion Assays
HEp-2 cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, New York, USA) containing 10% fetal bovine
serum (FBS; Gibco, New York, USA) in 24-well tissue culture
plates to a final density of 5 × 105 cells/well. The monolayers
were washed with sterile 10 mM PBS to remove unattached
cells, and then 400 µl of MEM without phenol red was added.
A. hydrophila NJ-35 was grown in serum-SAPI medium in
the presence or absence of 100 µM hormones for 18 h at
28◦C under a microaerobic atmosphere, then harvested by
centrifugation at 6000× g for 10 min. The pellet was washed
three times with PBS to remove hormones. The bacteria were
seeded into each well at a multiplicity of infection (MOI) of
1:1. The plates were centrifuged at 600× g for 10 min and
incubated in a 5% CO2 humidified incubator for 2 h at 37◦C.
Subsequently, the cells were washed five times with PBS and
lysed by adding 0.02% Triton X-100. Bacterial numbers were
enumerated via serial dilution and plating on LB agar plates
(Tenenbaum et al., 2005). All assays were performed with four
replicates.

Experimental Infection of Mice
Six- to eight-week-old female ICR mice were purchased from
the Experimental Animal Center of Yangzhou University and
housed under specific-pathogen-free conditions. Mice were fed
intragastrically with 1mg of NE in 400 µl of PBS 12 h
before bacterial challenge.Mice administered PBS intragastrically
served as controls. The dose of NE used in this study was chosen
on the basis of a preliminary study, in which the starting dose
was screened from the fixed levels of 0.5, 1, and 2mg expected to
show the altered bacterial loads but no obvious clinical signs or
pathologic changes in animals. Then, the mice were infected with
a predetermined dose of 1× 108 CFU of A. hydrophilaNJ-35 per
animal in a 200-µl suspension by intragastric administration. At
6 h postinfection, mice were euthanized. Lungs and spleens were
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aseptically removed, homogenized, and diluted in PBS. Bacterial
loads in tissues were counted via serial dilution of the suspensions
and plating on LB agar plates.

Effects of NE on Iron Release from
Transferrin
To test the ability of NE to acquire iron fromTf, 13µM(1mg/ml)
HTF was prepared in SAPI medium buffer supplemented with
100 mM Tris-HCl buffer at pH 7.5, and experimental cultures
were supplemented with 100 µM NE and incubated at 37◦C
for 12 h, while control cultures contained an equivalent volume
of water only. Samples were analyzed by electrophoresis in 6%
polyacrylamide gels containing 6 M urea in a BioRad Protean
II vertical mini gel system as previously described with certain
modifications (Wolz et al., 1994). The gels were prepared as
follows: 4.5 g of urea was added into 2.7 ml of acrylamide (3.3%
C–30% T) and 2.5 ml TBE buffer concentrated 5 times, and the
volume was adjusted to a total of 12.5 ml with deionized water.
The gels were polymerized with the addition of 100 µl of 10%
ammonium persulfate and 6 µl of TEMED. Electrophoresis was
performed at 200 V for 6 h. The gels were stained with Coomassie
Brilliant Blue R-250 (Bio-Rad).

Construction of Gene Deletion Mutants
amoA gene inactivation was carried out via homologous
recombination using the suicide plasmid pYAK1 as previously
described (Abolghait, 2013). First, the left and right arms of the
amoA gene were PCR-amplified from the chromosomal DNA
of A. hydrophila NJ-35 using two sets of primer pairs, AmoA-
1/AmoA-2 and AmoA-3/AmoA-4 (Table 2), and the arms were
then used as templates to generate fusion fragments with the
primer pair AmoA-1/AmoA-4. These fusion fragments were
cloned into the pYAK1 suicide plasmid with the restriction
enzyme BamHI. The recombinant plasmid pYAK1::amoA was
transformed into E. coli SM10 competent cells (Melton-Witt
et al., 2012). The donor strain E. coli SM10-pYAK1 (Cm
resistant, Cmr) and the recipient strain A. hydrophila NJ-35
(Amp resistant, Ampr) were cultured in LB broth without
antibiotics until log phase was reached. Cells were mixed at
a ratio of two-to-one vol/vol in medium, spotted on a nylon
filter on an LB plate and conjugated for 12 h at 28◦C. Cells
were recovered and washed three times with PBS. LB agar
plates containing 100 µg/ml Amp and 34 µg/ml Cm were
used to select for recombinant plasmid integration into the
chromosome. Then, colonies (Ampr and Cmr) were chosen
and inoculated in LB broth supplemented with 20% sucrose to

