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Acinetobacter baumannii has emerged as an important opportunistic pathogen due
to its ability to acquire resistance to most currently available antibiotics. Colistin is
often considered as the last line of therapy for infections caused by multidrug-resistant
A. baumannii (MDRAB). However, colistin-resistant A. baumannii strain has recently
been reported. To explore how multiple drug-resistant A. baumannii responded to
colistin resistance, we compared the genomic, transcriptional and proteomic profile
of A. baumannii MDR-ZJ06 to the induced colistin-resistant strain ZJ06-200P5-1.
Genomic analysis showed that joxC was inactivated by ISAba7 insertion, leading to LPS
loss. Transcriptional analysis demonstrated that the colistin-resistant strain regulated its
metabolism. Proteomic analysis suggested increased expression of the RND efflux pump
system and down-regulation of FabZ and B-lactamase. These alterations were believed
to be response to LPS loss. In summary, the joxC mutation not only established colistin
resistance but also altered global gene expression.

Keywords: Acinetobacter baumannii, colistin, whole-genome sequencing, transcriptome, proteome

INTRODUCTION

Acinetobacter baumannii has emerged as an important opportunistic pathogen due to its ability
to acquire resistance to most currently available antibiotics (Peleg et al., 2008; Howard et al., 2012;
Antunes et al., 2014). Since current treatment options for multi-drug resistant (MDR) A. baumannii
are extremely limited, colistin is often considered as the last line of the therapy for infections
caused by MDR A. baumannii (Bae et al., 2016; Cheah et al., 2016b). However, colistin-resistant
A. baumannii strain has recently been reported (Cai et al., 2012).

Colistin is a polycationic antimicrobial peptide that targets the polyanionic bacterial
lipopolysaccharide (LPS) of Gram-negative bacteria. Two different colistin resistance mechanisms
have previously been reported (Beceiro et al., 2014). The first mechanism inactivates the lipid A
biosynthesis pathway, leading to the complete loss of surface LPS. Mutations in IpxC, IpxA, or
IpxD are involved in the first mechanism. The pmrAB two-component system mediates the second
resistance mechanism. Mutations in pmrA and pmrB induce the activity of pmrC, which adds
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phosphoethanolamine (PEtn) to the hepta-acylated form of
lipid A (Beceiro et al, 2011). Further mutations in vac],
pldA, ttg2C, pheS and a conserved hypothetical protein were
reported to involve in reduced colistin susceptibility through
novel resistance mechanisms (Thi Khanh Nhu et al., 2016). Four
putative colistin resistant genes: A1S_1983, hepA, A1S_3026,
and rsfS were also identified in our previous study (Mu et al,
2016).

The response to LPS alteration has been investigated
via transcriptional analysis. In response to LPS alteration,
A. baumannii alters the expression of critical transport
and biosynthesis systems associated with modulating the
composition and structure of the bacterial surface (IpxA; Henry
et al., 2012) or alters the expression of genes associated
with outer membrane structure and biogenesis (pmrB; Cheah
et al., 2016a). Moreover, the response to colistin is highly
similar to the transcriptional alteration observed in an LPS-
deficient strain (Henry et al., 2015). Colistin resistance was also
explored using proteomic methods. There were 35 differentially
expressed proteins. Most differentially expressed proteins were
down-regulated in the colistin resistant strain, including outer
membrane proteins, chaperones, protein biosynthesis factors,
and metabolic enzymes (Fernandez-Reyes et al., 2009). However,
the combination of genomic, transcriptomic, and proteomic
methods to examine the colistin resistance mechanism in
A. baumannii has rarely been reported. Furthermore, the
strain used in this study was an MDR strain, but not
laboratory strains (ATCC 19606, ATCC 17978) that do not
represent clonal lineages in a clinical environment. Here, we
used genome, transcriptome, and proteome to elucidate the
colistin resistance mechanism in MDR A. baumannii. There
was an ISAbal insertion in IpxC (ABZJ_03720) in Z]06-
200P5-1 compared with the genome sequence of MDR-Z]06,

AAAAATATT
MOR 2306 Eﬂ::) jpxc

L

AAAAATATT

FIGURE 1 | Whole genome sequencing revealed the colistin-resistance
mechanism in A. baumannii ZJ06-200P5-1. The gene JjpxC was intact in
MDR-ZJ06, while in ZJ06-200P5-1, JoxC was inactivated by the insertion
sequence ISAbai.

where IpxC encoded an UDP-3-O-acyl-N-acetylglucosamine
deacetylase.

MATERIALS AND METHODS

Bacterial Strains, Media, and Antibiotics
Restriction enzymes, T4 ligase, and Taq DNA polymerase
were purchased from TaKaRa (Otsu, Shiga, Japan). The A.
baumannii strain MDR-Z]J06 was isolated from the bloodstream
of a patient in Hangzhou, China, in 2006. All A. baumannii
cultures were grown at 37 °C in Mueller-Hinton (MH) agar and
cation-adjusted MH broth (CAMHB) (Oxoid, Basingstoke, UK).
Colistin was purchased from Sigma (Shanghai, China).

Generation of Colistin-Resistant Mutant

A colistin-resistant mutant was generated in A. baumannii
MDR-Z]J06 by a previously described method (Li et al., 2006).
Briefly, first, MDR-ZJ06 was cultured in CAMHB containing
colistin at 8 x minimum inhibitory concentration (MIC).
After overnight incubation, the culture was diluted 1:1000 with
CAMHB containing colistin at 64 x MIC and then incubated
at 37 °C overnight. Finally, the culture was diluted 1:100 with
CAMHB containing colistin at 200 x MIC. After overnight
incubation, the culture was plated on plates containing 10 pg
of colistin at an appropriate dilution, and then one of colistin
resistant colonies was collected for further experiments and
designated as ZJ06-200P5-1. MICs for colistin and tigecycline
were determined by E-test (bioMérieux, France) on MH agar, and
the antimicrobial activities of the other antimicrobial agents were
detected by disk diffusion. The results were interpreted according
to CLSI or EUCAST breakpoints.

