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Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium

that infects a variety of cell types including macrophages, and propagates with great

efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is

among the nutrients required to support this pathogenic lifestyle and the bacterium

relies on specialized mechanisms to acquire iron within the host environment. Two

distinct pathways for iron acquisition are encoded by the F. tularensis genome- a

siderophore-dependent ferric iron uptake system and a ferrous iron transport system.

Genes of the Fur-regulated fslABCDEF operon direct the production and transport of the

siderophore rhizoferrin. Siderophore biosynthesis involves enzymes FslA and FslC, while

export across the inner membrane is mediated by FslB. Uptake of the rhizoferrin- ferric

iron complex is effected by the siderophore receptor FslE in the outer membrane

in a TonB-independent process, and FslD is responsible for uptake across the inner

membrane. Ferrous iron uptake relies largely on high affinity transport by FupA in the

outer membrane, while the Fur-regulated FeoB protein mediates transport across the

inner membrane. FslE and FupA are paralogous proteins, sharing sequence similarity and

possibly sharing structural features as well. This review summarizes current knowledge of

iron acquisition in this organism and the critical role of these uptake systems in bacterial

pathogenicity.
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INTRODUCTION

Francisella tularensis, the etiological agent of the zoonosis tularemia, is a Gram-negative
gamma-proteobacterium with a small genome of 1.89Mb (Sjöstedt, 2007). The species is further
differentiated into three subspecies, of which tularensis causes amore severe disease than holarctica,
while mediasiatica is less well-studied. The closely related species F. novicida, considered to be of
a more ancestral lineage (Svensson et al., 2005) and with a genome sequence identity of ∼98%
(Larsson et al., 2009) is an opportunistic human pathogen, but can cause a virulent tularemia-like
disease in mice.

In the laboratory, studies have largely focused on virulent strain Schu S4 of the tularensis
subspecies, the attenuated live vaccine strain (LVS) derived from a holarctica isolate and the strain
U112 of F. novicida. These three isolates share many biological attributes although their genetic
and functional differences significantly impact virulence (Jones et al., 2012; Celli and Zahrt, 2013;
Kingry et al., 2014). For this reason, all three strains are referred to in this review as F. tularensis
unless specifically identified in order to highlight particular differences.

F. tularensis is a facultative intracellular pathogen infecting a wide variety of cells, including
mammalian and arthropod cells (Ozanic et al., 2015). Following uptake into the macrophage, the
bacteria at first reside within a phagosome, but then rapidly escape into the cytoplasm. Phagosomal
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escape is dependent on the igl operon and associated genes in the
Francisella Pathogenicity Island (FPI) that encode components
of a putative Type VI secretion system (Barker et al., 2009; de
Bruin et al., 2011). The bacteria replicate to high numbers in the
cytoplasm resulting finally in apoptotic death of the host cell.
Adaptation to the specialized intracellular lifestyle is associated
with evolutionary loss of genes for many metabolic pathways
(Rohmer et al., 2007; Larsson et al., 2009), but F. tularensis has
retained or evolved mechanisms to efficiently acquire essential
nutrients within the intracellular niche of the different cell types
that it infects (Meibom and Charbit, 2010).

Mice have been extensively used to model animal infection
(Lyons and Wu, 2007). Phagocytic cells are thought to be
the first infected (Hall et al., 2008); subsequently infection
is disseminated to other tissues in the body. F. tularensis
exercises several strategies to evade immune responses and is
able to replicate to high levels in the liver, spleen and lungs
before the immune system is provoked to respond with a
destructive cytokine storm (Sharma et al., 2011; Jones et al.,
2012).

Iron and Francisella
Francisella requires iron for essential cellular functions. Early
studies reported that infection with F. tularensis induces an
iron-withholding response typical of the innate nutritional
immunity defense mechanism (Pekarek et al., 1969). However,
the intracellular pathogen manipulates host cell iron metabolism
to support growth; LVS induces infected macrophages to increase
iron flow through the cell by enhanced expression of the
transferrin receptor TfR1 for uptake of iron and in parallel,
increased expression of Dmt1 that moves endosomal iron into
the cytoplasm and a slight increase in ferroportin that promotes
outflow of iron from the cell (Pan et al., 2010). A functional
Nramp1protein that also transports endosomal iron into the
cytoplasm restricts growth of endosome-resident bacteria but
enhances Francisella growth (Kovářová et al., 2000, 2002),
highlighting the importance of cytoplasmic iron availability for
pathogenesis. However, the nature of the host iron sources
accessed by the organism remains to be characterized. Iron-
limitation restricts growth of bacteria in culture (Deng et al.,
2006; Sullivan et al., 2006) as well as within the macrophage
(Fortier et al., 1995).