TABLE 2 | Primers used in this study.

Primer Sequence (5′
→ 3′)a Function

AmoA-1 CAGGTCGACTCTAGAGGATCC CTTCGTTCTTGCGAC Construction of amoA deletion mutant

AmoA-2 ACTGGCTCAT GTTACACCCTCAAATATGATTC

AmoA-3 AGGGTGTAAC ATGAGCCAGTCCAACCGC

AmoA-4 GAGCTCGGTACCCGGGGATCC GGCAATCAGCGGGAAACA

TonB1-1 CAGGTCGACTCTAGAGGATCCGCCTCTGTCTGGTTT Construction of tonB1 deletion mutant

TonB1-2 GAGACAAGTGACATGGATCCTGAAATCGC

TonB1-3 GGATCCATGT CACTTGTCTCCCTTCCAG

TonB1-4 GAGCTCGGTACCCGGGGATCCGCACGAACGGGTTATTT

TonB2-1-1 CAGGTCGACTCTAGAGGATCC GTTTCATCTGTCCCTT Construction of tonB2-1 deletion mutant

TonB2-1-2 ACCGAAATGA CTATGTTGCGGATCTGGA

TonB2-1-3 CGCAACATAG TCATTTCGGTGCCACC

TonB2-1-4 GAGCTCGGTACCCGGGGATCC GCGGCTGCTCTACCTCAA

TonB2-2-1 CAGGTCGACTCTAGAGGATCC CCAGTCCCAGGCTC Construction of tonB2-2 deletion mutant

TonB2-2-2 CCAGTCATGA ATGATGCTCGACATCTGG

TonB2-2-3 CGAGCATCAT TCATGACTGGGCCTCCT

TonB2-2-4 GAGCTCGGTACCCGGGGATCC AGCCTACAACCGCTACAT

TonB3-1 CAGGTCGACTCTAGAGGATCC ATGGGATTGCCCTTG Construction of tonB3 deletion mutant

TonB3-2 GACTATTACAATGAAAGGAATCAAACTTGC

TonB3-3 TTCCTTTCAT TGTAATAGTCCTTGTTTTCATAG

TonB3-4 GAGCTCGGTACCCGGGGATCC CCAGACCCAGTTCTATCAG

AmoA-C-F CAGGAAACAGAATTCGAGCTCTCAGCTGCTCTTGCTCG Construction of amoA complemented strain

AmoA-C-R GGATCCCCGGGTACCGAGCTCTATCGCCTCCCAGACCA

TonB2-1-C-F CAGGAAACAGAATTCGAGCTCTTATGACTCCAGTTTGAATTTGA Construction of tonB2-1 complemented strain

TonB2-1-C-R GGATCCCCGGGTACCGAGCTCGCAGGCCTATCAAATCGA

TonB2-2-C-F CAGGAAACAGAATTCGAGCTCTTACGGCTCCGGCTGG Construction of tonB2-2 complemented strain

TonB2-2-C-R GGATCCCCGGGTACCGAGCTCCGCCGCCAGCCAAC

aUnderlined sequences indicate restriction sites.
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induce a second crossover event (Abolghait, 2013). The double-
crossover 1amoA mutant strain was confirmed by sequencing
the deleted region and flanking DNA in the mutated strains.
Further, quantitative real-time reverse transcription-PCR (qRT-
PCR) was used to measure the transcriptional levels of upstream
or downstream genes of the deletion regions, demonstrating
that no polar mutation occurred due to the knock-out of
amoA. Using the same approach, additional deletion mutants
including 1tonB1, 1tonB2-1, 1tonB2-2, and 1tonB3 were also
constructed.