Whole Genome DNA Sequencing and

Analysis

7J06-200P5-1 cells were cultured from a single colony overnight
at 37 °C in MH broth. The genomic DNA was extracted
via a QIAamp DNA minikit (Qiagen, Valencia, CA) following
the manufacturer’s protocol. Agarose gel and a NanoDrop
spectrophotometer were used to determine the quality and
quantity of extracted genomic DNA. The 300 bp library
for Illumina paired-end sequencing was constructed from 5
ng of genome DNA of ZJ06-200P5-1 by staff at Zhejiang
Tianke (Hangzhou, China). Mapping and SNP detection were
performed via Breseq (Deatherage and Barrick, 2014). The
regions containing the detected SNPs were amplified by PCR. The
PCR products were sent to Biosune (Biosune, Hangzhou, China)
for Sanger sequencing.

TABLE 1 | Antibiotic susceptibility of A. baumannii MDR-ZJ06 and its colistin resistant mutant ZJ06-200P5-1.

Strains co? TGC? IPM  MEM

FEP CAZ CTX ATM PRL

TZP SCF SAM CN AK TE MH CIP CT

MDR-ZJ06
ZJ06-200P5-1

0.38 mg/L
>256 mg/L

4 mg/L 8 8 6 6

0.5 mg/L 22 22 20 20 15

6 6 6 16 10 6 6 6 10 6 14
22 17 19 30 22 6 6 8 26

CO, colistin; TGC, tigecycline; IPM, imipenem; MEM, meropenem; FER, cefepime; CAZ, ceftazidime; CTX, cefotaxime; ATM, aztreonam; PRL, Piperacillin; TZF, piperacillin/tazobactam;
SCF, Cefoperazone/sulbactam; SAM, ampicillin/sulbactam; CN, gentamicin; AK, amikacin; TE, tetracycline; MH, minocycline; CIF, Ciprofloxacin; CT, colistin.
aThe MIC of colistin and tigecycline were determined by broth dilution method, while antimicrobial sensitivity of other antibiotics were detected by disk diffusion.
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TABLE 2 | Genes changed significantly in transcriptome.

Synonym Product logFC logCPM P-value FDR
ABZJ_00055 hypothetical protein 8.308068 13.717 1.26E-78 4.54E-76
ABZJ_00068 hypothetical protein 6.4468 9.203574 2.14E-67 4.61E-65
ABZJ_00037 hypothetical protein 4.368832 9.669037 3.48E-68 9.36E-66
ABZJ_00056 hypothetical protein 4.349519 12.2059 6.03E-65 1.08E-62
ABZJ_00332 hypothetical protein 4.264896 9.455077 2.39E-53 2.86E-51
ABZJ_00036 hypothetical protein 3.449637 9.968726 9.61E-27 5.17E-25
ABZJ_01879 hypothetical protein 2.810666 6.769621 9.95E-35 7.65E-33
ABZJ_01880 putative transposase 2.758133 6.676606 5.52E-27 3.13E-25
ABZJ_01079 hypothetical protein 2.585295 6.001793 4.14E-10 6.55E-09
ABZJ_03753 hypothetical protein 2.318997 9.492231 2.51E-21 1.08E-19
ABZJ_00333 hypothetical protein 2.314205 5.437541 2.36E-11 4.53E-10
ABzJ_01881 transposase component 2.25458 8.338274 9.50E-21 3.93E-19
ABZJ_01133 heat shock protein 2.180889 13.35847 1.03E-25 5.06E-24
ABZJ_01180 putative phage-like protein 2.066152 3.22126 4.47E-06 3.56E-05
ABZJ_03752 PGAP1-like protein 2.014551 10.16569 2.49E-27 1.49E-25
ABZJ_00060 Thiol-disulfide isomerase and thioredoxin 1.894318 12.3252 7.68E-20 2.75E-18
ABZJ_00894 lactoylglutathione lyase-like protein 1.797874 6.779815 5.27E-15 1.62E-13
ABZJ_00054 N-alpha-acetylglutamate synthase (amino-acid acetyltransferase) 1.77044 10.25589 3.24E-20 1.27E-18
ABZJ_01151 hypothetical protein 1.634908 3.574211 4.88E-06 3.84E-05
ABZJ_03714 hypothetical protein 1.61859 8.500912 1.39E-08 1.85E-07
ABZJ_01900 acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit alpha 1.5627437 6.102611 2.98E-06 2.49E-05
ABzZJ_01222 hypothetical protein 1.5615854 2.111384 0.011897 0.034227
ABZJ_01191 hypothetical protein 1.46809 2.203352 0.011349 0.032877
ABZJ_01872 hypothetical protein 1.423713 7.613403 1.64E-08 2.10E-07
ABzJ_01187 hypothetical protein 1.423595 5.112417 2.82E-07 2.81E-06
ABZJ_01857 hypothetical protein 1.411761 2.566001 0.010144 0.029905
ABZJ_01829 Acyl-CoA dehydrogenase 1.402255 6.594396 4.45E-06 3.56E-05
ABZJ_01150 hypothetical protein 1.321675 3.205499 0.000936 0.003799
ABZJ_00028 lytic murein transglycosylase family protein 1.296752 10.96489 3.46E-14 9.79E-13
ABZJ_00976 hypothetical protein 1.295503 5.5652053 1.46E-07 1.57E-06
ABZJ_01855 hypothetical protein 1.290522 2.587494 0.016132 0.044395
ABZJ_01186 hypothetical protein 1.249298 2.481015 0.013475 0.038054
ABZJ_00978 hypothetical protein 1.216859 3.038132 0.00684 0.021395
ABZJ_00977 hypothetical protein 1.209422 3.887522 0.000232 0.001118
ABzJ_00102 D-lactate dehydrogenase FAD-binding protein 1.170013 8.813908 1.91E-10 3.15E-09
ABZJ_01149 hypothetical protein 1.156232 3.314522 0.003302 0.011138
ABZJ_00053 alkanesulfonate transport protein 1.143156 6.421362 5.15E-06 3.99E-05
ABZJ_01275 hypothetical protein 1.122845 8.385252 1.31E-08 1.76E-07
ABZJ_03838 membrane-fusion protein 1.119324 7.708838 1.84E-08 2.33E-07
ABZJ_01901 acetoin:26-dichlorophenolindophenol oxidoreductase beta subunit 1.105826 6.349341 5.58E-05 0.000323
ABZJ_01899 lipoate synthase 1.08338 4.583472 0.003397 0.011422
ABZJ_00360 hypothetical protein 1.076106 8.065171 1.34E-07 1.46E-06
ABZJ_01210 hypothetical protein 1.065917 3.456549 0.011028 0.032156
ABZJ_01160 hypothetical protein 1.048988 3.144467 0.012194 0.034895
ABzJ_01148 hypothetical protein 1.048966 5.540519 1.77E-05 0.000122
ABZJ_00099 L-lactate permease 1.044891 10.0835 8.49E-08 9.61E-07
ABZJ_00901 major facilitator superfamily multidrug resistance protein 1.016944 9.235389 1.47E-08 1.91E-07
ABZJ_01775 6-pyruvoyl-tetrahydropterin synthase 1.014549 10.17374 3.05E-12 6.84E-11
ABZJ_03786 VirP protein —1.0004 6.133241 3.35E-06 2.73E-05
ABZJ_01269 TPR repeat-containing SEL1 subfamily protein —1.00222 4.702232 0.000305 0.001408
(Continued)
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TABLE 2 | Continued