As might be predicted, growth of F. tularensis is inhibited by
gallium, which competes with ferric iron for uptake and also
interferes with iron-dependent biological processes (Olakanmi
et al., 2010; Lindgren and Sjöstedt, 2016). Inhibition of the iron-
associated enzymes catalase and superoxide dismutase leads to
increased susceptibility to oxidative stress (Bakshi et al., 2006;
Lindgren et al., 2007; Olakanmi et al., 2010; Binesse et al., 2015).

Iron metabolism appears to differ among F. tularensis isolates.
LVS expresses higher levels of bacterioferritin as compared to
Schu S4 (Hubálek et al., 2003, 2004). Consistent with these
findings, isolates of the holarctica subspecies have greater iron
stores than tularensis isolates, and since iron is closely associated
with generation of reactive oxygen species, holarctica strains are
more susceptible to oxidative stress (Lindgren et al., 2011).

Fur and Iron Regulation of Genes
A fur ortholog is encoded in the F. tularensis genome and the
predicted Fur protein contains elements known to be important
for Fur function (Pérard et al., 2016). The fur gene is adjacent to
the fsl operon encoding components of a siderophore- mediated
iron uptake pathway, and a canonical Furbox is located upstream
of the first gene of the operon, fslA (Figure 1A). Expression of
the fsl operon is induced in iron-limiting media (Deng et al.,
2006; Sullivan et al., 2006; Buchan et al., 2008). Loss of the
fur gene results in deregulated transcription of the fsl operon
and increased siderophore production (Buchan et al., 2008;
Ramakrishnan et al., 2008). Expression of the inner membrane
ferrous iron transporter feoB is also upregulated in a fur mutant
(Pérez and Ramakrishnan, 2014).

Exposure to iron limitation was also shown to increase
virulence of an F. tularensis isolate, suggesting that pathogenicity
is influenced by iron levels (Bhatnagar et al., 1995). Microarray
analysis of RNA indicated that besides the fsl operon,
transcription of the igl operon was increased under iron
limitation (Deng et al., 2006). Proteomic analysis also confirmed
that iron limitation results in increased levels of the IglC protein
(Lenco et al., 2007). However, although an fslB-lacZ reporter
could be repressed by overexpression of Fur, an iglB-lacZ reporter
was not similarly repressible (Buchan et al., 2008), suggesting that
a mechanism besides Fur regulates the igl genes in response to
iron levels in F. tularensis.

Siderophore-Mediated Iron Acquisition
A “growth inducing substance (GIS)” that promoted growth of
F. tularensis bacteria from small inocula was reported in the
1960s (Halmann and Mager, 1967; Halmann et al., 1967); in all
likelihood this substance was the siderophore now identified as
the polycarboxylate rhizoferrin (Drechsel et al., 1991; Thieken
and Winkelmann, 1992; Sullivan et al., 2006). Rhizoferrin is
structurally simple, comprising 2 citrate moieties linked through
amide bonds to a putrescine backbone (Figure 1B). Originally
identified as a fungal siderophore (Drechsel et al., 1991; Thieken
and Winkelmann, 1992), rhizoferrin was subsequently also
isolated from a strain of the bacterium Ralstonia pickettii
(Münzinger et al., 1999). The identification of the siderophore
made by F. tularensis as rhizoferrin (Sullivan et al., 2006),
and the subsequent identification of the Legionella pneumophila
siderophore legiobactin as also rhizoferrin (Burnside et al., 2015)
suggests that this siderophore may be more widely prevalent
in bacteria than suspected. Structurally related siderophores
made by bacteria include staphyloferrin A (Konetschny-Rapp
et al., 1990) and corynebactin (Zajdowicz et al., 2012), where
D-ornithine and lysine, respectively, constitute the siderophore
backbone in place of the putrescine present in rhizoferrin. The R.
pickettii rhizoferrin was shown by CD spectroscopy to be an S-S
enantiomer in contrast to the R-R fungal molecule (Münzinger
et al., 1999). Whether all bacterial rhizoferrins adopt the S-S
conformation is not clear, but bacteria making rhizoferrin are
capable of utilizing the fungal form for iron uptake (Münzinger
et al., 1999; Kiss et al., 2008).