Construction of the Complementation
Strain
The complementation of 1amoA strain was constructed with
shuttle plasmid pMMB207. The DNA fragments, including
amoA gene and its putative promoter and terminator region,
were amplified using the primer pair (AmoA-C-F/R) with
restriction enzyme sites Sac I. Following digested and purified,
the target gene was ligated into the pMMB207 vector. The
recombinant plasmid pMMB207-amoA was first introduced
into E. coli SM10 by chemical transformation, and then
transformed into the mutant strain 1amoA using bacterial
conjugation, thus generating the complemented strain C1amoA.
PCR amplification and sequencing were performed to verify
the complementation strain. Using the same approach, the
complemented strain C1tonB2-1 and C1tonB2-2 were also
constructed.

Siderophore CAS Plate Assays
Siderophore production was examined using chrome azurol S
(CAS) plate (Schwyn andNeilands, 1987).Wild-type and1amoA
mutant strains were incubated in LB medium overnight, and the
cells were collected by centrifugation at 5000× g for 10 min, then
washed and resuspended in PBS. Cells were normalized to an
OD600 of 1 in PBS. Ten microliters of suspension was spotted on
a CAS agar plate. The CAS plates were incubated for 24 h at 28◦C.

Statistical Analysis
Statistical analyses were performed using SPSS software (SPSS for
Windows 16, SPSS Inc., Chicago, IL, USA).Multiple comparisons
were performed using analysis of variance (ANOVA) followed
by Bonferroni’s post-test. The animal infection study analysis
was performed using the nonparametric Mann–Whitney U-test.
P < 0.05 was considered statistically significant.

RESULTS

Effect of Catecholamines on A. hydrophila

Growth
In this study, NE, Epi, Dopa, L-dopa, tyrosine, and tyramine
were evaluated for A. hydrophila growth promotion. The data
showed that in serum-SAPI minimul medium, NE, Epi, Dopa,
and L-dopa significantly stimulated the growth of A. hydrophila
(Figure 1), and resulted in a 1.81-, 1.72-, 1.75-, and 1.72-fold
increase (P < 0.05) in the specific growth rate of A. hydrophila,
respectively (0.58 ± 0.12, 0.55 ± 0.03, 0.56 ± 0.03, and 0.55
± 0.15 h−1 in the presence of NE, Epi, Dopa, and L-dopa,

FIGURE 1 | Growth of A. hydrophila NJ-35 in the presence of NE and

NE biosynthetic intermediates. An initial inoculum of A. hydrophila at

approximately 102 CFU/ml was grown in serum-containing medium

supplemented with individual hormones at a concentration of 100 µM at 28◦C

in a humid atmosphere containing 5% CO2. Results are shown as the means

± SEM from four independent replicates.

respectively, compared to 0.32 ± 0.09 h−1 for the control). The
growth of A. hydrophila in the presence of tyrosine and tyramine
exhibited no increase compared to the control (0.33 ± 0.23
and 0.30 ± 0.29 h−1 in the presence of tyrosine and tyramine,
respectively, compared to 0.32± 0.09 h−1 for the control).

To evaluate whether growth promotion by catecholamines
could be blocked, we performed growth inhibition tests
employing adrenergic and dopaminergic-type receptor
antagonists. The data demonstrated that the α-adrenergic
antagonist phentolamine was able to inhibit growth induction by
Epi and NE but could not block growth responses to Dopa and
L-dopa. The dopaminergic receptor antagonist chlorpromazine
was only able to inhibit growth induction by Dopa (Figure 2).
Furthermore, the β-adrenergic antagonist propranolol had
no effect on NE-, Epi-, Dopa-, or L-dopa-induced growth.
Receptor antagonists did not affect the growth of A. hydrophila
when used alone (data not shown). This indicates that growth
inhibition is the result of specific antagonism of the bacterial
response to stress hormones but does not result from antagonist
toxicity. To exclude the possibility that the receptor antagonists
directly bind NE, we examined the iron release from transferrin
in the presence of NE- phentolamine mixture by denaturing
urea-PAGE analysis (Figure 7). We found that the addition of
receptor antagonists did not influence the iron removal from
transferrin by NE, indicating that the antagonist effect was
caused by a blockade of bacteria to NE.