Synonym Product logFC logCPM P-value FDR
ABZJ_00120 hypothetical protein —1.00591 7.042084 6.25E-07 5.85E-06
ABZJ_00896 nucleoside-diphosphate sugar epimerase —1.0079 7.57903 9.80E-07 8.86E-06
ABZJ_01258 hypothetical protein —1.01127 4.48134 0.002855 0.009692
ABZJ_01260 metal ion ABC transporter substrate-binding protein/surface antigen —1.01249 9.488595 2.29E-08 2.86E-07
ABzJ_01120 urease accessory protein UreE —1.01439 6.914944 6.34E-07 5.88E-06
ABZJ_01873 hypothetical protein —1.01999 5.846082 1.89E-05 0.000128
ABZJ_03812 hypothetical protein —1.02082 4.567471 0.001409 0.005227
ABZJ_01101 hypothetical protein —1.03046 5.533349 0.001752 0.006282
ABZJ_01908 Zn-dependent hydrolase, including glyoxylase —1.03588 9.460654 2.53E-10 412E-09
ABZJ_03819 hypothetical protein —1.05745 9.905586 6.08E-11 1.11E-09
ABZJ_03796 putative acyltransferase —1.06273 6.680253 2.34E-07 2.42E-06
ABZJ_00947 hypothetical protein —1.0641 6.738813 1.36E-06 1.21E-05
ABZJ_01169 hypothetical protein —1.06442 8.404764 8.75E-07 7.98E-06
ABZJ_00345 hypothetical protein —1.06443 6.560939 2.47E-07 2.53E-06
ABZJ_03828 hypothetical protein —1.06567 4.05012 0.000406 0.001813
ABZJ_00922 hypothetical protein —1.07121 5.5699955 7.64E-05 0.000424
ABZJ_01907 response regulator —1.07682 6.813752 2.94E-07 2.90E-06
ABZJ_03790 gamma-aminobutyrate permease —1.07931 8.18838 3.71E-05 0.000227
ABZJ_00882 hypothetical protein —1.07943 9.751157 2.22E-11 4.34E-10
ABZJ_01078 hypothetical protein —1.08109 10.14275 5.68E-14 1.49E-12
ABZJ_01132 glutamate dehydrogenase/leucine dehydrogenase —1.08366 7.760303 2.14E-07 2.24E-06
ABZJ_03802 putative homogentisate 1,2-dioxygenase —1.08726 6.643847 0.000162 0.000822
ABZJ_00334 hypothetical protein —1.09533 6.571739 7.17E-08 8.25E-07
ABZJ_01250 outer membrane receptor protein —1.10965 7.442322 0.000193 0.000956
ABZJ_00367 hypothetical protein —1.11395 8.476819 9.04E-09 1.25E-07
ABZJ_00946 hypothetical protein —1.12668 5.862006 7.32E-06 5.59E-05
ABZJ_01265 hypothetical protein —1.12706 10.47521 4.03E-13 9.42E-12
ABZJ_01257 Zn-dependent protease with chaperone function —1.13229 6.680195 1.30E-05 9.11E-05
ABZJ_01110 putative hemolysin-related protein —1.13995 9.22038 1.74E-11 3.54E-10
ABZJ_03720 UDP-3-0O-acyl-N-acetylglucosamine deacetylase —1.14429 8.585685 1.05E-05 7.52E-05
ABZJ_01960 isochorismate hydrolase —1.14761 5.633402 0.000121 0.000638
ABZJ_00942 hypothetical protein —1.16912 8.72549 8.38E-09 1.17E-07
ABZJ_03859 putative RND type efflux pump involved in aminoglycoside resistance (AdeT) —1.17363 8.75427 3.19E-05 0.000202
ABzJ_01874 hypothetical protein —1.17434 5.206346 2.41E-05 0.000159
ABzJ_01917 putative acyl carrier protein phosphodiesterase (ACP phosphodiesterase) —1.18991 7.045816 5.55E-08 6.50E-07
ABZJ_01861 membrane-fusion protein —1.20577 6.002924 1.77E-07 1.87E-06
ABZJ_03742 hypothetical protein —1.20817 3.772045 0.001579 0.005748
ABZJ_01262 hypothetical protein —1.21556 4.167491 8.53E-05 0.000466
ABZJ_01929 Aspartate ammonia-lyase (Aspartase) —1.21837 11.63816 9.24E-14 2.31E-12
ABZJ_00924 hypothetical protein —1.2423 8.464578 1.01E-10 1.79E-09
ABZJ_01155 hypothetical protein —1.2668 10.80427 1.20E-16 3.79E-15
ABZJ_00388 2-polyprenyl-6-methoxyphenol hydroxylase —1.26695 7.901741 1.19E-09 1.81E-08
ABZJ_01862 multidrug ABC transporter ATPase —1.27715 6.94382 4.78E-09 6.86E-08
ABZJ_00944 hypothetical protein —1.28276 5.658916 2.33E-08 2.88E-07
ABZJ_01156 hypothetical protein —1.28415 8.332979 5.92E-11 1.10E-09
ABZJ_01826 AraC-type DNA-binding domain-containing protein —1.29289 5.11387 5.57E-07 5.26E-06
ABZJ_03744 hypothetical protein —1.29678 8.720807 1.08E-08 1.47E-07
ABZJ_03737 hypothetical protein —1.30269 10.28829 3.31E-20 1.27E-18
ABZJ_00940 hypothetical protein —1.30722 6.280622 2.75E-07 2.79E-06
ABZJ_01218 hypothetical protein —1.30837 4.257169 9.06E-06 6.63E-05
ABZJ_00061 putative transcriptional regulator —1.31564 7.634498 1.67E-10 2.80E-09
(Continued)
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TABLE 2 | Continued