Genes for synthesis and transport of Francisella rhizoferrin are
located on the siderophore operon fslABCDEF (also designated
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FIGURE 1 | Siderophore-mediated iron acquisition in F. tularensis. (A) The fur-fsl locus of the F. tularensis subsp. tularensis chromosome is depicted and the

corresponding gene designations in the Schu S4, LVS, and U112 genomes are indicated. The Furbox upstream of the fslABCDEF operon is shown. Arrows indicate

the direction and extent of transcribed regions. (B) A schematic of the F. tularensis siderophore, rhizoferrin comprising two citrate molecules linked by amide bonds to

a putrescine backbone (in red). (C) Current model for siderophore-mediated iron acquisition in F. tularensis and the roles of the fsl operon products. FslA and FslC

encode enzymes for biosynthesis of the siderophore. The siderophore is released into the extracellular medium by the action of FslB and an as yet unknown outer

membrane component. The outer membrane siderophore receptor FslE, and FslD in the inner membrane mediate uptake of the ferric-siderophore complex. It is not

known if a TonB analog facilitates FslE function.

figABCDEF; (Deng et al., 2006; Sullivan et al., 2006; Milne
et al., 2007; Buchan et al., 2008; Ramakrishnan et al., 2008);
Figures 1A,C). Analysis of individual mutants as well as
complementation of a strain carrying a complete deletion of
the fslA-F genes helped to determine the roles played by the
different genes in siderophore-mediated iron acquisition, as
detailed below.

fslA and fslC and share homology with genes found in
siderophore biosynthetic loci of other bacteria. FslA is similar to
the aerobactin synthetases IucA/IucC and a member of the non-
ribosomal peptide synthetase-independent siderophore (NIS)
synthetases, enzymes that assemble non-peptide siderophores
using dicarboxylic acids and diamines or amino-alcohols

(Challis, 2005). FslC is predicted to be a member of the
pyridoxal phosphate-dependent decarboxylases. Mutant analysis
demonstrated that both fslA and fslC are required for Francisella
rhizoferrin production (Deng et al., 2006; Sullivan et al., 2006;
Lindgren et al., 2009; Thomas-Charles et al., 2013). Rhizoferrin
biosynthesis in F. tularensis, involving just two dedicated
enzymes, may be the simplest siderophore biosynthetic pathway
identified thus far.

fslB encodes a transporter of the Major Facilitator superfamily
(MFS) and deletion of this gene in F. novicida results in
reduced levels of siderophore activity in the culture medium
(Kiss et al., 2008). Additionally, detection of siderophore
activity in culture supernatants of an LVS 1fslA-F mutant
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required complementation with the fslB gene in addition to
the biosynthetic genes fslA and fslC (Pérez et al., 2016). These
observations support a role for FslB in export of the siderophore
across the cytoplasmic membrane. How the siderophore is
channeled through the outer membrane into the extracellular
space is currently not known.

fslD encodes an inner membrane MFS protein and deletion
of this gene was found to have little effect on siderophore
production (Kiss et al., 2008). The role of this protein
in siderophore-mediated iron uptake across the cytoplasmic
membrane was deduced on the basis of complementation studies:
a Schu S4 1fslA-F mutant is able to transport 55Fe3+ complexed
to siderophore only when complemented with the fslD gene in
addition to the fslE receptor gene (see below; Pérez et al., 2016).

fslE, the fifth gene in the operon, encodes an outer membrane
protein unique to the Francisella genus Larsson et al., 2005;
Huntley et al., 2007). 1fslE mutants are impaired for growth
in iron-limiting media and are unable to utilize exogenous
siderophore for growth (Kiss et al., 2008; Ramakrishnan et al.,
2008). In transport assays, fslE mutants proved incapable of
siderophore-mediated 55Fe3+ uptake, establishing a role for FslE
as receptor for the siderophore (Ramakrishnan et al., 2012).
FslE can also transport the iron mimic gallium in complex with
rhizoferrin as shown by the resistance of fslA and fslEmutants to
gallium (Pérez et al., 2016).