Effects of Catecholamines on Biofilm
Formation and Bacterial Adherence
Crystal violet staining assays were carried out to examine whether
catecholamines impacted the formation of biofilms. The results
showed that biofilm formation was increased after 16 h by the
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FIGURE 2 | Effects of receptor antagonists on hormone-induced growth responsiveness in A. hydrophila NJ-35. Catecholamine receptor antagonists were

added at a concentration of 400 mM to investigate the growth induced by NE (A), Epi (B), Dopa (C), and L-dopa (D). Results are shown as the means ± SEM from

three independent replicates.

addition of NE, Epi, or L-dopa, and NE exerted the strongest
effect on biofilm formation (Figure 3). Before performing this
assay, we examined the growth of A. hydrophila at an initial
inoculum of 5 × 106 CFU/ml. No significant modification in
growth was observed following exposure to the hormones used
in this assay (data not shown). This result indicates that the
enhancement of biofilm formation is not attributable to the
effects of the hormones on growth rate.

An in vitro adhesion assay showed that supplementation with
NE and Dopa could significantly enhance A. hydrophila adhesion
to HEp-2 cells (Figure 4). Other molecules used in this assay
induced no changes in adherence. Our findings demonstrated
that pathogenic phenotypes such as biofilm formation and
adhesion to HEp-2 cells can be regulated by different stress
hormones.

NE Enhances the Systemic Spread of
A. hydrophila In vivo
To corroborate whether NE can affect the course of A. hydrophila
proliferation in vivo, we performed an infection assay involving
the artificial modulation of catecholamine levels in mice. Groups
of six mice were intragastrically administered 0 or 1mg of
NE in 400 µl of PBS 12 h before infection with A. hydrophila
NJ-35. Mice were sacrificed at 6 h postinfection to collect their
spleens and lungs, and the bacterial loads were assessed in these

FIGURE 3 | Biofilm formation of A. hydrophila NJ-35 in the presence of

NE and NE biosynthetic intermediates. A. hydrophila NJ-35 was grown in

serum-containing medium supplemented with individual hormones at a

concentration of 100 µM. Crystal violet staining was performed to examine

biofilm formation. *P < 0.05 or **P < 0.01.

tissues. The pre-treatment of mice with NE after challenge
with A. hydrophila NJ-35 resulted in marked enhancements in
bacterial colonization compared to non-pre-treated controls.
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FIGURE 4 | A. hydrophila NJ-35 adhesion to HEp-2 cells in the

presence of NE and NE biosynthetic intermediates. A. hydrophila NJ-35

was grown in serum-SAPI medium supplemented with individual hormones at

a concentration of 100 µM for 18 h at 28◦C and was then seeded into HEp-2

cells at an MOI of 1. Adherent bacterial numbers were counted by plating out

the lysates of infected HEp-2 cells on LB agar. *P < 0.05 or **P < 0.01.

As shown in Figure 5, approximate 3- and 2-fold increases in
the spleen and lung, respectively, were observed compared to
the controls. This result demonstrated that NE can increase the
systemic spread of A. hydrophila NJ-35 and accelerate the course
of infection.