Synonym Product logFC logCPM P-value FDR

ABZJ_01887 hypothetical protein —1.3281 6.449578 1.02E-07 1.14E-06
ABZJ_01025 homocysteine/selenocysteine methylase —1.33719 7.528478 3.07E-10 4.93E-09
ABZJ_00110 GNAT family acetyltransferase —1.33942 4.887691 1.06E-06 9.50E-06
ABZJ_01242 hypothetical protein —1.3506 7.369014 2.45E-09 3.61E-08
ABZJ_00895 hypothetical protein —1.35351 6.693904 7.37E-12 1.56E-10
ABZJ_03712 putative flavoprotein —1.38598 6.6067 2.04E-09 3.04E-08
ABZJ_00048 transcriptional regulator —1.40027 7.755295 9.36E-11 1.68E-09
ABZJ_03785 glutamate racemase —1.40496 7.417511 7.08E-12 1.62E-10
ABZJ_00938 hypothetical protein —1.40799 6.629998 1.09E-10 1.88E-09
ABZJ_01230 hypothetical protein —1.41279 10.19585 3.47E-19 1.20E-17
ABZJ_00124 glycine/D-amino acid oxidase (deaminating) —1.46015 13.3987 8.58E-14 2.20E-12
ABZJ_03791 histidine ammonia-lyase (Histidase) —1.49736 9.748038 2.37E-08 2.90E-07
ABZJ_03739 hypothetical protein —1.49749 13.98113 3.54E-13 8.47E-12
ABzJ_00881 glutamine amidotransferase —1.61327 8.144142 5.09E-14 1.37E-12
ABZJ_00988 hypothetical protein —1.564819 6.1324 7.44E-09 1.06E-07
ABZJ_01840 putative ferric siderophore receptor protein —1.55785 9.806018 9.74E-10 1.52E-08
ABZJ_00997 hypothetical protein —1.58106 5.257799 3.12E-08 3.77E-07
ABZJ_00339 HSP90 family molecular chaperone —1.6168 11.15864 7.57E-23 3.54E-21
ABZJ_00373 Type Il secretory pathway, ATPase PulE/Tfp pilus assembly pathway, ATPase PilB —1.6419 6.706339 3.45E-14 9.79E-13
ABZJ_01845 phosphatase/phosphohexomutase —1.68301 7.222507 3.67E-12 8.06E-11
ABZJ_03793 urocanate hydratase —1.69267 10.89217 1.13E-07 1.25E-06
ABZJ_03754 Rhs element Vgr family protein —1.69503 8.757228 5.86E-18 1.97E-16
ABZJ_00945 hypothetical protein —1.72533 5.192791 2.02E-11 4.03E-10
ABZJ_01002 putative ABC oligo/dipeptide transport, ATP-binding protein —1.73182 6.449009 4.32E-14 1.19E-12
ABZJ_01259 hypothetical protein —1.75565 7.198513 1.30E-12 2.98E-11
ABzZJ_00114 short chain dehydrogenase family protein —1.76754 7.176594 1.03E-13 2.52E-12
ABZJ_01177 hypothetical protein —1.8053 8.135954 6.06E-15 1.81E-13
ABZJ_03792 hypothetical protein —1.82418 6.284478 3.56E-06 2.88E-05
ABZJ_01219 hypothetical protein —1.86448 9.22858 7.68E-22 3.45E-20
ABZJ_01088 carbonic anhydrase —1.94984 9.430551 1.08E-27 6.83E-26
ABZJ_00346 hypothetical protein —2.03948 6.219886 1.15E-16 3.73E-15
ABZJ_01207 hypothetical protein —2.1746 7.126199 6.11E-20 2.27E-18
ABZJ_01886 hypothetical protein —2.33548 5.458495 1.05E-11 2.18E-10
ABZJ_03766 putative secretory lipase precursor —2.38284 9.073946 1.11E-31 7.47E-30
ABZJ_01206 hypothetical protein —3.28101 9.194837 2.48E-45 2.42E-43
ABZJ_03736 thiol:disulfide interchange protein —3.9361 9.872762 6.64E-41 5.50E-39

Transcriptome Analysis and Real-Time

Quantitative PCR Verification

A. baumannii MDR-ZJ06 and Z]J06-200P5-1 were grown
overnight at 37 °C in LB broth. Strains were subcultured 1/100
into fresh LB broth and grown at 37 °C for 2 h (ODggp: 0.29
=+ 0.02 for MDR-ZJ06, 0.26 =% 0.02 for ZJ06-200P5-1). The cells
were collected at 4 °C, and the RNA was extracted using TRIZOL
Reagent (Invitrogen, Carlsbad, CA, USA) after liquid nitrogen
grinding. For RNA sequencing, wild type and mutants were
sampled in triplicate. The subsequent RNA extraction, bacteria
mRNA sequence library construction, transcriptome analysis and
real-time quantitative PCR verification were performed by staff
at Zhejiang Tianke (Hangzhou, China) as described previously
in reference (Hua et al., 2014). Sequenced reads were mapped
to the MDR-ZJ06 genome (CP001937-8) using Rockhopper

(McClure et al., 2013). The output data was analyzed by edgeR
(McCarthy et al., 2012). Data generated by RNA sequencing were
deposited to the NCBI Sequence Read Archive with accession
number SRR5234544 (the wild type) and SRR5234545 (the
colistin resistant strain).