The last gene of the fsl operon, fslF, varies structurally among
the tularensis and the novicida species, being truncated in the
tularensis isolates. Studies with a 1fslF mutant in Schu S4
indicate that the gene does not influence iron transport in
F. tularensis (Pérez et al., 2016).

Siderophore-mediated iron transport by outer membrane
receptors in Gram-negative bacteria is typically dependent on
the proton motive force transduced by the TonB-ExbB-ExbD
complex (Noinaj et al., 2010). The Francisella genome, however,
does not encode orthologs of tonB, exbB, and exbD, implying that
alternative mechanisms must facilitate siderophore -iron uptake.

Ferrous Iron Uptake
The F. tularensis genome encodes an inner membrane ferrous
iron transport system comprising unlinked genes feoA and feoB.
1feoB mutants of LVS and Schu S4 are deficient for growth
on iron-limiting media (Thomas-Charles et al., 2013; Pérez and
Ramakrishnan, 2014; Pérez et al., 2016). 55Fe uptake assays
demonstrated that the F. tularensis1feoBmutants are completely
deficient in ferrous iron uptake (Pérez and Ramakrishnan, 2014;
Pérez et al., 2016), implying that the Feo system is the sole ferrous
iron transporter across the inner membrane (Figure 2). It is
likely that FeoA supports FeoB function as seen in Salmonella
Typhimurium (Kim et al., 2012) and Vibrio cholerae (Weaver
et al., 2013; Stevenson et al., 2016).

Given the soluble nature of ferrous iron, the general
assumption has been that it diffuses into the periplasmic space
through non-specific porin proteins in the outer membrane.
However, growth and 55Fe transport assays indicate that F.
tularensis is capable of high-affinity uptake of ferrous iron
mediated by the specific outer membrane protein FupA
(Ramakrishnan et al., 2012). FupA was initially characterized as

FIGURE 2 | Ferrous iron acquisition in F. tularensis. Transport of ferrous

iron relies on the high affinity transporter FupA and uncharacterized low affinity

channels in the outer membrane. Inner membrane transport is dependent on

the FeoB transporter with likely involvement of FeoA. We raise the possibility

that an accessory protein may facilitate FupA function.

a virulence factor in Schu S4 (Twine et al, 2005) and found to
influence bacterial intracellular replication (Twine et al, 2005;
Asare et al., 2010). An involvement in iron acquisition was
established by the finding that Schu S4 1fupA mutant grew
poorly under iron limitation, had lowered internal iron levels
and was deregulated for siderophore production (Lindgren et al.,
2009). A link to ferrous iron uptake was indicated by the finding
that ferrous and ferric iron supplements supported growth of a
fupA mutant to different extents on agar plates (Ramakrishnan
et al., 2012). 55Fe transport assays clearly demonstrated that the
fupA mutant was unable to transport ferrous iron at limiting
concentrations (∼0.1 µM) although low affinity ferrous iron
transport at high concentrations (∼3µM) could still be observed,
and siderophore-iron uptake was not perturbed (Ramakrishnan
et al., 2012). These findings suggest that FupA serves as a F.
tularensis adaptation to efficiently acquire ferrous iron even in
low abundance settings when general diffusion-based transport
across the outer membrane might prove inadequate (Figure 2).

FslE and FupA: Related High-Affinity Iron
Transport Proteins
FupA and FslE are paralogs belonging to a family of proteins
unique to Francisella (Larsson et al., 2005). Both proteins have
been localized to the outer membrane of F. tularensis (Huntley
et al., 2007; Ramakrishnan and Sen, 2014) and share a global
54% identity and 69% similarity in amino acid sequence. FupA
with 557 amino acid residues is larger than FslE (509 residues).
The HiddenMarkovModel-based PRED-TMBB program (Bagos
et al., 2004a,b) predicts that both FupA and FslE fold as β-
barrels in the outer membrane with amino-terminal periplasmic
domains. FupA is predicted to form a 16-stranded barrel with
a periplasmic domain of 201 residues while FslE could form a
14-stranded barrel with a 152 residue periplasmic domain. This
structure is reminiscent of typical TonB-dependent transporters
(Noinaj et al., 2010). The greatest similarity between FslE and
FupA is in the predicted β-barrel domains.
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The fupA gene is located adjacent to a paralog fupB on the
chromosome. Infrequent recombinational deletion events have
been observed leading to formation of fupA/B hybrid genes
(Twine et al, 2005; Rohmer et al., 2006); such recombination
accounts for a significant reduction in virulence as seen in LVS,
which can be reversed by restoration of the full length fupA
gene (Salomonsson et al., 2009). The FupA/B hybrid protein
encoded by LVS is less efficient at high-affinity ferrous iron
uptake than FupA, but gains siderophore-iron uptake capability
(Sen et al., 2010; Ramakrishnan and Sen, 2014). The structural
and functional overlap in protein function raises the intriguing
possibility that a common mechanism may underlie transport by
FslE and FupA.