Involvement of Tf in Growth Stimulation by
NE in SAPI Medium
To evaluate the role of transferrin in the NE-induced growth
stimulation of A. hydrophila, we performed a growth assay
employing 39 µM transferrin instead of serum in SAPI medium.
As expected, NE enhanced the growth of A. hydrophila in SAPI
medium containing holotransferrin (Figure 6). This result is
similar to the results that we obtained in the NE-mediated growth
stimulation assay with the addition of serum into SAPI medium
(Figure 1). In contrast,A. hydrophila growth did not significantly
change in apotransferrin-containing medium in the presence
of NE. These results indicate that holotransferrin can take the
place of serum in NE-induced growth stimulation. Further, the
urea-PAGE analysis of the Tf-NE complex showed that in the
presence of NE, purified diferric Tf was gradually converted into
the monoferric or apo forms of Tf (Figure 7).

Stimulation of A. hydrophila Growth Is Not
Mediated by Amonabactin
To determine whether NE-enhanced growth ofA. hydrophilaNJ-
35 was mediated by amonabactin, we constructed an isogenic
deletion mutant of amoA. The CAS plate assay showed that
the 1amoA mutant failed to produce amonabactin (Figure 8).
The addition of 100 µM NE enhanced the growth of the
1amoA mutant (Figure 9) and resulted in a 1.45-fold increase
(P < 0.05) in the specific growth rate (0.32 ± 0.06 h−1 in the
presence of NE, compared to 0.22 ± 0.03 h−1 for the untreated
control), while the similar NE-mediated growth promotion was
observed for the wild-type strain (0.45 ± 0.23 h−1 in the

FIGURE 5 | Bacterial loads in mice with or without NE pre-treatment.

Bacterial loads in the spleen (A) and lung (B) are expressed as CFU/g of

tissue. The experiment was repeated three times. *P < 0.05 or **P < 0.01.

FIGURE 6 | Growth of A. hydrophila NJ-35 in SAPI medium containing

apo-transferrin (ATF) or holo-transferrin (HTF) in the presence of NE.

The initial inoculum of A. hydrophila NJ-35 was 1 × 103 CFU/ml, and the

concentration of transferrin was 39 µM (3mg/ml). Data are expressed as the

means ± SEM of five independent replicates. *P < 0.05.
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FIGURE 7 | Urea polyacrylamide gel electrophoresis demonstrating iron removal from Tf in the presence of NE over time. A. hydrophila NJ-35 was

inoculated in HTF-SAPI medium containing 100 mM Tris-HCl buffer at 37◦C. The numbers below the lanes represent the number of hours of incubation with NE. Lane

M contains the iron-free (apo-Tf), monoferric (Fe-Tf), and saturated (Fe2-Tf) isoforms as markers. Lane C shows Fe2-Tf incubated in the medium for 15 h without NE.

Lane P shows Fe2-Tf incubated in the medium for 15 h with NE and phentolamine.

FIGURE 8 | Assessment of the ability of wild-type (WT) and 1amoA

mutant strains of A. hydrophila NJ-35 to produce amonabactin as

determined by CAS plate assay. The production of amonabactin is

detected as an orange halo resulting from the removal of iron from the

blue-colored CAS dye complex.

presence of NE, compared to 0.32 ± 0.20 h−1 for the untreated
control). Moreover, compared with the wild-type strain, the
1amoA mutant strain showed a significant growth defect in
serum-SAPI medium (Figure 10A). The complementary strain,
C1amoA could restore the production of amonabactin, and
the C1amoA growth was almost restored to the wildtype level
in the presence or absence of NE (data not shown). These
data indicated that amonabactin plays a crucial role in growth
in serum-based medium, whereas the ability of A. hydrophila
to synthesize amonabactin is not essential for NE-dependent
growth promotion in serum-supplemented medium.

TonB2 Contributes to NE-Dependent
Growth Promotion in A. hydrophila
As the present study indicated that NE-enhanced A. hydrophila
growth was attributable to increased iron availability in the
bacterial cell, we determined whether this process required

FIGURE 9 | Growth stimulation by NE is independent of amonabactin.