Proteomic Analysis

A. baumannii MDR-Z]J06 and ZJ06-200P5-1 were grown
overnight at 37 °C in LB broth. Strains were subcultured 1/100
into fresh LB broth and grown at 37 °C for 2 h (ODggo: 0.29
=+ 0.02 for MDR-ZJ06, 0.26 & 0.02 for ZJ06-200P5-1). The cells
were collected at 4 °C and sent to Shanghai Applied Protein
Technology Co. Ltd. The cell pellets were washed twice with PBS,
and 500 pl SDT lysis buffer (4% SDS, 100 mM Tris-HCI, 1 mM
DTT, pH 7.6) was added. After being sonicated for 2 mins on ice,
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differential expression

FIGURE 2 | Validation of the RNA sequencing results. The transcriptomic results obtained by RNA-seq were validated by quantitative RT-PCR analysis. The
differential expression of 16 genes was detected in this study. Three biology replicates were used in this experiment. The results were presented as expression in
ZJ06-200P5-1, relative to MDR-ZJ06. The reference gene rpoB was used for inter-sample normalization. Error bars denote standard deviation.

the cells were centrifuged at 14,000 x g for 30 min at 4 °C. The
protein concentration in the supernatant was determined by the
BCA method.

In brief, 300 pg protein was added to 200 pl UA buffer (8 M
urea, 150 mM Tris-HCl pH 8.0) and ultrafiltered (Sartorius,
10 kD) with UA buffer. To block reduced cysteine residues,
100 pl iodoacetamide (IAA) buffer (50 mM IAA in UA buffer)
was added, centrifuged at 600 rpm for 1 min, and incubated
for 30 min in the dark. The filter was washed twice with
100 pl UA buffer and twice with 100 pl Dissolution buffer
(50 mM triethylammonium bicarbonate, pH 8.5). Finally, the
proteins were digested with 2 pg trypsin (Promega) in 40
pl Dissolution buffer at 37 °C for 16-18 h. The peptides
were collected as a filtrate, and its content was estimated at
OD2g0.

For iTRAQ labeling, the peptides were labeled with
the 4-plex iTRAQ reagent following the manufacturer’s
instructions (AB SCIEX). The peptides from MDR-ZJ06 were
labeled with 114 and 116 isobaric reagents, and the peptides
from ZJ06-200P5-1 were labeled with 115 and 117 isobaric
reagents.

RP-HPCL online-coupled to MS/MS (LC-MS/MS) analysis
of the iTRAQ-labeled peptides was performed on an EASY-
nLC nanoflow LC system (Thermo Fisher Scientific) connected
to an Orbitrap Elite hybrid mass spectrometer (Thermo Fisher
Scientific). After the samples were reconstituted and acidified
with buffer A (0.1% (v/v) formic acid in water), a set-up involving
a pre-column and analytical column was used. The pre-column
was a 2 cm EASY-column (100, 5 wm C18; Thermo Fisher
Scientific), while the analytical column was a 10 cm EASY-
column (75, 3 wm, C18; Thermo Fisher Scientific). The 120
min linear gradient from 0 to 100% buffer B (0.1% (v/v) formic
acid and 80% acetonitrile) at a constant flow rate of 250 nl/min
was as follows: 0-100 min, 0-35% buffer B; 100-108 min, 35-
100% buffer B; 108-120 min, 100% buffer B. MS data were

acquired using a data-dependent top 10 method, dynamically
choosing the most abundant precursor ions from the survey scan
(300-180 m/z) for HCD fragmentation. The Dynamic exclusion
was set to a repeat count of 1 with a 30 s duration. Survey scans
were acquired at a resolution of 30,000 at m/z 200, and the
resolution for HCD spectra was set to 15,000 at m/z 200. The
normalized collision energy was 35 eV, and the underfill ratio was
defined as 0.1%.

The MS/MS spectra were searched using the MASCOT
engine (Matrix Science, London, UK; version 2.2) against the
A. baumannii MDR-Z]J06 FASTA database. False discovery
rates (FDR) were calculated via running all spectra against
the FASTA database using the MASCOT software. The
following options were used to identify proteins: peptide
mass tolerance = 20 ppm, fragment mass tolerance = 0.1
Da, Enzyme = Trypsin, Max missed cleavages = 2, Fixed
modification: Carbamidomethyl (C), iTRAQ 4plex (N-term),
iTRAQ 4plex (K), Variable modification: Oxidation (M).
Quantification was performed based on the peak intensities
of the reporter ions in the MS/MS spectra. The proteins
were considered overexpressed when the iTRAQ ratio was
above 1.5 and underexpressed when the iTRAQ ratio was
lower than 0.67 (Wang et al., 2016). Functional classification
of differentially expression genes were annotated using the
KEGG databases. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the
PRIDE (Vizcaino et al., 2016) partner repository with the
dataset identifier PXD005265 and 10.6019/PXD005265. Reviewer
account details: Username: reviewer54242@ebi.ac.uk; Password:
zR8mE9wu.

Growth Rate Determination

Four independent cultures per strain were grown overnight,
diluted to 1:1000 in MH and aliquots placed into a flat-bottom
100-well plate in four replicates. The plate was incubated at 37 °C
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with agitation. The ODggg of each culture was determined every
5 min for 16 h using a Bioscreen C MBR machine (Oy Growth
Curves Ab Ltd., Finland). The growth rate was estimated based
on ODgg curves using an R script (Fang et al., 2016).

RESULTS

Whole Genome Sequencing, Minimum

Inhibitory Concentration and Growth Rate

The colistin-resistant mutant ZJ06-200P5-1 generated from the
culture in CAMHB containing colistin was sent for whole
genome sequencing. There was an ISAbal insertion in IpxC in
7J06-200P5-1 compared with the genome sequence of MDR-
7J06 (Figure1). The MIC of MDR-ZJ06 and Z]J06-200P5-1
were detected and listed in Table1. The MIC for colistin
increased from 0.38 mg/L (MDR-Z]J06) to >256 mg/L (Z]J06-
200P5-1). However, ZJ06-200P5-1 showed higher sensitivity to
multiple antibiotics: p-lactams, carbapenem, tetracycline, and
ciprofloxacin, but not aminoglycosides. Furthermore, ZJ06-
200P5-1 showed a lower growth rate (0.81 £ 0.05) than wild

type.