fupA expression is independent of iron and fur regulation,
suggesting that FupA may have functions in addition to iron
transport. fupAmutants have increased resistance to copper, and
transport assays indicated that copper competes with ferrous iron
for transport (Pérez et al., 2016). A role for FupA in maintenance
of outer membrane integrity has also been proposed (Nallaparaju
et al., 2011). Alhough, the fsl operon is regulated in response to
iron levels, it was reported recently that calcium and magnesium
limitation also result in increased fslE transcription (Wu et al.,
2016). These observations are consistent with the idea that the
high affinity iron transport proteins in the outer membrane of F.
tularensis may assume roles in transport of additional substrates
under stress.

Interestingly, FslE appears structurally different from
rhizoferrin receptors of other bacteria. The LbtU siderophore
receptor of L. pneumophila is not predicted to have a distinct
periplasmic domain (Chatfield et al., 2011). RumA, the
rhizoferrin receptor in Morganella morganii is a TonB-
dependent transporter (Kühn et al., 1996). Mechanisms for
rhizoferrin transport thus appear to have evolved independently
in different bacteria.

Iron Uptake and Pathogenesis
Analysis of the transcriptome of Schu S4-infected macrophages
demonstrated that the fsl genes are among the most highly
induced genes in the intracellular niche (Wehrly et al., 2009).
Similar results were obtained using LVS infected hepatocytes
(Thomas-Charles et al., 2013), suggesting that the siderophore
uptake system contributes to survival within different tissue
types. fsl mutants were identified in a negative selection screen
of a U112 transposon mutant library in mice (Weiss et al., 2007)
and a signature-tagged mutant screen identified fslA and feoB to
be important for pulmonary infection by LVS (Su et al., 2007).
Nevertheless, individual mutants in the fsl, fupA, and feoB genes

are capable of intracellular growth although the reduced growth
of the feoB mutants in hepatocytes suggests that ferrous iron is
likely the major iron source within these cells (Lindgren et al.,
2009; Ramakrishnan et al., 2012; Thomas-Charles et al., 2013;
Pérez and Ramakrishnan, 2014; Pérez et al., 2016). Both iron
uptake pathways appear to contribute to utilization of iron from
heme for growth (Lindgren et al., 2015), suggesting that iron
needs to be released from the heme for use by the bacteria.
Screens with U112 mutants have implicated additional genes in
iron acquisition, but they have not been definitively characterized
(Crosa et al., 2009).

A Schu 1fslE 1fupA mutant deficient for both siderophore
and high affinity ferrous iron uptake grows slowly, is attenuated
for growth in macrophages and completely avirulent in mice
(Ramakrishnan et al., 2012). 1fslA 1feoB mutants of LVS and
Schu S4 deficient for siderophore biosynthesis and for all ferrous
iron uptake have an even more severe defect, with dependence
on extraneous siderophore for growth, loss of all capacity for
intracellular growth and complete loss of virulence (Pérez and
Ramakrishnan, 2014; Pérez et al., 2016). These findings indicate
that both subspecies of F. tularensis have a similar repertoire of
iron uptake mechanisms, limited to just the fsl and feo-mediated
mechanisms. Interestingly, although the 1fslE 1fupA and the
1fslA 1feoB mutants are avirulent in mice, exposure to these
strains protects from subsequent challenge with the virulent
strain (Ramakrishnan et al., 2012; Pérez et al., 2016), making
them good candidates for further exploration as live vaccines.

CONCLUSIONS

With a reduced genome, F. tularensis has evolved to efficiently
support its lifestyle as an intracellular pathogen with a minimal
set of two iron acquisition pathways. Host iron sources utilized
andmechanisms regulating the transport proteins FslE and FupA
are interesting questions for future investigations.
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Kovářová, H., Halada, P., Man, P., Golovliov, I., Kovářová, Z., Špaček, J., et al.
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