A. hydrophila NJ-35 wild-type (WT) and 1amoA strains were grown in

serum-supplemented SAPI medium in the presence or absence of NE. Results

are shown as the means ± SEM from four independent replicates.

the TonB-dependent transport system. The TonB system is
responsible for energizing transporters in the outer membrane
(Postle and Larsen, 2007). A homology search of the genome
sequence of A. hydrophila NJ-35 revealed the presence of three
TonB systems, encoded by tonB1-exbB1-exbD1, tonB2-2-exbB2-
exbD2-tonB2-1, and tonB3-exbB3-exbB3-exbD3 (Figure 10B). To
determine which TonB system is involved in the NE-mediated
growth enhancement of A. hydrophila, we constructed tonB1,
tonB2-1, tonB2-2, and tonB3 single deletion mutants. The
1tonB2-1 and 1tonB2-2 strains demonstrated no responses
to NE in serum-containing medium (0.13 ± 0.09 and 0.13
± 0.04 h−1 in the presence of NE, respectively, compared to
0.12 ± 0.03 and 0.11 ± 0.05 h−1 for the untreated control),
whereas the growth of the complemented strain was almost
restored to the level of the wild-type strain in responses to NE
(Figure 11). However, NE still enhanced the growth of both the
1tonB1 and 1tonB3 mutants (Figure 11) and resulted in a 2.0-
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FIGURE 10 | Growth of the wild-type A. hydrophila strain, its derivative amoA and the tonB mutants in serum-supplemented medium (A) and genetic

organization of the three-TonB system gene clusters of A. Hydrophila NJ-35 (B). The growth yield is expressed as Log10CFU/ml, and results are shown as the

means ± SEM from six independent replicates. *P < 0.05, or ***P < 0.001.

FIGURE 11 | TonB2-dependent growth stimulation by NE in

serum-supplemented SAPI medium. The specific growth rate calculated

from the cell densities measured during exponential growth phase. The results

are shown as the means ± SEM from four independent replicates. *P < 0.05.

and 1.5-fold increase (P < 0.05) in the specific growth rate,
respectively (0.28 ± 0.07 and 0.28 ± 0.06 h−1 in the presence of
NE, respectively, compared to 0.14 ± 0.03 and 0.19 ± 0.10 h−1

for the untreated control). In addition, the growth yields of all
four mutants weremarkedly lower than that of the parental strain

in serum-supplemented medium (Figure 10A). These results
indicated that only the TonB2 system is necessary for NE-
dependent growth stimulation in serum-containing medium.
Furthermore, it is notable that all three TonB systems are
required for the optimal growth of A. hydrophila in serum-
containing medium.

DISCUSSION

In the recent years, microbial endocrinology has revealed that
manymicroorganisms have evolved specificmechanisms to sense
and respond to stress hormones. However, most investigations to
date have concentrated on mammalian pathogens. Epinephrine,
dopamine and norepinephrine are the predominant stress
hormones that are released from the chromaffin tissue located
in the head kidney (Perry and Capaldo, 2011) as well as
from adrenergic nerve endings in fish (Gamperl et al., 1994).
To determine the effect of the catecholamine stress hormones
on A. hydrophila growth, in this study, we used a minimal
medium (SAPI) supplemented with serum to simulate in vivo
iron-restricted environment. In considering the catecholamine
concentrations used in the present study, it should be emphasized
that micromolar concentrations are meant to mimic the
concentrations in the host. However, because catecholamines
levels can change according to stress level, tissue location and
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circadian rhythm, the actual catecholamine concentrations inside
tissues and blood are difficult to accurately determine (Li et al.,
2012). For example, higher concentrations can be found in
innervated tissues such as the gut, and the concentration of
NE can be up to 10 mM in neuronal synapses (Lyte, 2004).
The concentration of catecholamines used in this study (100
µM) is, therefore, biologically relevant. Similar concentration
range has been used in a previous study, which has investigated
A. hydrophila responses to catecholamines (Kinney et al., 1999).