Transcriptome Analysis

The transcriptome analysis of Z]J06-200P5-1 and MDR-Z]J06
was performed by Illumina RNA deep sequencing technology.
Cells of the two strains were collected in the early exponential
phase. A total of 137 genes showed significant differential
expression [log2(FoldChange) > 1 or log2(FoldChange) <
—1], among which 48 genes were upregulated and 89 were
downregulated (Table 2). Sixteen selected genes, three up-
regulated and thirteen down-regulated genes, were well-validated
by RT-qPCR (Figure2). After mapping the differentially
expressed genes into the KEGG pathway, we observed that genes
involved in Energy metabolism and Amino acid metabolism
were down-regulated, while Carbohydrate metabolism was
up-regulated.

iTRAQ

A total of 1582 proteins were identified in the iTRAQ
experiment. A protein ratio >1.5 or <0.67 (p < 0.05)
was considered to be differentially expressed. After filtration,
82 differentially expressed proteins were identified between
7J06-200P5-1 and MDR-Z]J06. The detailed information is shown
in Table 3.

The expression of AdeABC was up-regulated in the LPS-
loss ZJ06-200P5-1 strain. The AdeABC efflux pump confers
resistance to various antibiotics classes. The expression of
AdeABC genes was increased approximately two-fold in
7]J06-200P5-1 (Figure 3A). However, ZJ06-200P5-1 showed
higher susceptibility to multiple antibiotics than MDR-Z]J06
(Table 1).

The fatty acid biosynthesis pathway was down-regulated in
the ZJ06-200P5-1 strain (Figure 3B). The expression of FabZ
was decreased by approximately two-fold in Z]J06-200P5-1. The
p-lactamases blapxa—23 and blaapc—zs were down-regulated
in ZJ06-200P5-1 strain. The expression levels of blaoxa—23

and blapapc_ys were decreased two- to four-fold in ZJ06-
200P5-1.

Common Genes Altered Expression in

Both Transcriptome and Proteome

A total of 15 differentially expressed genes (or proteins) were
identified in both transcriptome and proteome (Table 4). Among
them, three genes were both up-regulated, and nine genes were
both down-regulated. Although there was correlation between
transcriptome and proteome data, the absolute expression
difference values in transcriptome data was higher than those
in proteome data. In addition, the result of three gene/proteins
were contradictory (highlighted in red letters in Table 4). The
contradictory result might be caused by post-transcriptional
regulation.

DISCUSSION

Due to the limitation of antimicrobial agents in clinical use,
it is urgent to extend our understanding of the emergence of
colistin resistance in A. baumannii. A. baumannii MDR-Z]J06, a
multidrug-resistant clinical strain isolated from bloodstream, has
been sequenced and was considered an ideal strain for examining
the colistin-resistant mechanism in A. baumannii (Zhou et al,,
2011). In this study, colistin-resistant strain was rapidly obtained,
and its resistance mechanism was LPS loss caused by ISAbal
insertion in IpxC. This result confirmed a previous finding
(Moffatt et al., 2010). The rapid isolation of colistin-resistant
mutant from multiple drug-resistant A. baumannii indicated
a high risk of A. baumannii evolving resistance to colistin in
clinical use.

We successfully detected the whole transcriptional
profile of A. baumannii strain MDR-ZJ06 and its colistin-
resistant mutant ZJ06-200P5-1 via Illumina RNA-sequencing.
In another transcriptome study (Henry et al, 2012), A.
baumannii ATCC 19606 and its IpxA mutant were used.
Although both the IpxC and IpxA mutation lead to LPS
loss, the different transcriptional response may be due to
differences in the strain genetic background and the resistant
mutation. In transcriptional analysis, we observed that genes
involved in Energy metabolism and Amino acid metabolism
were down-regulated, while Carbohydrate metabolism was
up-regulated.

The expression of AdeABC was up-regulated in the LPS-loss
7J06-200P5-1 strain. Similar results were also observed in all
polymyxin-treated samples (Cheah et al., 2016a). In addition, the
expression levels of adel]K and macAB-tolC were up-regulated in
the LPS loss mutant (Henry et al., 2012). Increased expression of
the RND efflux pump system (AdeABC) was a common finding
across all experiments in colistin exposure. The up-regulation of
AdeABC indicated the diminished integrity and barrier function
of the outer membrane in colistin-resistant A. baumannii
(Henry et al., 2015; Cheah et al, 2016a). However, ZJ06-
200P5-1 showed higher susceptibility to multiple antibiotics
than MDR-ZJ06. The higher susceptibility might result from
the higher outer membrane permeability of ZJ06-200P5-1 due
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FIGURE 3 | ITRAQ analysis showed that AdeABC were up-regulated, and the fatty acid biosynthesis pathway was down-regulated in ZJ06-200P5-1.
(A) AdeABC efflux pump, (B) fatty acid biosynthesis pathway. Green shows genes with significantly reduced expression levels, and red shows genes with significantly
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to LPS-loss. The increased expression of the efflux pump was
thought to be a response to toxic substances that accumulated
in the cells due to the increased membrane permeability
(Henry et al., 2012).

The fatty acid biosynthesis pathway was down-regulated in
the ZJ06-200P5-1 strain. In E. coli, it is important to balance
LPS and fatty acid biosynthesis to maintain cell integrity. FabZ,
which dehydrates R-3-hydroxymyristoyl-acyl carrier protein in
fatty acid biosynthesis, plays an important role in rebalancing
lipid A and fatty acid homeostasis (Bojkovic et al., 2016). The
decrease in FabZ was considered to be a response to LPS-loss
in ZJ06-200P5-1. The B-lactamases blapxa—»3 and blaapc—2s
were down-regulated in the ZJ06-200P5-1 strain. Decreased
expression levels of blagxa—»3 and blaxpc—25 were also observed
in A. baumannii MDR-Z]J06 under a subinhibitory concentration
of tigecycline (Hua et al., 2014). Meanwhile, the strain under
tigecycline stress showed a lower MIC of ceftazidime (Hua
et al.,, 2014). The decrease in blapxa—»3 and blaapc—»5 might
contribute to the increased sensitivity to f-lactam antimicrobial
agents.