Our study demonstrated that NE, Epi, Dopa, and L-
dopa could significantly increase A. hydrophila growth in
SAPI-serum medium, whereas tyrosine and tyramine did not
significantly alter the bacterial growth. These results suggest that
A. hydrophila has evolved catecholamine response systems for
the specific hormones. Further investigation demonstrated that
the induced growth of A. hydrophila by Epi and NE could be
blocked by α- but not β-receptor antagonists; however, the α-
receptor antagonist did not neutralize induction by Dopa. In
contrast, the dopaminergic receptor antagonist blocked growth
induction by Dopa but did not demonstrate any effects on
other catecholamines with the ability to stimulate bacterial
growth. This may reflect the fact that bacterial receptor systems
for catecholamine possess a degree of specificity, similar to
mammalian catecholamine receptors (Yang et al., 2014). In terms
of bacterial catecholamine receptors, there is so far no genomic
evidence for the existence of a classical adrenergic receptor motif
in bacterial species. However, Clarke et al. (2006) reported that
NE was able to bind to the E. coli O157:H7 two-component
regulator sensor kinase QseC, leading to the hypothesis that
QseC is the bacterial catecholamine receptor. Later on, there are
increasing reports of alternative receptors which participate in
bacterial responsiveness to adrenaline or noradrenaline, such as
BasSR and CpxAR two-component signal transduction systems
(Humphreys et al., 2004; Marchal et al., 2004). In this paper,
the evidence from the antagonist experiments indicates the
presence of specific recognition systems for NE, Epi and Dop
that are essential for induction of bacterial growth. However,
unequivocal evidence for the existence of bacterial α-adrenergic
and dopaminergic receptors in A. hydrophila will require further
investigation.

In this study, we showed that catecholamines can increase
biofilm formation and adhesion, which are crucial for
A. hydrophila infections. Norepinephrine exerted the strongest
impact on biofilm formation, but the effects of Dopa on bacterial
adhesion were greater than those of norepinephrine. These
discrepancies may be attributable to the possibility that there is
more than one system to respond to stress hormones. In E. coli
O157:H7, neuroendocrine hormones are sensed by the QseBC
and QseEF two component systems (Rasko et al., 2008), which
are involved in regulating motility and the expression of the
enterocyte effacement (LEE) gene locus, respectively (Reading
et al., 2007). In this regard, it may be interesting to further
evaluate which systems contribute to catecholamine hormone
sensing and the regulation of stress-associated gene expression
in A. hydrophila.

Additionally, in vivo experiment showed that NE
administration increased bacterial loads in the spleen and lung

of mice at 6 h post-infection. It is not clear which mechanism
encourages the colonization in tissues byA. hydrophila. However,
the addition of NE resulted in enhanced bacterial adherence and
biofilm production in vitro, which implies that NE increased
fitness for transmission of A. hydrophila in mice. Furthermore,
whether NE impairs host immune system is not known at this
time, but is a future investigative objective of our laboratories.

Intriguingly, we found that all growth-stimulatory hormones
employed in this assay contained a 3,4-dihydroxybenzoyl
moiety. A previous study showed that the 3,4-dihydroxybenzoyl
(catechol) structure is an essential element for the removal of iron
from transferrin (Eisenhofer et al., 1996). Furthermore, some
metabolites of catecholamine hormones that contain the catechol
moiety, such as dihydroxyphenyl glycol, and dihydroxymandelic
acid, have been demonstrated to exert growth-promoting effects
(Nakano et al., 2007). Thus, we speculate that hormone-mediated
growth promotion may be involved in facilitating the utilization
of iron by bacteria.

In the host, the concentration of freely available iron
is very low in the circulation. Ferric iron is generally
sequestered by high-affinity iron-chelating proteins such as
transferrin in the plasma (Schade and Caroline, 1946). Here,
we investigated the role of transferrin in the NE-induced
A. hydrophila growth. Similar to the effect of serum, the
addition of transferrin to SAPI medium enhanced the growth
of A. hydrophila. Further, we demonstrated that iron could be
released from transferrin in the presence of NE, as determined
by denaturing urea-PAGE analysis. The data indicated that
NE has the ability to remove iron from ferric transferrin in
A. hydrophila.

For many pathogens, the acquisition of iron generally
involves the production and extraction of siderophores (Meyer
et al., 1996). Siderophores can capture iron from transferrin
or inaccessible ferric iron found in the environment and
subsequently deliver it into the bacterial cell through specialized
uptake mechanisms (Schalk et al., 2012). A report from
Barghouthi et al. (1989) showed that amonabactin is necessary
for iron acquisition from Fe-transferrin in A. hydrophila. Further
study showed that amoA was the key gene in the seven-
gene cluster involved in the biosynthesis of amonabactin in
A. hydrophila 495A2 (Barghouthi et al., 1991). To determine
whether amonabactin was required for NE-induced growth
promotion of A. hydrophilaNJ-35 in the iron-restricted medium,
we inactivated the amoA gene. The data here showed that
whether in the presence or absence of NE, the amoA mutant
showed a significant reduction in growth when compared
with wildtype, indicating that amonabactin plays a crucial role
in bacterial growth in the restrictive environment of serum-
SAPI medium. However, the addition of NE significantly
stimulated the growth of both wild-type and amoA mutant
strains, suggesting that the NE-mediated iron acquisition from
transferrin in iron-restricted medium is independent of the
ability to synthesize amonabactin. The precise mechanism(s)
by which NE modulates iron uptake from iron-Tf remain to
be determined. Although, we speculate that NE-mediated iron
uptake from iron-Tf might be due to NE acting directly in a
siderophore-like manner, we could not exclude the possibility
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that NE-Tf interactions were releasing iron for subsequent uptake
by bacterial iron acquisition systems. Future work will be carried
out to elucidate this.

The process of siderophore-mediated iron acquisition from
transferrin is energy-dependent. The active transport of iron-
siderophore compounds across the outer membrane is energized
by a complex of proteins called the TonB energy transduction
system (Postle and Larsen, 2007). A. hydrophila possesses three
TonB systems, similar to Vibrio vulnificus (Kustusch et al., 2012).
To discover which TonB system was required in NE-mediated
iron acquisition of A. hydrophila, we individually inactivated
the three TonB systems. We found that all three tonB mutants
exhibited lower growth yields compared with the wild-type
strain in SAPI medium containing serum, indicating that all
three TonB systems were involved in iron acquisition from
Fe-transferrin in serum. However, in the presence of NE, the
tonB2 mutant demonstrated no growth promotion, although
this stimulatory effect was observed for both the tonB1 and
tonB3 mutants. This result indicates that the TonB2 system
may play an important role in NE-induced iron acquisition
from Fe-transferrin in serum, and TonB2-dependent growth
promotion might be important for A. hydrophila infection in
the host under stress. Moreover, the findings showed that both
the 1tonB2-1 and 1tonB2-2 strains could not respond to NE in
serum-containing medium, indicating that TonB2-1 and TonB2-
2 are absolutely required for the function of the TonB2 system
in A. hydrophila. The observation that NE-mediated growth
promotion of A. hydrophila is TonB-dependent strongly suggests
that a specific TonB-dependent outer membrane receptor might
be involved in the transport of iron from transferrin via
norepinephrine. Further studies are necessary to demonstrate
which receptors are needed for NE-induced growth promotion of
A. hydrophila.

In conclusion, our results demonstrate that the stress
hormones NE, Epi, and Dopa stimulate bacterial growth
and increase biofilm formation and cell adhesion ability
in A. hydrophila. These results partially explain why stress
increases the risk of A. hydrophila infection in fish. We also
provide evidence to suggest that NE-induced growth promotion
correlates with iron uptake from transferrin facilitated by
norepinephrine. Although, the mechanisms of communication
between bacteria and their hosts are not well understood, the
modulation of bacterial growth and virulence by stress hormones
brings a new perspective to infectious disease processes induced
by bacteria.
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