A multi-omics approach was adopted to obtain a more
global view of colistin-resistant A. baumannii. Genomic analysis
showed that IpxC was inactivated by ISAbal insertion, leading to
LPS loss. Transcriptional analysis demonstrated that the colistin-
resistant strain regulated its metabolism. Metabolic change
and LPS loss were concomitant. Proteomic analysis suggested
increased expression of the RND efflux pump system and the
down-regulation of FabZ and B-lactamase. These alterations are
believed to be responses to LPS loss. Together, the [pxC mutation
not only confirmed colistin resistance but also altered global gene
expression.

Nucleotide Sequence Accession Numbers

TABLE 4 | Common genes altered expression both in transcriptome and
proteome.

Synonym Product Fold change Fold change
(log2, Transcriptome) (log2, Proteome)
ABZJ_00332 hypothetical protein 4.26489563 0.859413
ABZJ_03753 hypothetical protein 2.3189973252 —0.95428
ABZJ_00333 hypothetical protein 2.314204886 1.09309
ABZJ_01133 heat shock protein 2.180888936 0.532117
ABZJ_00060 Thiol-disulfide 1.8943178812 —0.65529
isomerase and
thioredoxin
ABZJ_00028 lytic murein 1.2967516922 —0.57293
transglycosylase
family protein
ABZJ_01078 hypothetical protein —1.081092562 —0.44448
ABZJ_03720 UDP-3-O-acyl-N- —1.144287283 —0.48378
acetylglucosamine
deacetylase
ABZJ_03859 putative RND type —1.173634714 —0.60779
efflux pump involved in
aminoglycoside
resistance (AdeT)
ABZJ_03744 hypothetical protein —1.296782077 —0.60878
ABZJ_03737 hypothetical protein —1.302692756 —1.28419
ABZJ_01025 homocysteine/ —1.337189269 —0.71762
selenocysteine
methylase
ABZJ_01219 hypothetical protein —1.864476303 —0.75975
ABZJ_01088 carbonic anhydrase —1.949843631 —0.56001
ABZJ_01206 hypothetical protein —3.281014801 —0.4346

aThe result of three gene/proteins were contradictory.

AUTHOR CONTRIBUTIONS

The whole-genome shotgun sequencing results for XH and YY conceived and designed the study. XH, LL, YE QS,
A.  baumannii  Z]06-200P5-1 have been deposited at XL, QC, KS, Y], and HZ performed the experiments. XH and YY
DDBJ/EMBL/GenBank  under the accession number  performed data analysis and drafted the manuscript. All authors
MIFW00000000. reviewed and approved the final manuscript.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 February 2017 | Volume 7 | Article 45


http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

Hua et al.

Colistin Resistance in AB by Multiomics

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (81230039, 31670135, 81378158), the 973

REFERENCES

Antunes, L. C. Visca, P., and Towner, K. J. (2014). Acinetobacter
baumannii: evolution of a global pathogen. Pathog. Dis. 71, 292-301.
doi: 10.1111/2049-632X.12125

Bae, S., Kim, M. C,, Park, S. J., Kim, H. S,, Sung, H., Kim, M. N., et al. (2016).
In vitro synergistic activity of antimicrobial agents in combination against
clinical isolates of colistin-resistant Acinetobacter baumannii. Antimicrob
Agents Chemother. 60, 6774-6779. doi: 10.1128/AAC.00839-16

Beceiro, A., Llobet, E., Aranda, J., Bengoechea, J. A., Doumith, M., Hornsey,
M., et al. (2011). Phosphoethanolamine modification of lipid A in colistin-
resistant variants of Acinetobacter baumannii mediated by the pmrAB two-
component regulatory system. Antimicrob. Agents Chemother. 55, 3370-3379.
doi: 10.1128/AAC.00079-11

Beceiro, A., Moreno, A., Fernandez, N., Vallejo, J. A., Aranda, J., Adler, B,
et al. (2014). Biological cost of different mechanisms of colistin resistance
and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents
Chemother. 58, 518-526. doi: 10.1128/AAC.01597-13

Bojkovic, J., Richie, D. L., Six, D. A., Rath, C. M., Sawyer, W. S., Hu, Q,, et al.
(2016). Characterization of an Acinetobacter baumannii IptD deletion strain:
permeability defects and response to inhibition of lipopolysaccharide and fatty
acid biosynthesis. J. Bacteriol. 198, 731-741. doi: 10.1128/JB.00639-15

Cai, Y., Chai, D, Wang, R., Liang, B., and Bai, N. (2012). Colistin resistance
of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial
strategies. J. Antimicrob. Chemother. 67, 1607-1615. doi: 10.1093/jac/dks084

Cheah, S. E., Johnson, M. D., Zhu, Y., Tsuji, B. T, Forrest, A., Bulitta, J. B., et al.
(2016a). Polymyxin resistance in Acinetobacter baumannii: genetic mutations
and transcriptomic changes in response to clinically relevant dosage regimens.
Sci. Rep. 6:26233. doi: 10.1038/srep26233

Cheah, S. E,, Li, J., Tsuji, B. T., Forrest, A., Bulitta, J. B., and Nation, R. L. (2016b).
Colistin and polymyxin B dosage regimens against Acinetobacter baumannii:
differences in activity and the emergence of resistance. Antimicrob. Agents
Chemother. 60, 3921-3933. doi: 10.1128/AAC.02927-15

Deatherage, D. E., and Barrick, J. E. (2014). Identification of mutations in
laboratory-evolved microbes from next-generation sequencing data using
breseq. Methods Mol. Biol. 1151, 165-188. doi: 10.1007/978-1-4939-0554-6_12

Fang, L., Chen, Q., Shi, K., Li, X,, Shi, Q., He, F., et al. (2016). Step-Wise increase
in tigecycline resistance in klebsiella pneumoniae associated with Mutations in
ramR, lon and rps]. PLoS ONE 11:0165019. doi: 10.1371/journal.pone.0165019

Fernandez-Reyes, M., Rodriguez-Falcon, M., Chiva, C., Pachon, J., Andreu, D., and
Rivas, L. (2009). The cost of resistance to colistin in Acinetobacter baumannii: a
proteomic perspective. Proteomics 9, 1632-1645. doi: 10.1002/pmic.200800434

Henry, R, Crane, B., Powell, D., Deveson Lucas, D., Li, Z., Aranda, ],
et al. (2015). The transcriptomic response of Acinetobacter baumannii
to colistin and doripenem alone and in combination in an in vitro
pharmacokinetics/pharmacodynamics model. J. Antimicrob. Chemother. 70,
1303-1313. doi: 10.1093/jac/dku536

Henry, R., Vithanage, N., Harrison, P., Seemann, T., Coutts, S., Moffatt, J.
H., et al. (2012). Colistin-resistant, lipopolysaccharide-deficient Acinetobacter
baumannii responds to lipopolysaccharide loss through increased expression
of genes involved in the synthesis and transport of lipoproteins, phospholipids,
and poly-beta-1,6-N-acetylglucosamine. Antimicrob. Agents Chemother. 56,
59-69. doi: 10.1128/AAC.05191-11

Preliminary Research Program (2014CB560707), the Natural
Science Foundation of Zhejiang province, China (LY15H190004,
Y16H190013) and the Zhejiang Province Medical Platform
Backbone Talent Plan (2016DTA003).

Howard, A., O’Donoghue, M., Feeney, A., and Sleator, R. D. (2012). Acinetobacter
baumannii: an emerging opportunistic pathogen. Virulence 3, 243-250.
doi: 10.4161/viru.19700

Hua, X., Chen, Q., Li, X,, and Yu, Y. (2014). Global transcriptional response
of Acinetobacter baumannii to a subinhibitory concentration of tigecycline.
Int. ]. Antimicrob. Agents 44, 337-344. doi: 10.1016/j.ijantimicag.2014.
06.015

Li, J., Rayner, C. R, Nation, R. L, Owen, R. J,, Spelman, D., Tan, K. E,,
et al. (2006). Heteroresistance to colistin in multidrug-resistant Acinetobacter
baumannii. Antimicrob. Agents Chemother. 50, 2946-2950. doi: 10.1128/AAC.
00103-06

McCarthy, D.J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis
of multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res. 40, 4288-4297. doi: 10.1093/nar/gks042

McClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco,
C. A, et al. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic
Acids Res. 41:140. doi: 10.1093/nar/gkt444

Moffatt, J. H., Harper, M., Harrison, P., Hale, J. D., Vinogradov, E., Seemann, T,
et al. (2010). Colistin resistance in Acinetobacter baumannii is mediated by
complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother.
54, 4971-4977. doi: 10.1128/AAC.00834-10

Mu, X,, Wang, N, Li, X., Shi, K., Zhou, Z., Yu, Y, et al. (2016). The Effect of Colistin
Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii.
Front. Microbiol. 7:1715. doi: 10.3389/fmicb.2016.01715

Peleg, A. Y., Seifert, H., and Paterson, D. L. (2008). Acinetobacter baumannii:
emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538-582.
doi: 10.1128/CMR.00058-07

Thi Khanh Nhu, N., Riordan, D. W., Do Hoang Nhu, T., Thanh, D. P., Thwaites,
G., Huong Lan, N. P, et al. (2016). The induction and identification of
novel Colistin resistance mutations in Acinetobacter baumannii and their
implications. Sci. Rep. 6:28291. doi: 10.1038/srep28291

Vizcaino, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, L., et al.
(2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids
Res. 44, D447-D456. doi: 10.1093/nar/gkw880

Wang, S., Yang, Y., Zhao, Y., Zhao, H., Bai, J., Chen, J., et al. (2016). Sub-MIC
tylosin inhibits Streptococcus suis biofilm formation and results in differential
protein expression. Front. Microbiol. 7:384. doi: 10.3389/fmicb.2016.00384

Zhou, H., Zhang, T., Yu, D., Pi, B, Yang, Q., Zhou, J,, et al. (2011). Genomic
analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-
7J06 widely spread in China. Antimicrob. Agents Chemother. 55, 4506-4512.
doi: 10.1128/AAC.01134-10

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Hua, Liu, Fang, Shi, Li, Chen, Shi, Jiang, Zhou and Yu. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

12

February 2017 | Volume 7 | Article 45


https://doi.org/10.1111/2049-632X.12125
https://doi.org/10.1128/AAC.00839-16
https://doi.org/10.1128/AAC.00079-11
https://doi.org/10.1128/AAC.01597-13
https://doi.org/10.1128/JB.00639-15
https://doi.org/10.1093/jac/dks084
https://doi.org/10.1038/srep26233
https://doi.org/10.1128/AAC.02927-15
https://doi.org/10.1007/978-1-4939-0554-6_12
https://doi.org/10.1371/journal.pone.0165019
https://doi.org/10.1002/pmic.200800434
https://doi.org/10.1093/jac/dku536
https://doi.org/10.1128/AAC.05191-11
https://doi.org/10.4161/viru.19700
https://doi.org/10.1016/j.ijantimicag.2014.06.015
https://doi.org/10.1128/AAC.00103-06
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/nar/gkt444
https://doi.org/10.1128/AAC.00834-10
https://doi.org/10.3389/fmicb.2016.01715
https://doi.org/10.1128/CMR.00058-07
https://doi.org/10.1038/srep28291
https://doi.org/10.1093/nar/gkw880
https://doi.org/10.3389/fmicb.2016.00384
https://doi.org/10.1128/AAC.01134-10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Colistin Resistance in Acinetobacter baumannii MDR-ZJ06 Revealed by a Multiomics Approach
	Introduction
	Materials and Methods
	Bacterial Strains, Media, and Antibiotics
	Generation of Colistin-Resistant Mutant
	Whole Genome DNA Sequencing and Analysis
	Transcriptome Analysis and Real-Time Quantitative PCR Verification
	Proteomic Analysis
	Growth Rate Determination

	Results
	Whole Genome Sequencing, Minimum Inhibitory Concentration and Growth Rate
	Transcriptome Analysis
	iTRAQ
	Common Genes Altered Expression in Both Transcriptome and Proteome

	Discussion
	Nucleotide Sequence Accession Numbers

	Author Contributions
	Acknowledgments
	References


